Analysis of reliability of the automatic core protection function of the reactor V-412 in response to local parameters: maximum linear power, departure from nucleate boiling ratio
The research subject is finding an engineering solution for V-412 core automatic protection during operation in both steady-state and transient conditions within ICIS using local parameters (i.e. maximum linear power, departure from nucleate boiling ratio). Such engineering solution will be implemen...
Збережено в:
Дата: | 2021 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2021
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/195449 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Analysis of reliability of the automatic core protection function of the reactor V-412 in response to local parameters: maximum linear power, departure from nucleate boiling ratio / S.S. Lys, M.M. Semerak, A.I. Kanyuka // Problems of Atomic Science and Technology. — 2021. — № 5. — С. 88-97. — Бібліогр.: 9 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-195449 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1954492023-12-05T12:36:36Z Analysis of reliability of the automatic core protection function of the reactor V-412 in response to local parameters: maximum linear power, departure from nucleate boiling ratio Lys, S.S. Semerak, M.M. Kanyuka, A.I. Thermal and fast reactor materials The research subject is finding an engineering solution for V-412 core automatic protection during operation in both steady-state and transient conditions within ICIS using local parameters (i.e. maximum linear power, departure from nucleate boiling ratio). Such engineering solution will be implemented by safety system software-hardware (PTK-Z) on the basis of signals coming from in-core neutron flux detectors, temperature sensors, primary coolant flow and coolant pressure transducers. Calculated survey of possibility to use Kalman filters or corrective filter to eliminate time delay in SPND signals was carried out. The inaccuracy in the method of maximum linear power monitoring was determined. This work shows that the solution was found using the practice of in-core instrumentation, and ICIS designing and operation with improved metrology, reliability and time parameters and using advanced data communication technologies intended for important challenges of the world market, and as a response to standards. Об'єктом дослідження є технічне вирішення задачі забезпечення автоматичного захисту активної зони реактора В-412 по локальних параметрах (максимальна лінійна потужність, запас до кризи тепловіддачі) в процесі експлуатації в базовому і перехідному режимах у рамках системи внутрішньореакторного контролю (СВРК), що реалізовується програмно-технічним комплексом захисту (ПТК-З) з використанням сигналів внутрішньореакторних датчиків нейтронного потоку, температури, витрати і тиску теплоносія першого контуру. В процесі роботи проводилося розрахункове обгрунтування застосування фільтрів Калмана і коригуючого фільтра для усунення запізнювання датчика прямої зарядки (ДПЗ), визначення методичної похибки контролю максимальної лінійної потужності в активній зоні. Показано, що рішення задачі забезпечення автоматичного захисту активної зони реактора В-412 по локальних параметрах було знайдено з урахуванням накопиченого досвіду внутрішньореакторних вимірювань, а також проектування і експлуатації СВРК на базі підвищення метрологічних, надійнісних і тимчасових характеристик з використанням можливостей сучасних інформаційних технологій для відповідальних застосувань і з урахуванням вимог нормативних документів. Объектом исследования является техническое решение задачи обеспечения автоматической защиты активной зоны реактора В-412 по локальным параметрам (максимальная линейная мощность, запас до кризиса теплоотдачи) в процессе эксплуатации в базовом и переходном режимах в рамках системы внутриреакторного контроля (СВРК), реализуемой программно-техническим комплексом защиты (ПТК-3) с использованием сигналов внутриреакторных датчиков нейтронного потока, температуры, расхода и давления теплоносителя первого контура. В процессе работы проводилось расчетное обоснование применения фильтров Калмана и корректирующего фильтра для устранения запаздывания датчика прямой зарядки (ДПЗ), определения методической погрешности контроля максимальной линейной мощности в активной зоне. Показано, что решение задачи обеспечения автоматической защиты активной зоны реактора В-412 по локальным параметрам было найдено с учетом накопленного опыта внутриреакторных измерений, а также проектирования и эксплуатации СВРК на базе повышения метрологических, надежностных и временных характеристик с использованием возможностей современных информационных технологий для ответственных применений и с учетом требований нормативных документов. 2021 Article Analysis of reliability of the automatic core protection function of the reactor V-412 in response to local parameters: maximum linear power, departure from nucleate boiling ratio / S.S. Lys, M.M. Semerak, A.I. Kanyuka // Problems of Atomic Science and Technology. — 2021. — № 5. — С. 88-97. — Бібліогр.: 9 назв. — англ. 1562-6016 DOI: https://doi.org/10.46813/2021-135-088 http://dspace.nbuv.gov.ua/handle/123456789/195449 621.039.586 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Thermal and fast reactor materials Thermal and fast reactor materials |
spellingShingle |
Thermal and fast reactor materials Thermal and fast reactor materials Lys, S.S. Semerak, M.M. Kanyuka, A.I. Analysis of reliability of the automatic core protection function of the reactor V-412 in response to local parameters: maximum linear power, departure from nucleate boiling ratio Вопросы атомной науки и техники |
description |
The research subject is finding an engineering solution for V-412 core automatic protection during operation in both steady-state and transient conditions within ICIS using local parameters (i.e. maximum linear power, departure from nucleate boiling ratio). Such engineering solution will be implemented by safety system software-hardware (PTK-Z) on the basis of signals coming from in-core neutron flux detectors, temperature sensors, primary coolant flow and coolant pressure transducers. Calculated survey of possibility to use Kalman filters or corrective filter to eliminate time delay in SPND signals was carried out. The inaccuracy in the method of maximum linear power monitoring was determined. This work shows that the solution was found using the practice of in-core instrumentation, and ICIS designing and operation with improved metrology, reliability and time parameters and using advanced data communication technologies intended for important challenges of the world market, and as a response to standards. |
format |
Article |
author |
Lys, S.S. Semerak, M.M. Kanyuka, A.I. |
author_facet |
Lys, S.S. Semerak, M.M. Kanyuka, A.I. |
author_sort |
Lys, S.S. |
title |
Analysis of reliability of the automatic core protection function of the reactor V-412 in response to local parameters: maximum linear power, departure from nucleate boiling ratio |
title_short |
Analysis of reliability of the automatic core protection function of the reactor V-412 in response to local parameters: maximum linear power, departure from nucleate boiling ratio |
title_full |
Analysis of reliability of the automatic core protection function of the reactor V-412 in response to local parameters: maximum linear power, departure from nucleate boiling ratio |
title_fullStr |
Analysis of reliability of the automatic core protection function of the reactor V-412 in response to local parameters: maximum linear power, departure from nucleate boiling ratio |
title_full_unstemmed |
Analysis of reliability of the automatic core protection function of the reactor V-412 in response to local parameters: maximum linear power, departure from nucleate boiling ratio |
title_sort |
analysis of reliability of the automatic core protection function of the reactor v-412 in response to local parameters: maximum linear power, departure from nucleate boiling ratio |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2021 |
topic_facet |
Thermal and fast reactor materials |
url |
http://dspace.nbuv.gov.ua/handle/123456789/195449 |
citation_txt |
Analysis of reliability of the automatic core protection function of the reactor V-412 in response to local parameters: maximum linear power, departure from nucleate boiling ratio / S.S. Lys, M.M. Semerak, A.I. Kanyuka // Problems of Atomic Science and Technology. — 2021. — № 5. — С. 88-97. — Бібліогр.: 9 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT lysss analysisofreliabilityoftheautomaticcoreprotectionfunctionofthereactorv412inresponsetolocalparametersmaximumlinearpowerdeparturefromnucleateboilingratio AT semerakmm analysisofreliabilityoftheautomaticcoreprotectionfunctionofthereactorv412inresponsetolocalparametersmaximumlinearpowerdeparturefromnucleateboilingratio AT kanyukaai analysisofreliabilityoftheautomaticcoreprotectionfunctionofthereactorv412inresponsetolocalparametersmaximumlinearpowerdeparturefromnucleateboilingratio |
first_indexed |
2025-07-16T23:27:13Z |
last_indexed |
2025-07-16T23:27:13Z |
_version_ |
1837847998353113088 |
fulltext |
ISSN 1562-6016. PASТ. 2021. №5(135), p. 88-97.
https://doi.org/10.46813/2021-135-088
UDC 621.039.586
ANALYSIS OF RELIABILITY OF AUTOMATIC CORE PROTECTION
FUNCTION OF THE REACTOR V-412 IN RESPONSE TO LOCAL
PARAMETERS: MAXIMUM LINEAR POWER, DEPARTURE FROM
NUCLEATE BOILING RATIO
S.S. Lys
1
, M.M. Semerak
1
, A.I. Kanyuka
2
1
Lviv Polytechnic National University, Lviv, Ukraine;
2
Belarusian NPP, Belarus
E-mail: lysss@ukr.net
The research subject is finding an engineering solution for V-412 core automatic protection during operation in
both steady-state and transient conditions within ICIS using local parameters (i.e. maximum linear power, departure
from nucleate boiling ratio). Such engineering solution will be implemented by safety system software-hardware
(PTK-Z) on the basis of signals coming from in-core neutron flux detectors, temperature sensors, primary coolant
flow and coolant pressure transducers. Calculated survey of possibility to use Kalman filters or corrective filter to
eliminate time delay in SPND signals was carried out. The inaccuracy in the method of maximum linear power
monitoring was determined. This work shows that the solution was found using the practice of in-core
instrumentation, and ICIS designing and operation with improved metrology, reliability and time parameters and
using advanced data communication technologies intended for important challenges of the world market, and as a
response to standards.
INTRODUCTION
Realisation of protection function on the basis of
local parameters is ensured by the following factors in
reactor V-412:
arrangement of ICIDs within the core, 54 in
number, each of them being supplied with seven
Rhodium SPNDs, with certain time transient
characteristics;
arrangement of coolant temperature sensors in
cold legs, coolant flow detectors in the primary loops,
and pressure transducers above the core;
development and implementation of
instrumentation equipment, which satisfies safety
category 2 requirements (category indication 2NU as
per [1], and 2NU/К2 as per [2]) for quality, velocity and
metrology parameters of monitors or system responses,
and software, using advanced data communication
technologies intended for important challenges of the
world market, and with satisfaction of IEC 880, IEC
987 standards and normative documentation
requirements for category 2NU (as per [1]) hardware
and software.
FORMULATION OF THE PROBLEM
The technical solution of local protection system for
the V-412 core should provide the following:
automatic generation of protection signals and
delivery to CPSE at reactor power ranging within 20
and 110% of nominal power in case if the local rod
power exceeds the rated limit, or departure of nucleate
boiling ratio drops below the rated limited value with
time delay at least 3 s [3];
probability of failure to respond a scram function
of PTK-Z should not exceed 5∙10
-7
within a 1 year time
domain [4];
inaccuracy of maximal value of linear fuel rod
power density should not exceed 5% [3, 5];
inaccuracy of minimal value of departure from
nucleate boiling ratio should not exceed 17% [3, 6].
The objective of this paper is to survey the
possibility to integrate in ICIS (PTK-Z) of such function
as automatic core protection of reactor V-412 in
response to local parameters (i.e. maximum linear
power, departure from nucleate boiling ratio) during
normal operation and transient conditions.
ARRANGEMENT OF INSTRUMENTATION
EQUIPMENT AND COMPUTER
FACILITIES
In order to perform the function of automatic
protection in response to local parameters (scram, PP)
the following apparatus should be used: instrumentation
equipment and computer facilities of safety category 2
(category indication 2NU as per [1] and 2NU/К2 as per
[2]), which is integrated in every safety channel of the
plant as a part of safety system software-hardware
(PTK-Z).
Every PTK-Z cabinet is connected with thermal
engineering detectors with cable lines of an individual
safety channel. The cable lines deliver every detector
signal to instrumentation equipment inlet, and also the
signals from 1/6 part of the whole number of SPNDs.
Cabinets PTK-Z and cabinets of various safety
categories are furnished with connection via local net of
lower level of safety category 2 (category indication
2NU as per [1] and 2NU/К2 as per [2]). This enables
every safety channel processor taking decisions using
the whole amount of data on in-core processes and
deliver protection signal to CPSE of the applicant safety
channel. PTK-Z block scheme is given in Fig. 1.
Fig. 1. PTK-Z scheme
SIGNAL INTERPRETATION ALGORITHMS
Preliminary signal interpretation
Every delivered analogue signal shall pass a
rejection process, which consists of comparing the
signal against limitations established [5]:
maxmin AAA , (1)
where A is the current signal indication; Amin – is an
extremely small design signal indication; Amax – is an
extremely large design signal indication.
After a rejection procedure every signal, except
SPND signals, should pass a smoothing procedure in
accordance with the following formula:
1)(tA1)(tAA(t)k(t)A cccc , (2)
where A is a signal indication; Aс – is a smoothed signal
indication; t – denotes a current polling cycle; (t–1) –
denotes a previous polling cycle; kc – is an individual
smoothing coefficient (0.1 kc 1).
The value of kc depends on the magnitude and
character of electromagnetic induction at signal transfer
lines from the detectors to the equipment of certain
power units, and it can be determined at CA stage.
Interpretation of normalised signals from the
transducers of general process measurements
The transducers of general process measurements
comprise pressure and pressure difference transducers,
detector of boron acid concentration, RCPS capacity
sensor, etc. The normalised signals from these detectors
are converted into physical units of measurement
according to the following formula:
up low
low low
up low
W W
W А А W ,
A -А
(3)
where A – is the value of normalised signal (mА or V);
Wup – is the upper margin of normalised signal values
(in physical units of measurement); Аup – is the upper
margin of normalised signal (mА or V); Wlow – is the
lower margin of normalised signal (in physical units of
measurement); Аlow – is the lower margin of normalised
signal (mА or V).
Algorithm of determining a fuel rod linear power
density and generating a protection signal on the basis
of this parameter
The value of maximum linear power in an (i,j)-th
part of the core is determined by a statistical
summarising (averaging) of linear power values, which
were determined from the signals of six SPNDs of the
most close ICID that belong to various PTK-Z channels,
where j is FA No according to the map of core.
Correspondence between j-th FA and j(n)-th ICID in
each FA is shown in (Table 1) (the Table gives the Nos.
of FAs. with ICID, the distance between ICID and
applicable FA is given in the brackets) [5].
Table 1
List of six FAs located in the close vicinity of ICID
and used for power density calculation in every FA
FA No Channe 1 Channe 2 Channe 3 Channe 4 Channe 5 Channe 6
1 10(2) 16(4) 30(4) 12(4) 2(2) 18(2)
2 10(2) 16(5) 30(4) 12(4) 2(0) 5(3)
… … … … … … …
162 158(4) 163(1) 160(2) 148(4) 145(2) 153(2)
163 158(5) 163(0) 147(3) 148(4) 145(2) 136(4)
SPND numbering in ICID corresponds to elevation
numbering in FA (Fig. 2).
Fig. 2. Core levels whose geometrical centres (from 1-st
to 7-th) correspond to SPND emitters (1, 2,…7)
Statistical summarising (averaging) for the
neighbouring SPND is performed according to the
following formula:
n n
n n
n n
n n
6
ij ij ij
ijj ij
_
n 1 ij ijij
ij
6
ijj ij
n 1
KV J λ
q η
KV KcKK
А ,
311
q η
(4)
where KKij – is a linear power peaking factor of the (i, j)
section of the core; Kcjn is a mean linear power
peaking factor of six fuel rods surrounding a tube with
ICID in the (i, j) section of the core; KVij is relative
power density of the (i, j) section of the core; KVijn is
relative power density in n SPND location associated
with (i, j) section of the core; jn are ICID Nos. that
surround j-th FA (n=1…6);
nij
λ is the sensitivity of i-
the SPND in the jn-th ICID converted into the unit of
FA length measurement;
nij
η is the sign of (i, jn)
SPND availability;
nij
J – is normalised F current of i
SPND in jn ICID;
jnij
q is statistical weight of jn SPND
signal in calculation of linear power density in ij section
of the core.
jnij
q shall be originally determined according to
formula:
oF
rF
q
nijj
, (5)
where F(r) is a relative value of “influence function” at
distance r from the centre of (j) th FA to location of jn –
th SPND at i level; F(o) is a relative value of “influence
function” in the centre of j-th FA.
Correspondence of statistical weights to the distance
between ICID and FA is given in Table 2.
Relative power density 3-dimensional in core
distributions are gained during power density recovery
process in VK ICIS. Power density recovery algorithm
in based on mathematical model including equation of
connection between the results of measurements and the
field to be found, and also the neutron diffusion
equation. To work out the diffusion equation and
definition neutron-physical model parameters the
iteration method is used. To decrease deviation between
neutron-physical model and transducer signals
adaptation of material parameter and division section,
based on measurement results is carried out. Described
algorithm has been used in MCDS PPO and has
successful operation experience over 100 reactor-years.
Table 2
Correspondence between statistical weight and distance
between ICID and FA
Distance between ICID and FA Statistical weight
0 1
1 0.2954
2 0.1336
3 0.1024
4 0.0554
5 0.005
For the purpose of calculation accuracy of fuel rod
linear power density and reliability of protection signal,
which generates on the basis of this parameter, also
taking into account the probability of uncontrolled CPS
CR movement, the value of maximum linear power of
FA that contains working group CPS CR in (i, j) section
of the core is determined on the basis of duplicated
statistical summarising according to the following
formula:
6
iljij ijlj
ij lj 0"
ij 6
ilj ijlj
lj 0
KV KV q
KK
A ,
311
KV q
(6)
where iljKV – is the value of relative power density
calculated on the basis of formula:
ilj
ilj
ilj
A
KV 311,
KK
(7)
where
iljA – is the magnitude to be determined using
formula (4) for every FA neiboughring the j FA
(lj = 0,…6), if lj = 0 Kvilj = Kvij.
In the base condition, arrays КК, Кс, КV, , and
are periodically delivered from VK ICIS and ensure on-
line monitoring maximum linear power by way of on-
line measuring of SPND currents.
The acquired ij
_
А values are compared against the
design limitations (PP, scram), which are individual for
every axial core section.
Should a design limitation is achieved or exceeded
at any of the core sections, an applicable protection
signal shall be sent to scram – PP system
The process of preparation, verification and display
of the above mentioned magnitudes to PTK-Z is called
calibration of protection system instrumentation
channels on the basis of local parameters, which is
required for sustaining ICIS metrology characteristics at
applicable level within a considered function.
In order to use calibration data it is required to write
formula 30 anew in the following format:
n n
n n
jn n
n n
6
ij ij ij
ij ij
n 1 ij(n ) ijij
ij 6
ij ij
n 1
KV 0 J t λ 0
q η
KV 0 Kc 0KK 0
A t ,
311
q η
(8)
(4)
3
.5
5
m
and formula (6) in the following format:
j
j
j j
j j
j j
6
6 ijlij
ijl
ijl ijl
l 0 ijlijl 0
ij 6 6
ijl ijl
l 0 l 0
KV 0 KV t
qA q
KV 0KK 0
A ,
311
q q
(9)
(5)
where l j are the numbers of FAs adjacent to the j-th FA
if lj=0, lj=j.
All the coefficients and magnitudes, except (t)J
nij
,
are valid for the time when calibration was performed.
Algorithm for calculation of minimal value of
departure from nucleate boiling ratio and generating a
protection signal on the basis of this parameter
The aggregate coolant mass flow
1КG in the
primary loops is calculated by the following formula
[5, 6]:
4
1К
k
k 1
G G ,
(10)
where Gk – is the coolant mass flow in k-th loop.
An average water mass velocity in FA cell (w) is
calculated using the following formula:
peak
FA
leak
1К
K
F163
K1G
ρw
, (11)
where Kleak – is a coefficient that accounts coolant
leakages; FFA = 0.0246 m
2
– is the area of FA cross
section without central channel and channels for AR;
Kpeak = 0.98 – is a coefficient that accounts the mass
velocity peaking along FA cross section.
For every FA, the coolant inlet temperature is
determined using the following formula:
4
c
k k kjm k
inl k 1
j 4
k kjm k
k 1
T G P F
T ,
G P F
(12)
where j – FA No;
c
kT – is coolant temperature in cold
leg of k-th loop; Fk – is the sign of RCPS actuation in
k-th loop; Gk – is coolant flow in k-th loop; m – is a
code making F18 + F24 + F32 + F4; Pkjm – is a
coefficient of k loop temperature influence on the
temperature of j the FA with m-th condition of values of
signs Fk.
For each selected core section (i, j), enthalpy Iij is
calculated according to the following formula:
_ _
_i 11j ij 6c
nj
n=1
inl
ij t i
cell
H A A 1
+ A + 10
8 8 2 3
I = K +I ,
ρw F
(13)
where Kt – Kt is margin coefficient in preheating;
inl
iI = I(Pinl,
inl
iT ); Hc – is the core height; Pinl – is inlet
pressure in the core; Fcell – is the area of cross section of
the cell under consideration.
For each selected core section (i, j) relative enthalpy
Xij is calculated in accordance with the following
formula:
)r(P
)(PI'I
X
inl
inlij
ij
, (14)
where I'(Pinl) – is water enthalpy in saturation line;
r(Pinl) – is specific heat of vaporisation.
For each selected core section (i, j) the value of
critical heat flux
cri
ijQ is calculated using the following
formula:
cri 0.105 Pinl 0.5
ij F ij
0.311 1 Xij 0.127
inl
Q f 0.795 (1 X )
ρw 1 0.0185 P ,
(15)
where fF – is form factor calculated by formula:
2
2
3.79 19.61 (Pinl/Pcri) 17.86 (Pinl/Pcri)
3.79 19.61 (Pinl/Pcr) 17.86 (Pinl/Pcr)
_ _
1,j 2,j
F
2,j
3.7
_ _ _
i 2,j i 1,j i,j
_
i,j
5
, i 1
8
2.06 A A
f , i 2
3.24 A
0.24 A 2 A A
3.24 A
29 19.61 (Pinl/Pcr) 17.86 (Pinl/Pcr)
,
, i 3,..,7
(16)
where Pinl = 22.115 MPa is critical water pressure.
Departures from nucleate boiling ratio (DNBij) are
determined according to formula:
cri
ij f
ij _
ij q
Q π d (1 K )
DNB = ,
A K
(17)
where Kf – is the error of formula for critical heat flux;
Kq – is margin coefficient for power; = 3.1416;
d = 0.0091m – is fuel rod diameter.
From all the obtained DNBij values the smallest
DNBmin value is selected and compared against the
design limitations (PP, scram). Should the design
limitation be reached or fall below, an applicable
protection alarm signal shall be sent to system PP-
scram.
INACCURACY CALCULATIONS
General description
The whole set of inaccuracies of local protection
system may be split into two parts: dynamic and
statistical [5].
Dynamic inaccuracies are defined by:
– Increase velocity of local linear power density,
method selected for elimination of time delay of SPND
currents and inaccuracy in determining the value of the
instant component of SPND signals, which comprise the
system ( KFFK , ).
– Inaccuracy in determining the instant component
( Rh ).
– Scope and manner of CPS CR movement within
the time period between calibration actions ( Кdin ).
Allowable difference between current calibration
coefficients and those transmitted to PTK-Z ( Calibr ).
Statistical inaccuracies are defined by:
– Distance between the controlled section and
transducer ( к );
– Inaccuracy of calibration coefficients ( VU );
– Inaccuracy of the equipment, which in our case
depends on the share of random component of
inaccuracy in measuring SPND currents, and also by
interference and induction on the way of passing a
signal from Rhodium SPNDs and methods that are used
for their elimination equp .
Both inaccuracies of tolerance values for fuel
production and assembly-to assembly gaps are taken
into account in calculation of engineering uncertainty
coefficient. The inaccuracy of reactor thermal power is
taken into account in calculation of uncertainty
coefficient for keeping reactor power. Both the
uncertainty coefficient and safety factor are taken into
account in calculation of ultimate tolerable values of
power density in a certain fuel loading.
Analysis of dynamic inaccuracy
It is adopted in the system:
for monitoring the processes with velocities
ranging within 4% per second and 40% per second to
apply a corrective filter;
for monitoring the processes with velocities
ranging within 0.1% per second and 5% per second to
apply a Kalman filter.
Any of these filters has a 0.6 s response cycle,
emitter diameter of 0.5 mm (instantaneous component is
close to 6%). The corrective filter is capable to
completely eliminate the delay; while Kalman filter is
intended to allow a 0.5 s delay and reduced coefficient
of interference elimination.
Investigation proved that:
corrective filter provides a time delay at 0.05 s
for its range of processes of time changes, and this time
delay may be neglected. In this case, the inaccuracy,
which comprises the influence of interference and
induction, is defined by rejection “gates” and does not
exceed 4%;
Kalman filter, provides a time delay at 0.5 s for
its range of processes of time changes, and this time
delay may be also neglected. In this case, the
inaccuracy, which comprises the influence of
interference and induction, is defined by rejection
“gates” and does not exceed 1%.
A complimentary time difference, caused by a
probable uncertainty of instantaneous component
ranging within 17% (с = (61)%), (for instance, the
filter is adjusted for an instantaneous component of 6%,
while SPND has a 5% instantaneous component), has
the value of 0.05 s for a corrective filter and for
Kalman filter 0.5 s. This brings to additional maximal
errors: for corrective filter at most 2%, for Kalman
filter at most 2.5%, respectively.
For instance, Figs. 3 and 4 depict the reaction of
lagging behind of a corrective filter with fluctuation of
neutron flux velocity of 40% per second. In this case,
the coefficients of the filter were adjusted for the
instantaneous component of 6%, while the actual
instantaneous component of SPND was 5%. Fig. 5
depicts the reaction of lagging behind of Kalman filter
with fluctuation of neutron flux velocity of 5% per
second.
In this case, the coefficients of the filter were
adjusted for the instantaneous component of 6%, while
the actual instantaneous component of SPND was 5%.
Fig. 3. Influence of incorrect accounting the
instantaneous component upon the increase of
corrective filter lagging behind
Fig. 4. Part of the fig. 3: influence of incorrect
accounting the instantaneous component upon the
increase of corrective filter lagging behind
Fig. 5. Influence of incorrect accounting the
instantaneous component upon the increase of Kalman
filter lagging behind
The error discussed herein actually has a
significantly smaller value, because the tolerance values
for variance in diameters of Rhodium wire are small.
Thus, the aggregate dynamic inaccuracy:
– for corrective filter does not exceed:
2 2 2 2( ) ( ) (4%) (2%) 4.5%;
K FDIN K F Rh
– for Kalman filter does not exceed:
2 2 2 2( ) ( ) (1%) (2.5%) 2.7%,
F KDIN F K Rh
and for the processes with velocities less than 1% per
second Kalman filter inaccuracy may be neglected.
Initial data. Core loading
This investigation simulated the first fuel loading of
NPP with V-412 reactor [5]. The calculations were
based on the map of fuel loading, which is shown in
Fig. 6.
Fig. 6. Map of the first fuel loading of NPP with V-412
reactor
Description of fuel types is given in Table 3
Table 3
Description of fuel types
Fuel type Description
16ZS 1.6%
24ZS 2.4%
362ZS 3.62% (3.7+3.3)
24ZS36 2.4%, B-0.036
24ZS20 2.4%, B-0.020
362ZS36 3.62%, B-0.036
CPS CR distribution withi n the group is given in
Table 4.
Table 4
FAs containing CPS CR and CPS CR distribution
within the groups
Group
No
FAs containing CPS CR
1 13; 74; 147; 151; 90; 17; 20; 46; 113; 144; 118; 51
2 44; 85; 123; 120; 79; 41; 9; 24; 101; 155; 140; 63
3 21; 59; 125; 143; 105; 39; 68; 69; 81; 83; 95; 96
4 111; 121; 93; 53; 43; 71
5 98; 122; 107; 66; 42; 57
6 22; 73; 136; 142; 91; 28
7 19; 34; 100; 145; 130; 64; 110; 80; 56
8 11; 47; 126; 153; 117; 38; 84; 108; 54
9 87; 146; 141; 141; 77; 18; 23; 82
10 52; 58; 133; 31; 112; 106
Group 10 is a control one.
Coolant flow in the core is 84000 m
3
/h.
Pressure below the core – 157 bar.
Inlet coolant temperature in the core – 291 С
Position of CPS CR working group (Nо 10). From
the core bottom is 90% (318.6 cm) (with burnup
simulation).
Effective boundary conditions for delayed neutrons:
in a radial reflector are 24 сm;
in an edge reflector are 27 сm.
Condition variety
The conditions for the beginning and end of cycle
life have been investigated for exhausting the reactivity
margin ion boron, with various positions of CPS CR
groups and certain clusters. The condition parameters
are shown in table (Table 5).
Table 5
Parameters of conditions under investigation
Condition
No
Cycle
moment
(EFPD)
Мreactor
power
Н3ВО3
comcentration
Position of CR CPR
group
RCU group
position
No. of FA
with a stuck
CPS CR
Position of
a stuck CPS
CR
Data table
No
8-th 9-th 10-th
1 0 100% critical 100% 100% 90% 100% 100 40% 7
2 0 100% critical 100% 100% 40% 100% – – 8
3 293.7 100% 0 (subcrit.) 100% 100% 90% 100% 100 40% 9
4 293.7 100% 0 (subcrit.) 100% 100% 40% 100% – – 10
For every condition there have been performed the
diagrams that depict the dependence of inaccuracy in
determining the maximum linear power in protection
system that uses local parameters upon the margin to
design limits. The diagrams show the variety of data
points covering the entire core space. The diagrams
reveal a common trend of growth of the inaccuracy
value with the increase of margin to design limitations,
and also a drop of the inaccuracy value with linear
power values close to the margins or exceeding the
margins (the margin to the setpoint becomes negative).
BIPR-7А [7] and Permak-А [8, 9] calculations were
performed for 10 axial elevations.
Main findings
Every finding without any exclusion prove that:
methodological inaccuracies in monitoring of
maximum linear power in the core space, which is free
from CPS CR (in the base design condition of V-412
reactor unit this makes 99.6% of the core space), do not
exceed 2%;
the above stated methodological inaccuracy for
the FA length were absorbers CPS CR are emerged,
significantly grows (up to 20%), meanwhile, the margin
to design limitations grows even more significantly (up
to 40…50%) and, consequently, this phenomenon does
not make an obstacle for the local parameter protection
system to perform the design base functions.
Figures (Figs. 7–14) depict the dependence of
methodological inaccuracies in monitoring the
maximum linear power upon the margin to the design
limitation with account of single failure criterion in
every individual PTK-Z semi set. The data is given for
both the beginning and end of fuel cycle for reactor base
operation with sticking of individual CPS CR and with
changing the CPS CR position up to 40% from the core
bottom. In these figures it is necessary to point out a
high concentration of calculation data (7987 data points)
acquired during investigation of methodological
inaccuracies of this algorithm. Each of the figures
shows the inaccuracy values of maximum linear power,
and the comparison data against design limitations.
Fig. 7. TEF=0, stuck CPS CR No. 100 at elevation of
40% from the core bottom, Н10=90%, calculation made
for PTK-Z semi set one
Fig. 8. TEF=0, critical condition with location of CPS
CR working group at elevation of 40% from the core
bottom, calculation made for PTK-Z semi set one
Fig. 9. TEF=293.7, stuck CPS CR No. 100 at elevation
of 40% from the core bottom, Н10=90%, calculation
made for PTK-Z semi set one
Fig. 10. TEF=293.7, condition with location of CPS CR
working group at elevation of 40% from the core
bottom, calculation made for PTK-Z semi set one
Fig. 11. TEF=0, stuck CPS CR No. 100 at elevation of
40% from the core bottom, Н10=90%, calculation made
for PTK-Z semi set two
Fig. 12. TEF=0, critical condition with location of CPS
CR working group at elevation of 40% from the core
bottom, calculation made for PTK-Z semi set two
Fig. 13. TEF=293.7, stuck CPS CR No. 100 at elevation
of 40% from the core bottom, Н10=90%, calculation
made for PTK-Z semi set two
Fig. 14. TEF=293.7, condition with location of CPS
CR working group at elevation of 40% from the core
bottom, calculation made for PTK-Z semi set two.
Figs. 7, 8, and 11, 12 show the distribution of
inaccuracies at the beginning and end of fuel cycle,
-30
-20
-10
0
10
20
0 20 40 60 80
Disabling 1 Disabling 3 Disabling 5 No disabling
-40
-20
0
20
40
-10 10 30 50 70 90
Disabling 1 Disabling 3 Disabling 5 No disabling
-30
-20
-10
0
10
20
0 10 20 30 40 50 60 70
Disabling 1
Disabling 3
Disabling 5
No disabling
-30
-20
-10
0
10
20
30
40
0 10 20 30 40 50 60 70
Disabling 1
Disabling 3
Disabling 5
No disabling
-60
-40
-20
0
20
40
0 20 40 60 80
Disabling 2 Disabling 4 Disabling 6 No disabling
-40
-20
0
20
40
60
-20 0 20 40 60 80
Disabling 2 Disabling 4 Disabling 6 No disabling
-50
-40
-30
-20
-10
0
10
20
30
0 10 20 30 40 50 60 70
Disabling 2
Disabling 4
Disabling 6
No disabling
-20
-10
0
10
20
30
40
50
0 10 20 30 40 50 60 70
Disabling 2
Disabling 4
Disabling 6
No disabling
when boron reactivity margin is exhausted (0 and 293.7
effective power days), for first and second PTK-Z semi
set, respectively. For calibration we selected the state
where CR working grop has a position of 90% from the
core bottom.
Figs. 9–14 show the same magnitudes if the position
of CPS CR working group changes up to 40% of the
core bottom.
All the eight figures show that all most stressed core
sections the inaccuracy values do not exceed the
threshold of 1.5…2% with allowance for a single failure
criterion.
Figs. 7–14 show the high values of inaccuracy that
appear in the locations of CPS CR emerging, disappear
in the places where the linear power directly approaches
the design limits or exceeds them, which always
coincides with CPS CR extraction.
Thus, the investigations performed proved, that:
– additional variable component of the inaccuracy
Kdin occurs in the locations of CPS CR submerging
and reaches a significant value (up to 30%). In such
cases the local linear power will always drop, and a
margin to design limits, which exceeds the inaccuracy,
will inadvertently appear;
– the value approach to design limits is always
associated with CPS CR unavailability in controlled
core section, which automatically eliminates the
additional dynamical component. At the same time
methodical inaccuracy in controlled areas, connected
with ICID distribution within the core, does not exceed,
while inaccuracy, caused by difference between currect
calibration coefficients from those transmitted to PTK-
Z, never exceeds 2%.
Analysis of statistical inaccuracy
The analysis of inaccuracy, which is caused by the
increase of random noise component in the equipment
either by a corrective filter, or Kalman filter, proved that
the increase of interference of 0.1 or 0.3% by 20 or 6
times, respectively, can be neglected.
Evaluation of PPO ICIS-М operation at power units
NPP has revealed that the error of calibration
coefficients VU (MSD) comes to 2.5%.
Proceeding from BIPR-7А and PERMAK-А
findings, the net value of accounting a single failure
criterion (with failed SPNDs 63 in number – one safety
channel) does not exceed 2…3% at reaching design
operation limits.
Aggregate inaccuracy
As a result, the aggregate inaccuracy in monitoring
maximum linear power may be written in the following
form:
2
2 2 2 2 2 2
( )
2.25 6.25 1 4 4 4.2%.
VU Rh K CalibrF K
A conservative evaluation of relative error in the
value of departure from nucleate boiling ratio can be
determined by the following formula:
2 2 2 2 2
DNB F FA inl pr
2 2 2 2 2
G T A
15 3 3.5 4.2 2 16.4%.
where F – is the error of calculation formula, which
makes 15%; GFA – is the error in coolant flow in FA,
which makes at most 3 % (the error of leakage from the
core, and coolant flow peakidness are not taken into
account); Tinl – is the error in calculation of inlet
temperature in FA, which makes at most 3.5%; A – is
the error in maximum linear power (4.2%); pr – is the
error caused by inaccuracies of calculating the thermal
physical properties of water, which makes at most 2%.
All original inaccuracies are obtained from operation
experience, taken as hardware performance data or from
calculation evaluations, etc.
RELIABILITY PARAMETERS FOR SIGNAL
GENERATING FUNCTION
OF PROTECTION SYSTEM USING LOCAL
PARAMETERS
In calculation of reliability parameters, we assumed
an exponential law for distribution of failure-free
operation period and for recovery period, which have
parameters λ and μ, respectively [5].
Reliability calculations were performed by way of
summarising failure intensivity (λ method).
For this purpose, λ characteristics of equipment
elements were selected with allowance for load factors.
Where foreign-made equipment components were
used, we used the reliability data from the catalogues
issued by the companies that produce these components.
If the required data were unavailable (this is mainly
related to microcircuits), we accepted the reliability data
of the Russian-made analogues (conservative
assessment).
A failure of signal generating function using local
parameters is considered to be the failure to give a
command, even if a requirement of this command exists
(rejection of requirement); or unreasonable command
(spurious command).
The reliability calculation of the signals is performed
proceeding from the fact that the ICIS structure is
capable to provide power density monitoring in every
FA section using SPND signals coming from six various
ICIDs (that surround a FA), each of which has a
connection to independent PTK-Z channel.
Reliability indicators of departure from nucleate
boiling ratio
Failure intensity: 2.46∙10
-9
1/h.
Failure run: 4.1∙10
8
h.
Frequency of spurious actuation per year: 3.3∙10
-4
1/year.
Probability of requirement rejection: 7.3∙10
-8
.
Reliability indicators of fuel rod local power
Failure intensity: 0.28∙10
-9
1/h.
Failure run: 3.6∙10
9
h.
Frequency of spurious actuation per year: 2.9∙10
-5
1/year.
Probability of requirement rejection: 6.2∙10
-8
.
CONCLUSIONS
This investigation findings prove the possibility to
integrate in ICIS (PTK-Z) the function of automatic
protection of V-412 core on the basis of local
parameters.
The article presents the following PTK-Z block
structure with indicated data links and safety categories;
algorithms for processing SPND signals important for
determination of local parameters in each part of the
core in both normal and abnormal operation conditions;
inaccuracies of maximum linear power with various
positions of CPS CR (i.e the entire bank is submerged,
and one CR is stuck) at the beginning or end of the
cycle.
Thus, the calculated investigation proved that the
engineering solution (conception, selected composition,
structure, calculation algorithms, detector arrangement
in the core or safety channels, statistical weight and
organisation of recalibration process) of protection
system using local parameters ensures generating scram
signals, when the local parameters reach design
limitations with additional methodological inaccuracy
that makes 2% at most, including a single failure, and
satisfies the requirements of TA for MCDS of V-412
reactor unit.
REFERENCES
1. General Provisions for Nuclear Plant Safety
Assurance OPB-88/97. NP-001-97 (PNAE G-01-011-
97).
2. Kudankulam NPP. Unit 1. Quality Categories for
APCS. Classification and Application.
R01.KK.0.0.AP.KL.WD001. 2005.
3. Kudankulam NPP. Units 1, 2. Design project.
Monitoring, Control and Diagnostic System.
Description of Automatic Functions.
KK.UJA.JD.AP.PZ.PR141 412.17 D9.
4. Kudankulam NPP. Unit 1, 2. Design project.
Monitoring, Control and Diagnostic System. Technical
Requirements for Monitoring. Control and Diagnostic
System. KK.UJA.JD.AP.TT.PR086 412.17 D1.
5. Kudankulam NPP. Unit 1, 2. Final safety analysis
report. Topic report. Protection function reliability
survey and analysis based on local parameters.
R21.KK.0.0.OO.FSAR.WD0P0. 2006.
6. S.A. Yeremeyev, V.M. Vasin, M.A. Pod-
shibyakin. Sovershenstvovaniye kontrolya minimal'nogo
zapasa do krizisa teplootdachi kak kharakteristiki
teplotekhnicheskoy nadezhnosti aktivnoy zony WWER:
Sbornik trudov 11-y Mezhdunarodnoy nauchno-
tekhnicheskoy konferentsii “Obespecheniye
bezopasnosti AES s WWER” 21–24 maya 2019 g.,
Podol'sk, AO OKB “GIDROPRESS”, 2019 (in
Russian).
7. А.А. Gagarinskiy, А.V. Markov. Kaskad Code
Package. Code BIPR-7А. Description of Algorithm.
Operation Instruction. Inv. No.32/1-52-402. M., 2002.
8. S.S. Aleshin, S.N. Bolshagin, M.Y. Tomilov.
Code PERMAK-А. (Versions 1, 3) Operation Instruc-
tion. Inv. No.32/1-175-401. M., 2001.
9. A.P. Lazarenko, S.S. Aleshin, M.Ju. Tomilov,
A.S. Bikeev, D.A. Shkarovsky. Software Package
KASKAD for Neutronic Calculation of WWER Cores.
Status and Features // 12 International conference on
WWER fuel performance, modelling and experimental
support, Nesebar (Bulgaria), 16–23 Sep. 2017, 8 p.
ACRONIMS
APCS – automatic process control system;
CA – commissioning activities;
CPS CR – control and protection system control
rods;
FA – fuel assembly;
ICID – in-core instrumentation detectors;
ICIS – in-core instrumentation system;
MCDS – monitoring, control and diagnostic system;
MSD – mean square deviation;
NPP – nuclear power plant;
PP – preventive protection;
PPO – application software;
PTK-Z – safety system software-hardware;
RCPS – reactor coolant pump set;
SPND – self-powered neutron detector;
RCU – rapid core unloading;
TA – technical assignment;
VK ICIS – computer complex of in-core
instrumentation system.
Article received 12.08.2021
АНАЛИЗ НАДЕЖНОСТИ ФУНКЦИЙ ЗАЩИТЫ АКТИВНОЙ ЗОНЫ РЕАКТОРА В-412
ПО ЛОКАЛЬНЫМ ПАРАМЕТРАМ: МАКСИМАЛЬНАЯ ЛИНЕЙНАЯ МОЩНОСТЬ,
ЗАПАС КРИЗИСА ТЕПЛООТДАЧИ
С.С. Лис, М.М. Семерак, A.И. Канюка
Объектом исследования является техническое решение задачи обеспечения автоматической защиты
активной зоны реактора В-412 по локальным параметрам (максимальная линейная мощность, запас до
кризиса теплоотдачи) в процессе эксплуатации в базовом и переходном режимах в рамках системы
внутриреакторного контроля (СВРК), реализуемой программно-техническим комплексом защиты (ПТК-3) с
использованием сигналов внутриреакторных датчиков нейтронного потока, температуры, расхода и
давления теплоносителя первого контура. В процессе работы проводилось расчетное обоснование
применения фильтров Калмана и корректирующего фильтра для устранения запаздывания датчика прямой
зарядки (ДПЗ), определения методической погрешности контроля максимальной линейной мощности в
активной зоне. Показано, что решение задачи обеспечения автоматической защиты активной зоны реактора
В-412 по локальным параметрам было найдено с учетом накопленного опыта внутриреакторных измерений,
а также проектирования и эксплуатации СВРК на базе повышения метрологических, надежностных и
временных характеристик с использованием возможностей современных информационных технологий для
ответственных применений и с учетом требований нормативных документов.
АНАЛІЗ НАДІЙНОСТІ ФУНКЦІЙ ЗАХИСТУ АКТИВНОЇ ЗОНИ РЕАКТОРА В-412
ЗА ЛОКАЛЬНИМИ ПАРАМЕТРАМИ: МАКСИМАЛЬНА ЛІНІЙНА ПОТУЖНІСТЬ,
ЗАПАС ДО КРИЗИ ТЕПЛОВІДДАЧІ
С.С. Лис, М.М. Семерак, О.І. Канюка
Об'єктом дослідження є технічне вирішення задачі забезпечення автоматичного захисту активної зони
реактора В-412 по локальних параметрах (максимальна лінійна потужність, запас до кризи тепловіддачі) в
процесі експлуатації в базовому і перехідному режимах у рамках системи внутрішньореакторного контролю
(СВРК), що реалізовується програмно-технічним комплексом захисту (ПТК-З) з використанням сигналів
внутрішньореакторних датчиків нейтронного потоку, температури, витрати і тиску теплоносія першого
контуру. В процесі роботи проводилося розрахункове обгрунтування застосування фільтрів Калмана і
коригуючого фільтра для усунення запізнювання датчика прямої зарядки (ДПЗ), визначення методичної
похибки контролю максимальної лінійної потужності в активній зоні. Показано, що рішення задачі
забезпечення автоматичного захисту активної зони реактора В-412 по локальних параметрах було знайдено
з урахуванням накопиченого досвіду внутрішньореакторних вимірювань, а також проектування і
експлуатації СВРК на базі підвищення метрологічних, надійнісних і тимчасових характеристик з
використанням можливостей сучасних інформаційних технологій для відповідальних застосувань і з
урахуванням вимог нормативних документів.
|