Estimation of gross-structure parameters of giant dipole resonance: 2. Experimental testing
Experimental testing of a novel technique for determination of width and maximum of excitation function of a photonuclear reaction with dominant giant dipole resonance is conducted. The method is based on measurement of normalized reaction yield in a thin target, overlapping entirely a flux of X-ray...
Gespeichert in:
Datum: | 2021 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2021
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/195457 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Estimation of gross-structure parameters of giant dipole resonance: 2. Experimental testing / N.P. Dikiy, A.A. Zakharchenko, Yu.V. Lyashko, V.L. Uvarov, V.A. Shevchenko, A.Eh. Tenishev // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 3-7. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-195457 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1954572023-12-13T12:55:23Z Estimation of gross-structure parameters of giant dipole resonance: 2. Experimental testing Dikiy, N.P. Zakharchenko, A.A. Lyashko, Yu.V. Uvarov, V.L. Shevchenko, V.A. Tenishev, A.Eh. Nuclear physics and elementary particles Experimental testing of a novel technique for determination of width and maximum of excitation function of a photonuclear reaction with dominant giant dipole resonance is conducted. The method is based on measurement of normalized reaction yield in a thin target, overlapping entirely a flux of X-rays and on processing of data obtained with the use of a developed analytical model. For the checking of method, the nickel and molybdenum foils of natural isotopic composition were activated by bremsstrahlung radiation at four energies of the electron beam in the range 40…95 MeV. The obtained parameters of cross-section of the reference reactions ⁵⁸Ni(γ,n)⁵⁷Ni and ¹⁰⁰Mo(γ,n)⁹⁹Mo are in good agreement with those presented in the available databases. Проведена експериментальна перевірка нового методу визначення ширини і максимуму функції збудження фотоядерної реакції з домінуванням гігантського дипольного резонансу. Метод базується на вимірюванні нормованого виходу реакції у тонкій мішені, що повністю перекриває потік гальмівного випромінювання прискорювача електронів, і обробці одержаних даних з використанням розробленої теоретичної моделі. Для перевірки методу були активовані фольги з нікелю та молібдену природного складу гальмівним випромінюванням при чотирьох значеннях енергії пучку електронів у діапазоні 40…95 МеВ. Одержані параметри перерізів референтних реакцій ⁵⁸Ni(γ,n) ⁵⁷Ni та ¹⁰⁰Mo (γ,n) ⁹⁹Mo добре узгоджуються з такими, що представлені у наявних базах даних. Проведена экспериментальная проверка нового метода определения ширины и максимума функции возбуждения фотоядерной реакции с доминированием гигантского дипольного резонанса. Метод основан на измерении нормированного выхода реакции в тонкой мишени, перекрывающей полностью поток тормозного излучения ускорителя электронов, и обработке полученных данных с использованием разработанной аналитической модели. Для проверки метода фольги из никеля и молибдена природного состава были активированы тормозным излучением при четырех значениях энергии пучка электронов в диапазоне 40…95 МэВ. Полученные параметры сечений референтных реакций ⁵⁸Ni(γ,n) ⁵⁷Ni и ¹⁰⁰Mo (γ,n) ⁹⁹Mo хорошо согласуются с представленными в имеющихся базах данных. 2021 Article Estimation of gross-structure parameters of giant dipole resonance: 2. Experimental testing / N.P. Dikiy, A.A. Zakharchenko, Yu.V. Lyashko, V.L. Uvarov, V.A. Shevchenko, A.Eh. Tenishev // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 3-7. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 07.05.Tr, 41.50.+h; 41.75.Fr; 78.70En DOI: https://doi.org/10.46813/2021-136-003 http://dspace.nbuv.gov.ua/handle/123456789/195457 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Nuclear physics and elementary particles Nuclear physics and elementary particles |
spellingShingle |
Nuclear physics and elementary particles Nuclear physics and elementary particles Dikiy, N.P. Zakharchenko, A.A. Lyashko, Yu.V. Uvarov, V.L. Shevchenko, V.A. Tenishev, A.Eh. Estimation of gross-structure parameters of giant dipole resonance: 2. Experimental testing Вопросы атомной науки и техники |
description |
Experimental testing of a novel technique for determination of width and maximum of excitation function of a photonuclear reaction with dominant giant dipole resonance is conducted. The method is based on measurement of normalized reaction yield in a thin target, overlapping entirely a flux of X-rays and on processing of data obtained with the use of a developed analytical model. For the checking of method, the nickel and molybdenum foils of natural isotopic composition were activated by bremsstrahlung radiation at four energies of the electron beam in the range 40…95 MeV. The obtained parameters of cross-section of the reference reactions ⁵⁸Ni(γ,n)⁵⁷Ni and ¹⁰⁰Mo(γ,n)⁹⁹Mo are in good agreement with those presented in the available databases. |
format |
Article |
author |
Dikiy, N.P. Zakharchenko, A.A. Lyashko, Yu.V. Uvarov, V.L. Shevchenko, V.A. Tenishev, A.Eh. |
author_facet |
Dikiy, N.P. Zakharchenko, A.A. Lyashko, Yu.V. Uvarov, V.L. Shevchenko, V.A. Tenishev, A.Eh. |
author_sort |
Dikiy, N.P. |
title |
Estimation of gross-structure parameters of giant dipole resonance: 2. Experimental testing |
title_short |
Estimation of gross-structure parameters of giant dipole resonance: 2. Experimental testing |
title_full |
Estimation of gross-structure parameters of giant dipole resonance: 2. Experimental testing |
title_fullStr |
Estimation of gross-structure parameters of giant dipole resonance: 2. Experimental testing |
title_full_unstemmed |
Estimation of gross-structure parameters of giant dipole resonance: 2. Experimental testing |
title_sort |
estimation of gross-structure parameters of giant dipole resonance: 2. experimental testing |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2021 |
topic_facet |
Nuclear physics and elementary particles |
url |
http://dspace.nbuv.gov.ua/handle/123456789/195457 |
citation_txt |
Estimation of gross-structure parameters of giant dipole resonance: 2. Experimental testing / N.P. Dikiy, A.A. Zakharchenko, Yu.V. Lyashko, V.L. Uvarov, V.A. Shevchenko, A.Eh. Tenishev // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 3-7. — Бібліогр.: 8 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT dikiynp estimationofgrossstructureparametersofgiantdipoleresonance2experimentaltesting AT zakharchenkoaa estimationofgrossstructureparametersofgiantdipoleresonance2experimentaltesting AT lyashkoyuv estimationofgrossstructureparametersofgiantdipoleresonance2experimentaltesting AT uvarovvl estimationofgrossstructureparametersofgiantdipoleresonance2experimentaltesting AT shevchenkova estimationofgrossstructureparametersofgiantdipoleresonance2experimentaltesting AT tenishevaeh estimationofgrossstructureparametersofgiantdipoleresonance2experimentaltesting |
first_indexed |
2025-07-16T23:35:34Z |
last_indexed |
2025-07-16T23:35:34Z |
_version_ |
1837848524912328704 |
fulltext |
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 3
NUCLEAR PHYSICS AND ELEMENTARY PARTICLES
https://doi.org/10.46813/2021-136-003
ESTIMATION OF GROSS-STRUCTURE PARAMETERS
OF GIANT DIPOLE RESONANCE: 2. EXPERIMENTAL TESTING
N.P. Dikiy, A.A. Zakharchenko, Yu.V. Lyashko, V.L. Uvarov, V.A. Shevchenko,
A.Eh. Tenishev
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
E-mail: uvarov@kipt.kharkov.ua
Experimental testing of a novel technique for determination of width and maximum of excitation function of a
photonuclear reaction with dominant giant dipole resonance is conducted. The method is based on measurement of
normalized reaction yield in a thin target, overlapping entirely a flux of X-rays and on processing of data obtained
with the use of a developed analytical model. For the checking of method, the nickel and molybdenum foils of natu-
ral isotopic composition were activated by bremsstrahlung radiation at four energies of the electron beam in the
range 40…95 MeV. The obtained parameters of cross-section of the reference reactions
58
Ni(,n)
57
Ni and
100
Mo(,n)
99
Mo are in good agreement with those presented in the available databases.
PACS: 07.05.Tr, 41.50.+h; 41.75.Fr; 78.70En
INTRODUCTION
It was shown in work [1] on the basis of a developed
analytical model for description of isotope generation in
an X-ray beam of an electron accelerator (the S-model),
that one can determine the width (FWHM) and maxi-
mum max of the excitation function of a reaction with
dominating giant dipole resonance (GDR) by the coeffi-
cient of photonuclear conversion (CPC) specified at a
given energy of the primary electron beam. In current
paper, the results of the experimental study of the novel
technique on the example of reactions
58
Ni(,n)
57
Ni and
100
Mo(,n)
99
Mo are presented.
1. METHODS AND MATERIALS
1.1. DETERMINATION OF FWHM
AND max OF EXCITATION FUNCTION
The experimental value of CPC,
exp
0Y (Ee), corre-
sponding to the electron beam energy Ee, can be deter-
mined by the activity exp
PNCA (Ee) of a thin extended target
overlapping completely the photon beam and normal to
its axis (such a target is called a photonuclear converter,
PNC), using the equation [1]
exp
0
( )
( ) ,
1 exp( )
PNC e
e
eA E
Y E
I t
(1)
where e is the electron charge; I is the average beam
current; Δ is the mass thickness of PNC; t is the activa-
tion period, is the decay constant of an isotope-
product. For a possible FWHM value of the excitation
function of a reaction in Lorentz representation, Г, one
can calculate the corresponding maximum cross-section
using the expression of the S-model
max 0( ) ( ) ,
( ) ( , )
exp
e
e A e
A
Г Y E
E N S Г E
(2)
where (Ee) is the energy conversion coefficient of elec-
tron into X-ray radiation; NA is the Avogadro number;
A is the average atomic mass of the target material;
is the relative content of the isotope-target in it; S is
the dimensionless factor depending on parameters of the
excitation function, in particular, on its width Г, and
also on electron beam energy Ee [1].
For the each beam energy Ее,i, provided in the exper-
iment, and also for the each variant of excitation func-
tion by width Г of a reaction under study, one can ascer-
tain the pair of parameters {max(Ee,i,Г); Г}, which
meets the condition (2). In turn for the each such pair,
one can calculate the reaction yield in a photonuclear
converter by MC simulations,
sim
PNCA , and compare it
with the experimental value exp
PNCA (Ee,i) by the equation
22 exp
, , ,( , ) ( , ) ( ) .sim
max i PNC max i PNC e idev Г A Г A E
(3)
From the condition 2
max,[ ( , )]i
i
Min dev Г , one
can determine the Г and max values for the given reac-
tion.
1.2. EXPERIMENT
The activation of samples was carried out at a
LU-40m Linac of NSC KIPT [2]. The beam spectrum
FWHM was not higher than 2%. Transformation of
electron radiation into X-rays was carried out by a con-
version target comprising the four tantalum plates each
1mm thick separated with the same gaps for cooling.
The electron beam and its charge incident on the con-
verter were measured in on-line mode using a magnetic
induction probe. The beam size and position were de-
termined with a wire scanner.
The two stacked foils, each by 33 cm in size and
0.1mm thick, from natural nickel and molybdenum were
applied for testing the proposed method against the re-
actions
58
Ni(,n)
57
Ni and
100
Mo(,n)
99
Mo. Their cross-
sections are quite different, characterized with dominat-
ing GDR and well-studied both theoretically [3] and
experimentally [4 - 6]. The advantage of these reactions
is also the absence of extra channels of the isotope-
product generation. Such channels can arise, in particu-
lar, at the increase of photon energy and to distort the
yield of a reaction under study.
The stacks of foils were positioned on the electron
beam axis and activated for 1hour at each of the four
mailto:uvarov@kipt.kharkov.ua
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 4
electron energies in the range 40…95 MeV. After cool-
ing, the gamma spectrometry of foils was carried out
with the reduction of data obtained by EOB (Fig. 1).
The activity of
57
Ni was determined by the number of
pulses in the photopeak 1377.6 keV (81.7% branching
ratio) and
99
Mo by line 739.5 keV (12.2%). The relative
uncertainty of the activity determination is 8 and 5% for
57
Ni and
99
Mo, respectively.
100 500 900 1300 1700
energy (kev)
1
10
100
1000
10000
c
o
u
n
ts
ju
v
l
Ni
56
Co57
Ni
56
Ni
57
511
56
Co Ni
57
a
100 500 900 1300 1700
energy (kev)
1
10
100
1000
10000
100000
c
o
u
n
ts
ju
v
l
Nb
95m
Tc
99 Mo99
Y
87
511
99 MoNb
95
Nb
89Zr 92m
Nb
96
Nb 90
Nb
91m
Nb+
96
Nb
40
K
96
b
Fig. 1. γ-spectra of activated PNC from natural
nickel (a) and molybdenum (b), Ee=40 MeV
1.3. MODELING
The MC simulations of photonuclear isotope genera-
tion in PNC was performed on the basis of a modified
transport code GEANT4 [7]. A specially developed
technique [8] was applied for speeding-up the computa-
tion of the reaction yield. Such a method enables to de-
crease the counting time approximately by four orders
of values without diminution of accuracy. To fulfill
such an approach, the classes G4UserSteppingAction
and G4UserRunAction in GEANT4 were properly mod-
ified. It makes it possible, in particular, to use the
TALYS-calculated cross-sections in the simulations of
the reaction microyield along the photon trajectories in a
target by the method [8]. The statistical uncertainty of
the simulation results is not higher than 1%.
2. RESULTS AND DISCUSSION
2.1.
58
Ni(,n)
57
Ni
In Table 1, the experimental data are given on the
57
Ni activity in PNC from natural nickel, reduced to
average beam current of 1µA and 1h irradiation run, as
well as the value of the product [S(Ee)max], calculated
by the formulae (1), (2). It should be noted, that the
measured PNC activity,
exp
PNCA , overestimates systemat-
ically the results of the numerical experiment with the
use of TALYS cross-section data but lies nearer to that
calculated on the basis of the S-model [1].
Table 1
Characteristics of
58
Ni(,n)
57
Ni reaction (experiment)
Ee
exp
PNCA ,kBq/Ah [S(Ee)max]10
26
, cm
2
40 360 1.17
60 527 1.60
80 647 1.93
95 693 2.04
The S-factor of the reactions
58
Ni(,n)
57
Ni and
100
Mo(,n)
99
Mo at different electron energies is given in
work [1]. Hence the range of the possible max and Г
values, complying with the condition (2), was specified
(with allowance for the uncertainty of
exp
0Y (Ее) meas-
urement). The yield of each reaction in PNC, corre-
sponding to every such a pair of parameters, was ob-
tained also by MC simulations (Tables 2-5, the values
closest to the experimental data are denoted in bold).
The region of max and Г parameters providing the most
closeness of the calculated and experimental yield of the
reaction was established with the use of
equation (3) Fig. 2.
Table 2
Yield of
57
Ni in PNC, Ee = 40 MeV (simulations)
max, mb
, MeV
6 7 8 9
sim
PNCA , kBq/(A×h)
21 - - 306 329
22 - 291 319 346
23 - 305 335 362
24 - 319 350 377
25 297 332 364 392
26 310 345 379 -
27 321 359 - -
28 333 373 - -
29 345 386 - -
30 356 - - -
Table 3
Yield of
57
Ni in PNC, Ee = 60 MeV (simulations)
max, mb
, MeV
6 7 8 9
sim
PNCA , kBq/(A×h)
21 - - 451 489
22 - 430 472 512
23 - 449 494 536
24 - 470 516 560
25 436 488 537 582
26 452 507 558 -
27 470 528 - -
28 487 547 - -
29 504 566 - -
30 524 - - -
energy (keV)
energy (keV)
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 5
Table 4
Yield of
57
Ni in PNC, Ee = 80 MeV(simulations)
max, mb
, MeV
6 7 8 9
sim
PNCA , kBq/(A×h)
21 - - 536 580
22 - 508 561 609
23 - 529 588 637
24 - 554 613 664
25 514 578 638 692
26 533 601 664 -
27 555 625 - -
28 573 648 - -
29 596 669 - -
30 617 - - -
Table 5
Yield of
57
Ni in PNC, Ee = 95 MeV(simulations)
max, mb
, MeV
6 7 8 9
sim
PNCA , Bq/(A×h)
21 - - 581 631
22 - 552 609 661
23 - 578 635 691
24 - 601 663 721
25 557 626 692 751
26 579 651 721 -
27 600 677 - -
28 622 704 - -
29 646 728 - -
30 668 - - -
Fig. 2. Distribution of deviation square sums
of calculated
57
Ni activity from experimental one
in PNC from natural nickel
2.2.
100
Mo(,n)
99
Mo
In Table 6, the experimental data on the normalized
activity of
100
Mo in PNC from natural molybdenum and
the product [S(Ee)max] for the reaction
100
Mo(,n)
99
Mo
are listed. The results of those data processing are pre-
sented in Tables 7-10 and in Fig. 3
Table 6
Characteristics of
100
Mo(,n)
99
Mo reaction (experiment)
Ee
exp
PNCA , kBq/Ah [S(Ee)max]10
25
,
cm
2
40 124 0.74
60 169 0.94
80 196 1.07
95 204 1.10
Table 7
Yield of
99
Mo in PNC, Ee = 40 MeV (simulations)
max,
mb
, MeV
3.5 3.75 4 4.25 4.5
sim
PNCA , kBq/(A×h)
130 - - - - 113
135 - - - 113 118
140 - - 111 117 123
145 - 108 115 121 127
150 107 113 119 125 131
155 110 116 123 129 135
160 113 120 127 133 140
165 117 124 130 137 144
170 121 128 134 142 -
175 125 132 139 - -
Table 8
Yield of
99
Mo в PNC, Ee = 60 MeV (simulations)
max,
mb
, MeV
3.5 3.75 4 4.25 4.5
sim
PNCA , kBq/(A×h)
130 - - - - 150
135 - - - 148 156
140 - - 146 154 162
145 - 144 152 159 168
150 140 148 158 165 173
155 145 154 162 171 179
160 150 159 168 176 185
165 154 164 173 182 191
170 159 169 178 187 -
175 163 174 184 - -
180 169 179 - - -
Table 9
Yield of
99
Mo в PNC, Ee = 80 MeV (simulations)
max,
mb
, MeV
3.5 3.75 4 4.25 4.5
sim
PNCA , kBq/(A×h)
130 - - - - 170
135 - - - 169 177
140 - - 167 176 184
145 - 163 173 182 191
150 160 170 179 189 198
155 165 175 185 194 204
160 170 181 191 201 210
165 175 187 197 207 217
170 181 192 203 213 -
175 186 197 208 - -
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 6
Table 10
Yield of
99
Mo in PNC, Ee = 95 MeV (simulations)
max,
mb
, MeV
3.5 3.75 4 4.25 4.5
sim
PNCA , kBq/(A×h)
130 - - - - 182
135 - - - 181 189
140 - - 178 187 197
145 - 175 184 194 204
150 171 181 191 201 211
155 176 187 197 208 218
160 182 193 204 215 225
165 187 199 210 221 231
170 193 205 216 228 -
175 199 211 223 - -
180 204 217 - - -
185 210 - - - -
Fig. 3. Distribution of deviation square sums
of calculated
99
Mo activity from experimental one
in PNC from natural molybdenum
CONCLUSIONS
The proposed method enables to estimate the width
(FWHM) and maximum of excitation function of a reac-
tion with dominating giant dipole resonance on the basis
of the simple experiments on activation of a thin ex-
tended target overlapping in full a flux of X-rays with
specified end-point energy, and also of the developed
analytical model for calculating the reaction yield in
such a target. So, in Table 11, the max and Г values for
the reactions
58
Ni(,n)
57
Ni and
100
Mo(,n)
99
Mo obtained
by the novel technique, and also, for comparison, the
data for those reactions calculated with the use of
TALYS package, are given. It is evident, that the both
sources provide close results. The two calculated values
of Г for the reaction
58
Ni(,n)
57
Ni represent the ambigu-
ous TALYS data. So, one of them is due a theoretically
predicted local resonance in the front part of the excita-
tion function (Г =10.1 MeV, Fig. 4,a red curve) and
without it (Г=7.1 MeV), as it follows from the experi-
ment [4].
It should be noted, that the Lorentz representation of
excitation functions of the reference reactions with the Г
and max values, obtained in this work (see the blue
curves in Fig. 4) have appeared nearer to the experi-
mental data as compared with their presentation ob-
tained with the TALYS code.
Table 11
max and Г of reference reactions
Reaction 58
Ni(,n)
57
Ni
100
Mo(,n)
99
Mo
Source
This
work
TALYS
This
work
TALYS
max, mb 27.2 26.0 148.4 148.6
Г, MeV 7.3 7.1;10.1 4.4. 3.9
10 12 14 16 18 20 22 24 26 28 30 32 34
0
5
10
15
20
25
C
ro
ss
-s
ec
ti
o
n
,
m
b
E , MeV
58Ni(,n)57Ni
talys
S-model
58Ni(,n)57Ni + 58Ni(,n+p)56Co
Fultz 1974, EXFOR
a
6 8 10 12 14 16 18 20 22 24 26 28 30
0
20
40
60
80
100
120
140
160
,
m
b
E , MeV
100Mo(,n)99Mo
talys
S-model
100Mo(,n)99Mo + 100Mo(,n+p)98Nb
Beil 1974, EXFOR
b
Fig. 4. Cross-section of reference reactions:
58
Ni(,n)
57
Ni (а);
100
Mo(,n)
99
Mo (b)
REFERENCES
1. V.L. Uvarov, A.A. Zakharchenko. Estimation of
Gross-Structure Parameters of Giant Dipole Reso-
nance: 1. A Method //Problems of Atomic Science
and Technology. Series “Nuclear Physics Investiga-
tions”. 2021, № 3, p. 104-108.
2. M.I. Aizatskyi, V.I. Beloglasov, V.N. Boriskin, et al.
State and Prospects of the Linac of Nuclear-Physics
Complex with Energy of Electrons up to 100 MeV //
Problems of Atomic Science and Technology. Series
“Nuclear Physics Investigations”. 2014, № 3, p. 60-
63.
3. The TALYS Code System, ftp://ftp.nrg.eu/pub/www/
talys/talys.tar.
4. S.C. Fultz, B.A. Alvarez, B.L. Berman, P. Meyer.
Photoneutron cross sections of
58
Ni and
60
Ni // Phys.
Rev. C. 1974, v. 10, p. 608-619.
5. H. Beil, R. Bergere, P. Carlos, A. Lepretre,
A. DeMiniac, A. Veyssiere. A study of the photo-
neutron contribution to the giant dipole resonance in
doubly even Mo isotopes // Nucl. Phys. A. 1974,
v. 227, p. 427-449.
ftp://ftp.nrg.eu/pub/www/ talys/talys.tar
ftp://ftp.nrg.eu/pub/www/ talys/talys.tar
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 7
6. Experimental Nuclear Reaction Data (EXFOR)
https://www-nds.iaea.org/exfar/
7. J. Allison, K. Amako, J. Apostolakis, et al. Recent
developments in Geant4 // NIM. 2016, A 835,
p. 186-225.
8. V.I. Nikiforov, V.L. Uvarov. Development of the
technique embedded into a Monte Carlo transport
system for calculation of photonuclear isotope yield
// Nukleonika. 2012, 57(1), p. 75-80 (in Russian.)
Article received 01.10.2021
ОЦЕНКА ПАРАМЕТРОВ ГРОСС-СТРУКТУРЫ ГИГАНТСКОГО ДИПОЛЬНОГО РЕЗОНАНСА:
2. ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА
Н.П. Дикий, А.А. Захарченко, Ю.В. Ляшко, В.Л. Уваров, В.А. Шевченко, А.Э. Тенишев
Проведена экспериментальная проверка нового метода определения ширины и максимума функции воз-
буждения фотоядерной реакции с доминированием гигантского дипольного резонанса. Метод основан на
измерении нормированного выхода реакции в тонкой мишени, перекрывающей полностью поток тормозно-
го излучения ускорителя электронов, и обработке полученных данных с использованием разработанной
аналитической модели. Для проверки метода фольги из никеля и молибдена природного состава были акти-
вированы тормозным излучением при четырех значениях энергии пучка электронов в диапазоне
40…95 МэВ. Полученные параметры сечений референтных реакций
58
Ni(,n)
57
Ni и
100
Mo(,n)
99
Mo хорошо
согласуются с представленными в имеющихся базах данных.
ОЦІНКА ПАРАМЕТРІВ ГРОСС-СТРУКТУРИ ГІГАНТСЬКОГО ДИПОЛЬНОГО РЕЗОНАНСУ:
2. ЕКСПЕРИМЕНТАЛЬНА ПЕРЕВІРКА
М.П. Дикий, О.О. Захарченко, Ю.В. Ляшко, В.Л. Уваров, В.А. Шевченко, А.Е. Тенішев
Проведена експериментальна перевірка нового методу визначення ширини і максимуму функції збу-
дження фотоядерної реакції з домінуванням гігантського дипольного резонансу. Метод базується на вимі-
рюванні нормованого виходу реакції у тонкій мішені, що повністю перекриває потік гальмівного випромі-
нювання прискорювача електронів, і обробці одержаних даних з використанням розробленої теоретичної
моделі. Для перевірки методу були активовані фольги з нікелю та молібдену природного складу гальмівним
випромінюванням при чотирьох значеннях енергії пучку електронів у діапазоні 40…95 МеВ. Одержані па-
раметри перерізів референтних реакцій
58
Ni(,n)
57
Ni та
100
Mo(,n)
99
Mo добре узгоджуються з такими, що
представлені у наявних базах даних.
|