Tribological characteristics of 'steel-ceramics-irradiated-by-helium-ions' pair
Facility for the tribological characteristics studying of a metal – ceramics pair and parameters of ceramic samples irradiation on the helium ions linear accelerator with energies 0.12 and 4 MeV are resulted. Profiles of damageability and occurrence of target atoms along of helium ions range are cal...
Збережено в:
Дата: | 2021 |
---|---|
Автори: | , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2021
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/195435 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Tribological characteristics of 'steel-ceramics-irradiated-by-helium-ions' pair / V.I. Butenko, S.N. Dubniuk, A.F. Dyachenko, K.V. Pavlii, B.V. Zajtsev // Problems of Atomic Science and Technology. — 2021. — № 5. — С. 44-50. — Бібліогр.: 20 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-195435 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1954352023-12-05T12:21:23Z Tribological characteristics of 'steel-ceramics-irradiated-by-helium-ions' pair Butenko, V.I. Dubniuk, S.N. Dyachenko, A.F. Pavlii, K.V. Zajtsev, B.V. Physics of radiation damages and effects in solids Facility for the tribological characteristics studying of a metal – ceramics pair and parameters of ceramic samples irradiation on the helium ions linear accelerator with energies 0.12 and 4 MeV are resulted. Profiles of damageability and occurrence of target atoms along of helium ions range are calculated for the irradiated TiO₂ and Al₂O₃. Sputtering ratios and dependence of the sputtered atoms quantity on samples thickness are received. Calculations on density change of the irradiated samples are made. Experimental results of a sliding friction factor measurement depending on cycle’s quantity, temperature and irradiation doses are presented. On the basis of microscopic researches and calculation data conclusions are drawn about irradiation influence on interacting pair’s tribological characteristics. Наведено установку для вивчення трибологічних характеристик пари метал – кераміка та параметри опромінення керамічних зразків на лінійному прискорювачі іонів гелію з енергіями 0,12 і 4 МеВ. Для опромінених TiO₂ й Al₂O₃ розраховано профілі пошкоджуваності та залягання атомів мішені вздовж пробігу іонів гелію. Отримано коефіцієнти розпилення й залежності кількості розпилених атомів по товщині зразків. Зроблено розрахунки щодо змінення щільності опромінених зразків. Подано експериментальні результати вимірювання коефіцієнта тертя ковзання залежно від кількості циклів, температури й дози опромінення. На основі мікроскопічних досліджень і розрахункових даних зроблено висновки щодо впливу опромінення на трибологічні характеристики пар, що взаємодіють. Приведены установка для изучения трибологических характеристик пары металл – керамика и параметры облучения керамических образцов на линейном ускорителе ионов гелия с энергиями 0,12 и 4 МэВ. Для облученных TiO₂ и Al₂O₃ рассчитаны профили повреждаемости и залегания атомов мишени вдоль пробега ионов гелия. Получены коэффициенты распыления и зависимости количества распыленных атомов по толщине образцов. Произведены расчеты по изменению плотности облученных образцов. Представлены экспериментальные результаты измерения коэффициента трения скольжения в зависимости от количества циклов, температуры и дозы облучения. На основе микроскопических исследований и расчетных данных сделаны выводы о влиянии облучения на трибологические характеристики взаимодействующих пар. 2021 Article Tribological characteristics of 'steel-ceramics-irradiated-by-helium-ions' pair / V.I. Butenko, S.N. Dubniuk, A.F. Dyachenko, K.V. Pavlii, B.V. Zajtsev // Problems of Atomic Science and Technology. — 2021. — № 5. — С. 44-50. — Бібліогр.: 20 назв. — англ. 1562-6016 PACS: 29.17.w, 29.27.Bd DOI: https://doi.org/10.46813/2021-135-044 http://dspace.nbuv.gov.ua/handle/123456789/195435 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Physics of radiation damages and effects in solids Physics of radiation damages and effects in solids |
spellingShingle |
Physics of radiation damages and effects in solids Physics of radiation damages and effects in solids Butenko, V.I. Dubniuk, S.N. Dyachenko, A.F. Pavlii, K.V. Zajtsev, B.V. Tribological characteristics of 'steel-ceramics-irradiated-by-helium-ions' pair Вопросы атомной науки и техники |
description |
Facility for the tribological characteristics studying of a metal – ceramics pair and parameters of ceramic samples irradiation on the helium ions linear accelerator with energies 0.12 and 4 MeV are resulted. Profiles of damageability and occurrence of target atoms along of helium ions range are calculated for the irradiated TiO₂ and Al₂O₃. Sputtering ratios and dependence of the sputtered atoms quantity on samples thickness are received. Calculations on density change of the irradiated samples are made. Experimental results of a sliding friction factor measurement depending on cycle’s quantity, temperature and irradiation doses are presented. On the basis of microscopic researches and calculation data conclusions are drawn about irradiation influence on interacting pair’s tribological characteristics. |
format |
Article |
author |
Butenko, V.I. Dubniuk, S.N. Dyachenko, A.F. Pavlii, K.V. Zajtsev, B.V. |
author_facet |
Butenko, V.I. Dubniuk, S.N. Dyachenko, A.F. Pavlii, K.V. Zajtsev, B.V. |
author_sort |
Butenko, V.I. |
title |
Tribological characteristics of 'steel-ceramics-irradiated-by-helium-ions' pair |
title_short |
Tribological characteristics of 'steel-ceramics-irradiated-by-helium-ions' pair |
title_full |
Tribological characteristics of 'steel-ceramics-irradiated-by-helium-ions' pair |
title_fullStr |
Tribological characteristics of 'steel-ceramics-irradiated-by-helium-ions' pair |
title_full_unstemmed |
Tribological characteristics of 'steel-ceramics-irradiated-by-helium-ions' pair |
title_sort |
tribological characteristics of 'steel-ceramics-irradiated-by-helium-ions' pair |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2021 |
topic_facet |
Physics of radiation damages and effects in solids |
url |
http://dspace.nbuv.gov.ua/handle/123456789/195435 |
citation_txt |
Tribological characteristics of 'steel-ceramics-irradiated-by-helium-ions' pair / V.I. Butenko, S.N. Dubniuk, A.F. Dyachenko, K.V. Pavlii, B.V. Zajtsev // Problems of Atomic Science and Technology. — 2021. — № 5. — С. 44-50. — Бібліогр.: 20 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT butenkovi tribologicalcharacteristicsofsteelceramicsirradiatedbyheliumionspair AT dubniuksn tribologicalcharacteristicsofsteelceramicsirradiatedbyheliumionspair AT dyachenkoaf tribologicalcharacteristicsofsteelceramicsirradiatedbyheliumionspair AT pavliikv tribologicalcharacteristicsofsteelceramicsirradiatedbyheliumionspair AT zajtsevbv tribologicalcharacteristicsofsteelceramicsirradiatedbyheliumionspair |
first_indexed |
2025-07-16T23:26:09Z |
last_indexed |
2025-07-16T23:26:09Z |
_version_ |
1837847931940503552 |
fulltext |
ISSN 1562-6016. PASТ. 2021. №5(135), p. 44-50.
https://doi.org/10.46813/2021-135-044
TRIBOLOGICAL CHARACTERISTICS
OF ‘STEEL – CERAMICS-IRRADIATED-BY-HELIUM-IONS’ PAIR
V.I. Butenko, S.N. Dubniuk, A.F. Dyachenko, K.V. Pavlii, B.V. Zajtsev
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
E-mail: kvint@kipt.kharkov.ua
Facility for the tribological characteristics studying of a metal – ceramics pair and parameters of ceramic
samples irradiation on the helium ions linear accelerator with energies 0.12 and 4 MeV are resulted. Profiles of
damageability and occurrence of target atoms along of helium ions range are calculated for the irradiated TiO2 and
Al2O3. Sputtering ratios and dependence of the sputtered atoms quantity on samples thickness are received.
Calculations on density change of the irradiated samples are made. Experimental results of a sliding friction factor
measurement depending on cycle’s quantity, temperature and irradiation doses are presented. On the basis of
microscopic researches and calculation data conclusions are drawn about irradiation influence on interacting pair’s
tribological characteristics.
PACS: 29.17.w, 29.27.Bd
INTRODUCTION
Development of nuclear and thermonuclear power
demands creation of the new antiwear materials which
can to work in the conditions of as much as possible
wide range of temperatures, radiating fields, loadings
and etc. [1]. Perspective materials for use in the loaded
friction units of nuclear power facilities are the
transformational hardened ceramic materials [2, 3]
which often work together with metal. Transfer of a
metal and its oxides on a ceramics surface carries out
protective function, increasing its endurance [4].
The friction forces are shown at all stages of the fuel
assembly (FA) life cycle [5–9] in atomic power
engineering. The insufficient attention to them led to
fretting-damages of fuel elements covers with
undesirable consequences [8, 9]. The basic mechanism
responsible for destruction fuel elements at capacity
change is mechanical influence of extending fuel on a
cover. Such influence is caused by various temperature
of the core and cover and several bigger (in 1.5–2 times)
thermal expansions of the fuel ceramic tablets in
comparison with a metal cover. This circumstance limits
capacity maneuvering possibilities of the reactor facility
[5, 6]. The irradiation leads to redistribution of atoms in
materials structure, to formation of a blistering and
flaking, to breach of the interacting elements surface.
For today the question of the new wearproof
materials creation which can to work in severe
constraints of nuclear and thermonuclear facilities is
very topical. Investigation of tribological characteristics
of ceramic materials which are used in various branches
of a science and technics the great number works [10–
15] is devoted.
The work purpose is research of tribological
characteristics of a metal – ceramics irradiated by
helium ions pair on the developed and made facility at
NSC KIPT.
1. IRRADIATION PARAMETERS
AND INITIAL SAMPLES
The helium ion (He
+
) linear accelerator, which has a
range of energies from 0.12 up to 4 MeV, operates at
NSC KIPT. This machine is used in a great variety of
studies [16, 17].
The chamber for an irradiation of samples and
system of experimental parameters measurement [17,
18] is created. The turbo-molecular pump provides the
oxygen-free environment in a chamber volume. The
temperature of irradiated samples is set by the heating
element located directly in the irradiation chamber and
it’s measured by the thermocouple. The focusing triplet
is established in front of the chamber for change of
current density of a beam, falling on the sample. It
allows changing a beam radius with preservation of the
general current, depending on experiment requirements
[19]. Beam currents are measured by contactless flying
gauges which are established on input and output of the
triplet, and as before the irradiated sample. Digital
devices which are connected to the computer with the
further data recording and their processing are used for
registration of irradiation parameters [18]. The basic
beam parameters at an irradiation of samples on the
helium ions linear accelerator are resulted in Table 1.
Table 1
Irradiation parameters
Parameter Value
Beam energy 0.12…4 MeV
Pulse current 700 A
Pulse length 500 s
Repetition frequency 2…5 imp./s
Average current 0.7 A
Current density (0.15…0.44)·10
13
part./cm
2
Temperature up to 900 °С
After samples preparation Al2O3 and TiO2 to doses
10
18
part./сm
2
at 0.12 MeV energy of the helium ions
beam have been irradiated. This energy has been chosen
for the purpose of the maximum surface damageability.
Samples from TiO2 and Al2O3 which were irradiated on
the linear accelerator of helium ions are shown in Fig. 1
(samples diameter is 15 mm).
Fig. 1. TiO2 (left), Al2O3 (right) samples
Surfaces photos of not irradiated samples are given
in Fig. 2. Roughnesses of the surfaces measured on a
microscope it’s not revealed.
Fig. 2. Al2O3 (left) and TiO2 (right) surfaces of the
not irradiated samples
The metal sample has been made from alloy steel, its
sizes are 50×23×14 mm. Structure became in
percentage: Fe – 92.087; Na – 3.181; Cr – 1.478; Mg –
1.247; Si – 0.827; Mg – 0.514; Cu – 0.206; Ni – 0.186;
Co – 0.155; S – 0.118; class – 1.
2. FACILITY FOR TRIBOLOGICAL
RESEARCHES
In consideration of irradiation specificity and
research of tribological interaction necessary parameters
such scheme has been chosen (Fig. 3).
Fig. 3. Scheme of samples contacting in facility,
where 1 – TiO2 or Al2O3, 2 – steel
Facility for tribological characteristics studying of a
metal – ceramics pair is shown in Fig. 4.
The reversive asynchronous electric motor RD-09
(see Fig. 4, pos. 1) with rotation frequency of a reducer
output shaft to 8.7 rpm is applied to relative moving of
interacting samples. The pressure (force) tensometric
gauge DYMH-103 (see Fig. 4, pos. 2) is used for
definition of a friction force. The basic technical
characteristics of a gauge are resulted in Table 2. The
gauge spent graduation has linear character.
1
2
3
4
56
7
Fig. 4. Facility for tribological characteristics
studying: where 1 – reversive asynchronous electric
motor RD-09; 2 – pressure (force) tensometric gauge
DYMH-103; 3 – infra-red heating element;
4 – resistor with two microswitches; 5 – holder of the
ceramic sample and loading weights;
6 – transformation mechanism of a rotary motion
in forward; 7 – base
Table 2
Pressure (force) gauge characteristics
Parameter Value
Measurement range (–3) – 0 – (+3) kg
Measurement error 0.05 ~ 0.1%
Sensitivity 1.0…1.5 mV/V
Temperature error ± 0.5%
Working temperature (–35 °С) – (+85 °С)
The holder is made (see Fig. 4, pos. 5) for fastening
of the ceramic sample and maintenance of vertical
loading on a frictional pair. Its appearance with the
pressure gauge is shown in Fig. 5.
The infra-red heating elements (260 and 450 W) are
used (see Fig. 4, pos. 3) for heating of samples. Their
appearance is shown in Fig. 6. The heater in 260 W
allows to carry out heating of a metal – ceramics pair to
400 °С, and the heater in 450 W – to 900 °С. This or
that heating element is used depending on an assigned
task on a temperature range.
Fig. 5. Holder of samples with pressure (force)
tensometric gauge
Fig. 6. Appearance of heating elements. 260 W
(60×60 mm) – left, 450 W (80×80 mm) – right
A resistor with two microswitches (see Fig. 4,
pos. 4) is used for definition of a relative moving
distance of samples and engine RD-09 switching. Its
calibrating curve has linear character and completely
covers a measurement range of relative moving. This
facility provides static loading on a frictional pair. For
dynamic loading maintenance it’s necessary to create
hydraulic, pneumonic or electromechanical loading unit.
The transformation mechanism of a rotary motion in
forward (see Fig. 4, pos. 6) allows to regulate in a wide
interval moving speed of interacting samples. Fastening
of the facility all elements it’s carried out on a base (see
Fig. 4, pos. 7).
Thus, facility provides temperature maintenance and
registration on samples to 900 °С, engine RD-09 and the
transformation mechanism of a rotary motion in forward
supports a full cycle of frictional interaction in a range
of 1…9 min. During carrying out of measurements it’s
possible to receive dependence of a sliding and rest
friction factors on time, cycle’s quantities and
temperature, and as all listed characteristics from of
radiating damages doses.
3. CALCULATED CHARACTERISTICS
OF THE IRRADIATED SAMPLES
For calculation of ions range in solids software
package SRIM [20, 21] was used. This program allows
to receive following information about: vacancies
distribution in a target; redistribution of irradiated
materials atoms; sputtering ratios; phenomena
connected with ions energy loss; the distribution of
ionization and formation phonons. All listed
calculations, taking into account displacement cascades
have been carried out for TiO2 and Al2O3 in program
SRIM. Energy losses going on ionization, formation
phonons and damageability, both helium ions beam, and
the displacement cascade are resulted in Table 3.
Table 3
Calculated characteristics of the irradiated samples,
Е = 0.12 MeV
Element
Energy loss, %
Ionization Phonons Damageability
Не
+
/cascade Не
+
/cascade Не
+
/cascade
Al2O3 93.6/1.19 0.79/4.16 0.08/0.21
TiO2 93.7/1.10 0.78/4.15 0.08/0.2
The greater part of a beam energy goes on
ionization. The basic contribution to phonons formation
and damageability is brought by displacement cascades.
On formation phonons it’s spent at 17–18 times more
energy, than for damageability. The helium ions range
in TiO2 and Al2O3 make 0.6…0.7 m.
Profiles of damageability and occurrence helium and
atoms of materials Al2O3 and TiO2, irradiated on the
accelerator with energy of 0.12 MeV are resulted in
relative units in Figs. 7, 8.
0.0 0.1 0.2 0.3 0.4 0.5 0.6
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
R
el
at
iv
e
u
n
it
s
h, micron
He - range
O - range
Al -range
He - damage
O - damage
Al - damage
Sum - damage
Al2O3EHe = 0.12 MeV
Fig. 7. Damageability (bottom curves)
and occurrence profiles helium, oxygen and aluminum
(top curves) in Al2O3
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
R
el
at
iv
e
u
n
it
s
h, micron
He - damage
O - damage
Ti - damage
Sum - damage
He - range
O - range
Ti - range
TiO2
EHe = 0.12 MeV
Fig. 8. Damageability (bottom curves)
and occurrence profiles helium, oxygen and titanium
(top curves) in TiO2
From graphs follows that in irradiated samples there
is a redistribution of materials atoms along of helium
ions range. The basic contribution to damageability is
brought by displacement cascade formed at an
irradiation by helium ions in process of dissociation
Al2O3 and TiO2. These processes lead to change of the
irradiated material density along of helium ions range.
Relations of Al2O3 and TiO2 atoms to Не, formed at
an irradiation, and the general damageability are
resulted in Table 4.
Table 4
Relation of Al2O3 and TiO2 atoms to Не
+
, formed at an
irradiation, and damageability
Al2O3 TiO2
Al/He O/He Ti/He O/He
55.69 66.70 46.47 69.09
Damageability Damageability
118.3 vacancy/ion 144.5 vacancy/ion
The dose irradiated Al2O3 and TiO2 has made
10
18
ion/cm
2
. Using Table 4 and Figs. 7, 8 data changes
of density along ions range have been recounted.
Calculations have shown density minor alteration, no
more 2 %, through maxima shift of atoms range
concerning damageability. Therefore, this influence can
ignore at frictional interaction of a metal – Al2O3, TiO2
pairs. At higher irradiation energies and doses, it’s
necessary to pay attention to change of materials
density.
A sputtering ratio of material atoms is played the
important role in a choice of a perspective material for
the FR first wall and diverter. Sputtering ratios for
Al2O3 and TiO2 are presented in Table 5.
Table 5
Quantity of Al2O3 and TiO2 sputtered atoms
Beam energy,
EHe = 0.12 MeV
Quantity of sputtered
atoms, atom/ion
Al2O3
Al O
1.47·10
–2
2.14·10
–2
Sputtering ratio ≈ 3.61·10
–2
TiO2
Ti O
0.63·10
–2
2.33·10
–2
Sputtering ratio ≈ 2.96·10
–2
Dependences of Al2O3 and TiO2 sputtered atoms
quantity on samples thickness are resulted in Figs. 9, 10.
0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
-0.016
-0.014
-0.012
-0.010
-0.008
-0.006
-0.004
-0.002
0.000
Al
O
Sum (Al + O)
N
,
at
o
m
/i
o
n
h, micron
Al2O3
Fig. 9. Dependence of Al2O3 sputtered atoms quantity
on sample thickness
0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
-0.016
-0.014
-0.012
-0.010
-0.008
-0.006
-0.004
-0.002
0.000
N
,
at
o
m
/i
o
n
h, мкм
Ti
O
Sum(Ti + O)
TiO2
Fig. 10. Dependences of TiO2 sputtered atoms
quantity on sample thickness
Fig. 11. Dependence of Al2O3 and TiO2 “superficial”
density from a thickness (zero is samples surface)
From these dependences follows that sputtering for
Al2O3 and TiO2 should be considered on distance no
more than 0.006…0.008 m from samples surface at
irradiation energy of 0.12 MeV. In consideration of
Table 5 and Figs. 9, 10 data, dependences of
”superficial” densities change of Al2O3 and TiO2
irradiated samples are resulted in Fig. 11. Change of
”superficial” density should influence on friction factors
of the metal – Al2O3 and TiO2 pairs.
4. EXPERIMENTAL RESULTS OF THE
FRICTIONAL INTERACTION
After preparation of Al2O3 and TiO2 samples
surfaces their tests were conducted for facility on
studying tribological characteristics (see Fig. 4) at
temperatures 20 and 200 °С and loadings of 0.5…2 kg
from 100 to 180 cycles. Dependence of a sliding friction
factor on time at one test cycle is resulted in Fig. 12.
Dependence of a sliding friction factor on complete
experiment time is resulted in Fig. 13.
Fig. 12. Dependence of a sliding friction factor on a
stroke length of interacting samples (one cycle)
0 10 20 30 40 50
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
k
Al2O3
Time, min
Fig. 13. Dependence of a sliding friction factor on
experiment time
h, m
h, m
h, m
It’s necessary to notice that the rest friction factor in
2.7–2.9 times more, than sliding friction factor at all
tests.
Dependences of sliding friction factors on cycle’s
quantity at temperatures 20 and 200 °С of irradiated and
not irradiated Al2O3 and TiO2 samples interacting with a
steel are resulted in Figs. 14, 15.
0 10 20 30 40 50 60 70 80 90
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
k
n
20°C - unirradiated
200С - irradiated
200°C - unirradiated
2000С - irradiated
TiO2
Fig. 14. Dependence of a sliding friction factor on
interaction cycle’s quantity of a steel – TiO2 pair
0 10 20 30 40 50 60 70 80 90
0.2
0.3
0.4
0.5
0.6
0.7
k
n
20°C - irradiated
200С - unirradiated
200°C - unirradiated
2000С - irradiated
Al2O3
Fig. 15. Dependence of a sliding friction factor on
interaction cycle’s quantity of a steel – Al2O3 pair
From the resulted graphs follows that at temperature
200 °С a sliding friction factor are less, than at 20 °С.
The irradiation leads to increase of a friction factor.
As experiment at a non-uniform temperature change
mode of a metal – TiO2 frictional pair has been made.
Dependences of a temperature and sliding friction factor
change from cycle’s quantity of frictional interaction are
shown in Fig. 16.
Fig. 16. Dependences of a sliding friction factor and
temperature from cycle’s quantity
A temperature in the given experiment (stage 1)
raised for ~ 50 cycles to 160 °С after that there was a
temperature fall (stage 2) for ~ 120 cycles from 160 to
25 °С. Thus the sliding friction factor at the first stage
decreased from 0.17 to 0.06, at the second stage was
observed growth to 0.27 and at 130 cycles approach on
a stationary mode. From the analysis of experimental
data (see Figs. 11–15) follows that defining role at non-
stationary thermal loading of pair is played by
temperature change. The role of cycles in the given
temperature range is secondary.
5. MICROSCOPIC INVESTIGATIONS
AND RESULTS DISCUSSION
A ММU-3 microscope and 5 and 18 megapixel
ZZCAT chambers are used for microscopic studies.
Surfaces of interacting samples influence on tribological
characteristics. After grinding and polishing Al2O3 and
TiO2 microstructural photos of surfaces have been made
(see Fig. 2). The same photos have been do and after an
irradiation of these samples. Photo of TiO2 surface after
irradiation is resulted in Fig. 17.
Fig. 17. TiO2 irradiated sample
A surface linear profile of irradiated sample TiO2 in
red, green and dark blue spectra and as on brightness is
shown in Fig. 18.
0 3 6 9 12 15 18 21
0
50
100
150
200
250
In
te
ns
it
y,
r
el
at
iv
e
un
it
s
L, m
Fig. 18. Surface linear profile of irradiated sample
TiO2 in red, green and dark blue spectra and on
brightness (black curve)
From Figs. 17, 18 follows that the irradiation leads
to increase of a surface roughness i. e. to reduction of
“superficial” density. It confirms the carried out
calculations, (see Fig. 11). Formation blistering and
flaking is not observed, obviously oxygen and helium
diffusion to samples surface take place. In the process of
Al2O3 and TiO2 samples irradiation the effect of
superficial metallization is observed (Fig. 19).
Fig. 19. Metallization of Al2O3 (left) and TiO2 (right)
irradiated samples
This process takes place in connection with Al2O3
and TiO2 dissociation. After dissociation oxygen
diffusion occurs, basically on grains borders with partial
restoration of structure atoms. There is a mutual
carrying over of metals and their connections at
frictional interaction of metal to ceramics. These
processes increase ceramics wear resistance and
increase friction factors at the expense of an interaction
of more viscous metal connections.
The swelling of ~ 1…2% in irradiated Al2O3 and
TiO2 samples is observed. TiO2 areas of not irradiated
and irradiated parts are resulted in Fig. 20.
Fig. 20. TiO2 areas of not irradiated (left) and
irradiated (right) sample
TiO2 surface linear profile from not irradiated part in
irradiated part in red, green and dark blue spectra and on
brightness (black curve) is resulted in Fig. 21.
10 11 12 13 14 15
0
50
100
150
200
250
In
te
n
si
ty
,
re
la
ti
v
e
u
n
it
s
L, m
Red spectrum
Green spectrum
Blue spectrum
Brightness
Fig. 21. TiO2 surface profile from not irradiated part
(left) in irradiated part (right) in red, green and dark
blue spectra and on brightness (black curve)
CONCLUSIONS
From the received experimental results and
calculating data follows those on friction factors of a
metal–Al2O3 and TiO2 pair an irradiation influences
owing to formation on samples surfaces metallization in
connection with Al2O3 and TiO2 dissociation. At the
pair frictional interaction there is a mutual carrying over
of metals and their connections. It leads to increase of
friction factors of metal with the irradiated samples.
During microscopic investigations it was not
revealed a blistering and flaking on irradiated ceramics
surface. Obviously that there is oxygen and helium
diffusion on grains borders.
Process of atoms sputtering at samples irradiation
materials “superficial” density reduces that influences
on tribological characteristics.
REFERENCES
1. I.M. Fedorchenko. Аntifriction and friction
cermet materials // Powder Metallurgy and Metal
Ceramics. 2002, v. 41, N 9-10, p. 489-497.
2. L. Nettleship, R. Stevens. Tetragonal zirconia
polycrystal (TZP) – a review // Int. J. High Technology
Ceramics. 1987, N 3, p. 1-32.
3. S.W. Lee, S.H. Hsu, M.C. Shen. Ceramic Wear
Maps: Zirconia // J. Amer. Ceram. Soc. 1993, v. 76,
N 8, p. 1937-1947.
4. P.C. Becker, T.A. Libsch, S.K. Rhee. Wear
mechanisms of toughening zirconias // Ceram. Eng. and
Sci. Proceed. 1985, N 7-8, p. 1040-1058.
5. А.А. Еnin, А.P. Ustimenko. Efforts comparative
analysis of fuel elements interaction with a fuel rigid
skeleton of new generation WCPR. Gelendzhik, 2010.
6. А.P. Ustimenko, М.А. Shustov. Mechanical
characteristics fuel assemblies of the power reactors,
defined in experiments on units and small models // 2nd
Russian conference “Methods and calculations software
on durability”. Gelendzhik, 2002, p. 102-118.
7. Yu.N. Drozdov, V.V. Маkаrоv, А.V. Аpfanas’ev,
et al. Frictional interaction dynamics of a fuel element
cover and a distance grating cell of a fuel assembly //
Engineering Bulletin. 2007, N 3.
8. V.V. Мakarov, А.V. Аpfanas’ev, I.V. Маtvienko,
et al. Experimental research of a friction process in the
individual contact formed by a fuel element cover and a
distance grating cells, МNTK-5. Podolsk, 2007.
9. М.V. Puchkov, V.V. Маkаrоv, А.V. Аpfanas’ev,
et al. Samples tests of fuel elements covers and distance
grating cells on a friction with a variation of
constructional, technological and operational factors //
Problems of Atomic Science and Technology. Sarov,
2010, N 27.
10. Y. Xing, J. Deng, J. Zhao et al. Cutting
performance and wear mechanism of nanoscale and
microscale textured Al2O3/TiC ceramic tools in dry
cutting of hardened steel // Int. J. Refract. Met. Hard.
Mater. 2014, v. 43, p. 46-58.
11. S. Nallusamy, A. Karthikeyan. Analysis of wear
resistance, cracks and hardness of metal matrix
composites with SiC additives and Al2O3 as
reinforcement // Indian J. Sci. Technol. 2016, N 9(35),
p. 1-6.
12. A. Karthikeyan, S. Nallusamy. Experimental
analysis on sliding wear behaviour of Aluminium-6063
with SiC particulate composites // Int. J. Eng. Res. Afr.
2017, v. 31, p. 36-43.
13. E. Ciudad, E. Sánchez-González, O. Borrero-
López, et al. Sliding-wear resistance of ultrafine-grained
SiC densified by spark plasmasintering with
3Y2O3+5Al2O3 or Y3Al5O12 additives // Scripta Mater.
2013, N 69(8), p. 598-601.
14. J. Llorente, B. Román-Manso, P. Miranzo,
M. Belmonte. Tribological performance under dry
sliding conditions of graphene/silicon carbide
composites // J. Eur. Ceram. Soc. 2016, N 36(3), p. 429-
435.
15. I. Ahmad, A. Kennedy, Y.Q. Zhu. Wear resistant
properties of multi-walled carbonnanotubes reinforced
Al2O3 nanocomposites // Wear. 2010, N 269(1), p. 71-
78.
16. V.O. Bomko, O.F. Dyachenko, Ye.V. Ivakhno,
et al. New prestripping section of the MILAC linear
accelerator designed for accelerating a high current
beam of light ions // Proceedings of EPAC 2006
Edinburgh, Scotland. 2006, p. 1627-1629.
17. S.N. Dubniuk, B.V. Zajtsev. The linear
accelerator for radiation structural materials // Problems
of Atomic Science and Technology. 2014, N 3(91),
p. 172-176.
18. R.A. Anokhin, B.V. Zaitsev, K.V. Pavlii, et al.
Experimental complex for investigation of construction
materials on the helium ions linear accelerator //
Problems of Atomic Science and Technology. 2017,
N 6(112), p. 167-171.
19. A.F. Dyachenko, S.N. Dubniuk, А.P. Коbets, еt
al. The bunch formation and transport system to the
target of the helium ions linac // Problems of Atomic
Science and Technology. Series “Plasma Electronics
and New Methods of Acceleration”. 2018, N 4(116),
p. 52-55.
20. http://www.srim.org.
21. B. Widrow, J.R. Glover, J.M. McCool,
J. Kaunitz. Adaptive noise cancelling: principles and
applications // Proc. of the IEEE. 1976, v. 63, p. 1692-
1716.
Article received 23.06.2021
ТРИБОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПАРЫ СТАЛЬ – КЕРАМИКА,
КОТОРАЯ ОБЛУЧЕНА ИОНАМИ ГЕЛИЯ
В.И. Бутенко, С.Н. Дубнюк, А.Ф. Дьяченко, К.В. Павлий, Б.В. Зайцев
Приведены установка для изучения трибологических характеристик пары металл – керамика и
параметры облучения керамических образцов на линейном ускорителе ионов гелия с энергиями 0,12 и
4 МэВ. Для облученных TiO2 и Al2O3 рассчитаны профили повреждаемости и залегания атомов мишени
вдоль пробега ионов гелия. Получены коэффициенты распыления и зависимости количества распыленных
атомов по толщине образцов. Произведены расчеты по изменению плотности облученных образцов.
Представлены экспериментальные результаты измерения коэффициента трения скольжения в зависимости
от количества циклов, температуры и дозы облучения. На основе микроскопических исследований и
расчетных данных сделаны выводы о влиянии облучения на трибологические характеристики
взаимодействующих пар.
ТРИБОЛОГІЧНІ ХАРАКТЕРИСТИКИ ПАРИ СТАЛЬ – КЕРАМІКА,
ЯКА ОПРОМІНЕНА ІОНАМИ ГЕЛІЮ
В.І. Бутенко, С.М. Дубнюк, О.Ф. Дьяченко, К.В. Павлій, Б.В. Зайцев
Наведено установку для вивчення трибологічних характеристик пари метал – кераміка та параметри
опромінення керамічних зразків на лінійному прискорювачі іонів гелію з енергіями 0,12 і 4 МеВ. Для
опромінених TiO2 й Al2O3 розраховано профілі пошкоджуваності та залягання атомів мішені вздовж пробігу
іонів гелію. Отримано коефіцієнти розпилення й залежності кількості розпилених атомів по товщині зразків.
Зроблено розрахунки щодо змінення щільності опромінених зразків. Подано експериментальні результати
вимірювання коефіцієнта тертя ковзання залежно від кількості циклів, температури й дози опромінення. На
основі мікроскопічних досліджень і розрахункових даних зроблено висновки щодо впливу опромінення на
трибологічні характеристики пар, що взаємодіють.
http://www.srim.org/
|