Application of cathodoluminescence for on-line monitoring of regime of an industrial electron accelerator
Continuous monitoring of critical parameters of an industrial electron accelerator provides quality of product processing. For that purpose, the methods of contact-free diagnostics of processing regime are developed. One of them is based on application of a wide-aperture stack-monitor for on-line me...
Збережено в:
Дата: | 2019 |
---|---|
Автори: | , , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2019
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/195467 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Application of cathodoluminescence for on-line monitoring of regime of an industrial electron accelerator / R.I. Pomatsalyuk, S.K. Romanovsky, V.A. Shevchenko, A.Eh. Tenishev, V.Yu. Titov, D.V. Titov, V.L. Uvarov, A.A. Zakharchenko // Problems of atomic science and technology. — 2019. — № 6. — С. 168-171. — Бібліогр.: 9 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-195467 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1954672023-12-05T13:16:42Z Application of cathodoluminescence for on-line monitoring of regime of an industrial electron accelerator Pomatsalyuk, R.I. Romanovsky, S.K. Shevchenko, V.A. Tenishev, A.Eh. Titov, V.Yu. Titov, D.V. Uvarov, V.L. Zakharchenko, A.A. Application of accelerators in radiation technologies Continuous monitoring of critical parameters of an industrial electron accelerator provides quality of product processing. For that purpose, the methods of contact-free diagnostics of processing regime are developed. One of them is based on application of a wide-aperture stack-monitor for on-line measurement of beam current, electron energy, and also the mean absorbed dose over the plain of beam scanning in an irradiated object [1]. In the work, the conditions of application of cathodoluminescence (CL), accompanied action of accelerated electrons on amorphous dielectrics, for adjustment of the stack-monitor, and also for measuring in on-line mode the dose in a point of control as well as of distribution of the electron flux density on the surface of the object, is studied. It is shown, that titanium dioxide, keeping the radiation-optical yield at an accumulated dose of up to 4 MGy, can be considered as a promising material for manufacturing of CL detector. Безперервний моніторинг критичних параметрів промислового прискорювача електронів забезпечує якість обробки продукції. З цією метою розробляють методи безконтактної діагностики режиму обробки. Одним з таких методів є on-line моніторинг струму пучка, енергії електронів і середнього значення поглинутої дози в оброблюваному об’єкті в площині сканування пучка, що базується на використанні широкоапертурного стек-монітора. Досліджені умови застосування катодолюмінесценції (КЛ), яка супроводжує дію прискореними електронами на аморфні діелектрики, для юстирування стек-монітора, а також вимірювання в on-line режимі величини поглинутої дози в контрольній точці та розподілу щільності потоку електронів на поверхні оброблюваного об'єкту. Показано, що як перспективний матеріал для виготовлення КЛ-детектора може бути використаний діоксид титану, який зберігає величину радіаційно-оптичного виходу при інтегральній поглинутій дозі до 4 МГр. Непрерывный мониторинг критических параметров промышленного ускорителя электронов определяет качество обработки продукции. С этой целью разрабатывают методы бесконтактной диагностики режима обработки. Одним из таких методов является on-line мониторинг тока пучка, энергии электронов и среднего значения поглощенной дозы в плоскости сканирования пучка, основанный на использовании широкоаппертурного стек-монитора. Исследованы условия применения катодолюминесценции (КЛ), сопровождающей воздействие ускоренными электронами на аморфные диэлектрики, для юстировки стек-монитора, а также измерения в on-line режиме величины поглощенной дозы в контрольной точке обрабатываемого объекта и распределения плотности потока электронов на его поверхности. Показано, что в качестве перспективного материала для изготовления КЛ-дозиметра может быть использован диоксид титана, который сохраняет величину радиационно-оптического выхода при интегральной поглощенной дозе до 4 МГр. 2019 Article Application of cathodoluminescence for on-line monitoring of regime of an industrial electron accelerator / R.I. Pomatsalyuk, S.K. Romanovsky, V.A. Shevchenko, A.Eh. Tenishev, V.Yu. Titov, D.V. Titov, V.L. Uvarov, A.A. Zakharchenko // Problems of atomic science and technology. — 2019. — № 6. — С. 168-171. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 29.27.Ac; 41.75.Fr; 07.81.+a http://dspace.nbuv.gov.ua/handle/123456789/195467 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Application of accelerators in radiation technologies Application of accelerators in radiation technologies |
spellingShingle |
Application of accelerators in radiation technologies Application of accelerators in radiation technologies Pomatsalyuk, R.I. Romanovsky, S.K. Shevchenko, V.A. Tenishev, A.Eh. Titov, V.Yu. Titov, D.V. Uvarov, V.L. Zakharchenko, A.A. Application of cathodoluminescence for on-line monitoring of regime of an industrial electron accelerator Вопросы атомной науки и техники |
description |
Continuous monitoring of critical parameters of an industrial electron accelerator provides quality of product processing. For that purpose, the methods of contact-free diagnostics of processing regime are developed. One of them is based on application of a wide-aperture stack-monitor for on-line measurement of beam current, electron energy, and also the mean absorbed dose over the plain of beam scanning in an irradiated object [1]. In the work, the conditions of application of cathodoluminescence (CL), accompanied action of accelerated electrons on amorphous dielectrics, for adjustment of the stack-monitor, and also for measuring in on-line mode the dose in a point of control as well as of distribution of the electron flux density on the surface of the object, is studied. It is shown, that titanium dioxide, keeping the radiation-optical yield at an accumulated dose of up to 4 MGy, can be considered as a promising material for manufacturing of CL detector. |
format |
Article |
author |
Pomatsalyuk, R.I. Romanovsky, S.K. Shevchenko, V.A. Tenishev, A.Eh. Titov, V.Yu. Titov, D.V. Uvarov, V.L. Zakharchenko, A.A. |
author_facet |
Pomatsalyuk, R.I. Romanovsky, S.K. Shevchenko, V.A. Tenishev, A.Eh. Titov, V.Yu. Titov, D.V. Uvarov, V.L. Zakharchenko, A.A. |
author_sort |
Pomatsalyuk, R.I. |
title |
Application of cathodoluminescence for on-line monitoring of regime of an industrial electron accelerator |
title_short |
Application of cathodoluminescence for on-line monitoring of regime of an industrial electron accelerator |
title_full |
Application of cathodoluminescence for on-line monitoring of regime of an industrial electron accelerator |
title_fullStr |
Application of cathodoluminescence for on-line monitoring of regime of an industrial electron accelerator |
title_full_unstemmed |
Application of cathodoluminescence for on-line monitoring of regime of an industrial electron accelerator |
title_sort |
application of cathodoluminescence for on-line monitoring of regime of an industrial electron accelerator |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2019 |
topic_facet |
Application of accelerators in radiation technologies |
url |
http://dspace.nbuv.gov.ua/handle/123456789/195467 |
citation_txt |
Application of cathodoluminescence for on-line monitoring of regime of an industrial electron accelerator / R.I. Pomatsalyuk, S.K. Romanovsky, V.A. Shevchenko, A.Eh. Tenishev, V.Yu. Titov, D.V. Titov, V.L. Uvarov, A.A. Zakharchenko // Problems of atomic science and technology. — 2019. — № 6. — С. 168-171. — Бібліогр.: 9 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT pomatsalyukri applicationofcathodoluminescenceforonlinemonitoringofregimeofanindustrialelectronaccelerator AT romanovskysk applicationofcathodoluminescenceforonlinemonitoringofregimeofanindustrialelectronaccelerator AT shevchenkova applicationofcathodoluminescenceforonlinemonitoringofregimeofanindustrialelectronaccelerator AT tenishevaeh applicationofcathodoluminescenceforonlinemonitoringofregimeofanindustrialelectronaccelerator AT titovvyu applicationofcathodoluminescenceforonlinemonitoringofregimeofanindustrialelectronaccelerator AT titovdv applicationofcathodoluminescenceforonlinemonitoringofregimeofanindustrialelectronaccelerator AT uvarovvl applicationofcathodoluminescenceforonlinemonitoringofregimeofanindustrialelectronaccelerator AT zakharchenkoaa applicationofcathodoluminescenceforonlinemonitoringofregimeofanindustrialelectronaccelerator |
first_indexed |
2025-07-16T23:27:43Z |
last_indexed |
2025-07-16T23:27:43Z |
_version_ |
1837848030789763072 |
fulltext |
ISSN 1562-6016. ВАНТ. 2019. №6(124) 168
APPLICATION OF CATHODOLUMINESCENCE
FOR ON-LINE MONITORING OF REGIME OF AN INDUSTRIAL
ELECTRON ACCELERATOR
R.I. Pomatsalyuk, S.K. Romanovsky, V.A. Shevchenko, A.Eh. Tenishev, V.Yu. Titov,
D.V. Titov, V.L. Uvarov, A.A. Zakharchenko
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
E-mail: uvarov@kipt.kharkov.ua
Continuous monitoring of critical parameters of an industrial electron accelerator provides quality of product
processing. For that purpose, the methods of contact-free diagnostics of processing regime are developed. One of
them is based on application of a wide-aperture stack-monitor for on-line measurement of beam current, electron
energy, and also the mean absorbed dose over the plain of beam scanning in an irradiated object [1]. In the work, the
conditions of application of cathodoluminescence (CL), accompanied action of accelerated electrons on amorphous
dielectrics, for adjustment of the stack-monitor, and also for measuring in on-line mode the dose in a point of control
as well as of distribution of the electron flux density on the surface of the object, is studied. It is shown, that titanium
dioxide, keeping the radiation-optical yield at an accumulated dose of up to 4 MGy, can be considered as a promis-
ing material for manufacturing of CL detector.
PACS: 29.27.Ac; 41.75.Fr; 07.81.+a
INTRODUCTION
At radiation processing, the demonstration of receipt
by every object of absorbed dose within the established
range in its minimum Dmin and maximum Dmax values, is
critically important. At an electron accelerator, those
parameters are determined by the electron energy, den-
sity of the beam current and its distribution over the
surface of irradiated load, and also by the velocity of the
load transfer through the irradiation zone.
Commonly, the diagnostics of treatment regime on
electron energy and absorbed dose is conducted in off-
line mode with the usage of chemical dosimeters [2].
Adherence of the Dmin and Dmax values is confirmed
with the reading Dcon of a checking dosimeter placed in
a specified point an the surface of the processed load
and the established ratios Dmax/Dcon and Dmin/Dcon [3].
So on-line measurement of Dcon and electron energy
enables continuous monitoring of processing regime in
the absorbed dose.
In the works [1, 4], the techniques for on-line meas-
uring of mean electron energy and average absorbed
dose over the cross-section of the processed object with
the use of a wide-aperture stack-monitor, implemented
at a LU-10 accelerator of NSC KIPT (Fig. 1), were de-
scribed. It was shown, in particular, that the uncertainty
of treatment parameters is determined mainly by accu-
racy of the monitor positioning on the axis of the radia-
tion flux.
e-
e-
SM
LU-10
V с
Scanner
Transport
container
with a load
Fig. 1. Output devices of LU-10 accelerator
In this work, the possibility is studied to use the op-
tical radiation induced in various materials exposed to
accelerated electrons (cathodoluminescence-CL), for
adjustment of measuring devices at output of an indus-
trial electron accelerator, and also for on-line monitor-
ing of product processing regime in the absorbed dose
and its distribution over the surface of the product.
1. CL DIAGNOSTICS
Incoherent optical radiation is generated at interac-
tion of accelerated electrons with the amorphous dielec-
trics (see e.g. [5]). Its nature is connected with localiza-
tion of the quasi-free charges, induced by irradiation in
the conduction band of the dielectric with the electron
traps in its prohibition zone. It was shown in the work
[6], that if the duration of the electron beam pulse, τb,
meets the condition
0
,DT
b CB
CB
N
n
τ τ<< (1)
where 0
DTN − is the concentration of the deep traps
(with binding energy of ~eV); CBn − is the concentra-
tion of the quasi-free electrons generated in the conduc-
tion zone by radiation; CBτ − is their lifetime, then the
flux density of the CL photons is proportional to the
absorbed dose rate D
•
.
So registration of the CL signal on a plane screen
with size higher than the width of the electron flux and
positioned normally to its axis (a CL radiator) enables
visualization of distribution of the flux density in a
sighting plane.
If the CL radiator is placed on a container with the
processed product, transferred through the irradiation
zone with velocity Vc, then the registration of its optical
radiation can be used for measurement of absorbed
dose. So if the acquisition interval meets the demand
,b
reg
c
d
V
τ > (2)
where db – is the lateral dimension of the beam on the
object’s surface, and at fulfillment of the condition
0 ,DTg D Nρ << (3)
mailto:uvarov@kipt.kharkov.ua
ISSN 1562-6016. ВАНТ. 2019. №6(124) 169
where g – is the radiation-chemical yield of the deep
traps; ρ − is the density of the dielectric; D – is the ab-
sorbed dose at its passage of the irradiation zone, then
the energy fluence of CL is proportional to the dose.
2. APPLICATION OF CL
FOR STACK-MONITOR ADJUSTMENT
2.1. SIMULATION
A technique of on-line monitoring of electron energy
and absorbed dose with the use of a wide-aperture
stack-monitor (SM), positioned in the area behind of the
treated load, assumes the absorption of major part of the
electron flux in SM. This condition is provided by the
monitor placement strictly symmetrically relative to the
beam scanning plane.
The CL method was used for checking of fulfilment
of that demand. Preliminary study of the conditions of
its application was conducted by computer modelling on
the basis of a transport code GEANT4. In Fig. 2, the
calculated distributions of the absorbed dose rate on the
surface of first plate of SM at scanning of the LU-10
beam having the spectral maximum of 8.3 MeV (see
Fig. 2,a) and 10.7 MeV (see Fig. 2,b), are presented.
0,630,56
0,49
0,42
0,35
0,29
0,22
0,15
0,079
-30 -20 -10 0 10 20 30
-50
-40
-30
-20
-10
0
10
20
30
40
50
Y
-a
xi
s,
cm
X-axis, cm
0,010
0,079
0,15
0,22
0,29
0,35
0,42
0,49
0,56
0,63
0,70
X/I, kGy/s/mA
8,3 MeV
a
0,70
0,63
0,55
0,47
0,39
0,32
0,24
0,16
0,083
-30 -20 -10 0 10 20 30
-50
-40
-30
-20
-10
0
10
20
30
40
50
Y
-a
xi
s,
cm
X-axis, cm
0,0060
0,083
0,16
0,24
0,32
0,39
0,47
0,55
0,63
0,70
0,78
X/I, kGy/s/mA
10,7 MeV
b
Fig. 2. Maps of normalized absorbed dose rate
on surface of stack-monitor: Е0,max= 8.3 MeV (а);
Е0,max=10.7 MeV (b)
It is seen, that at a typical average beam current of
1mA, the dose rate along the scanning axis amounts up
to ~0.7 kGy/s. Taking into account the radiation-optical
yield of the examined technical materials (cellulose,
polypropylene etc. [8]), the exposure of 30 s is suffi-
cient for recording of optical emission from SM.
2.2. EXPERIMENT
For the CL signal registration, a radiator in the form
of a carton curtain measuring 1200×850 mm was set on
the SM surface. The horizontal cursors with step of
50 mm, and also two vertical lines were mapped on the
radiator. One from the latters revealed the margin of
SM, when the other its center. For gain in the radiation-
optical yield, a polypropylene film by 32 µm in thick-
ness was fixed on the carton also.
In Fig. 3,a, the photo of the glow of the CL radiator,
exposed to an electron beam with energy maximum
Е0,max=8.3 MeV, average current of 0.74 mA and sweep
width of 46 cm, is given. A vertical pipe by 80 mm in
diameter being a stationary element of the accelerator exit
devices occupies a part of the image. Actually, that ele-
ment does not stand within the area of the beam action.
a
b
Fig. 3. Optical radiation induced with the electron
beam: CL + ionizing radiation (а);
ionizing radiation (b)
a
b
Fig. 4. Horizontal (above) and vertical (on the right)
profile of CL intensity on SM surface
at Е0,max=8,3 MeV (а) and Е0,max =10,7 MeV (b)
ISSN 1562-6016. ВАНТ. 2019. №6(124) 170
The optical radiation observed from the point of
sight includes, apart from CL, also the ionizing glow of
the air (Fig. 3,b). At digital processing of photographs in
an Origin medium the latter signal was subtracted as a
background (Fig. 4). It should be noted also, that the CL
signal and ionizing radiation have different spectra and
so can be separated by optical filtering.
In Fig. 5, the results are given of comparison of the
dose rate distributions, calculated using the GEANT4
package, and also experimentally measured the CL in-
tensity along the horizontal axis of SM at a spectral
maximum of the electron energy of 8.3 MeV (see
Fig. 5,a) and 10.7 MeV (see Fig. 5,b).
а
b
Fig. 5. Comparison of calculated and measured profile
of CL intensity and absorbed dose
The results obtained by both techniques are in good
agreement. It testifies the tolerable accuracy of the SM
adjustment in the electron flux.
3. CL DOSIMETRY
As it was shown in the work [7], a number of mate-
rials used for product wrapping (carton, polypropylene
etc.) are the good CL radiators. At the same time, being
technical materials they have unstable characteristics, in
particular, as for the radiation-optical yield, and also
poor radiation hardness. The latter restricts multiple
usage of such a radiator at treatment of industrial scale
of a product. That is why the selection and study of ma-
terials for a CL detector having stable metrological per-
formance is of special interest.
3.1. TiO2 AS A CL RADIATOR
3.1.1. At the choice of the material for a CL detector
of absorbed dose, the next criteria were applied:
- the radiation-optical yield to be sufficient for pho-
torecording and linear in a dose span used;
- the minimum effect of the detector on a processing
regime;
- the high radiation resistance enables the detector’s
multiple reusage.
Titanium dioxide (TiO2) is well known as an effec-
tive white pigment having high radiation durability [8].
A CL detector was developed on its basis in the form of
a sheet from duraluminium by 1mm in thickness cov-
ered with a composite from the water glass and titanium
dioxide. The composite was prepared by blending of
titanium dioxide of the P-02 brand (in the rutile form),
the water glass and the double distilled water in the vol-
umetric proportion 5:4:2. The thickness of the detector
was chosen with due regard to its mechanical strength
and minimal influence on the process of radiation treat-
ment.
3.1.2. A prototype of the radiator prepared in that
technology and measuring 50×450 mm was fabricated
for testing in radiation resistance. The radiator was posi-
tioned behind the conveyor with the processed product
at a distance of 220 mm from an exit window of the
accelerator in the area of scattered electron radiation and
irradiated for 5 hours. The dose accumulated for that
period amounted 3.7 MGy. The distant recording of the
CL yield was performed using a digital reflex camera.
The decrease of the CL yield by the end of irradiation
did not exceed 9%.
3.2. CALIBRATION OF CL DETECTOR
A prototype of the CL detector by 300 mm in width
was used also for calibration of the detector on the basis
of TiO2 against the absorbed dose. The detector was set
on a transport container. The dosimeters Harwell Red
4034 (Harwell Dosimeters, UK) were fixed at the edge
of the detector 75 mm higher the bottom of the contain-
er. The latter was transferred through the irradiation
zone of LU-10 with specified velocity. The CL signal
was registered with a digital camera Canon EOS Digital
Rebel XT at an exposure of 30 s. This value provided
the full optical scanning of area of the beam action at a
minimal conveyor velocity of 1.24 cm/s providing the
absorbed dose of 25 kGy. In Fig. 6, the dependence of
the relative radiation-optical yield of CL on the dose in
a point of registration is given. It is evident, that the
dependence is close to linear.
Fig. 6. Dependence of relative CL fluence
on absorbed dose
CONCLUSIONS
Phenomenon of CL induced with high-energy elec-
trons in the technical dielectric materials can be used for
visualization of the particle flux profile and adjustment
ISSN 1562-6016. ВАНТ. 2019. №6(124) 171
of the accelerator output devices. In the technological
processes conducting at the electron accelerators, the
placement of the CL radiators on the transport containers
with an irradiated product enables the on-line monitoring
of absorbed dose in a check point at the surface of the
product, and also of distribution of the beam density
along the scanning axis. A cover on the basis of titanium
dioxide can be used as an inexpensive radiator of CL.
Such a radiator keeps its radiation-optical yield at an ac-
cumulated dose of up to ~4 MGy. That provides the pos-
sibility of its multiple reusing as an industrial dosimeter.
A CL dosimetry technique can be considered as
some development of the known luminescent methods
(see e.g. [9]). At the same time, those methods are pas-
sive, as they are based on registration of optical radia-
tion induced by various external actions (like heating
etc.) on the preliminary irradiated detectors, manufac-
tured from special materials. The proposed technique is
active, as it gives dosimetry information directly during
irradiation. Besides the new approach is based on the
usage of readily available materials.
In contrast to scintillation dosimetry, which is active
also, the catodoluminescence technique provides the
possibility of high-dose measurement and so enables its
application in the radiation technological processes.
REFERENCES
1. R.I. Pomatsalyuk, V.A. Shevchenko, I.N. Shlyakhov,
A.Eh. Tenishev, V.Yu. Titov, D.V. Titov,
V.L. Uvarov, A.A. Zakharchenko. Measurement of
electron beam energy characteristics at an industrial
accelerator // Problems of Atomic Science and Tech-
nology. Series “Nuclear Physics Investigations”.
2017, № 6, p. 3-7.
2. Standard ISO/ASTM 51649. Practice for dosimetry
in an electron beam facility for radiation processing
at energies between 300 keV and 25 MeV.
3. Standard ISO 11137-1. Sterilization of Health Care
Products. Radiation. Part 1: Requirements for De-
velopment, Validation and Routine control of a Ster-
ilization Process for Medical Devices.
4. V.L. Uvarov. A method of measurement of absorbed
dose in an object exposed to electron radiation. Pa-
tent of Ukraine № 111794 // Bull. № 11, 10.06.2016.
5. B.J.M. Brenny, T. Coenen, A. Polman. Quantifying
Coherent and Incoherent Cathodoluminescence in
Semiconductors and Metals // J. Appl. Phys. 2014,
v. 115, p. 244307.
6. S.K. Romanovsky, V.L. Uvarov. Mechanisms of
luminescence of amorphous dielectrics exposed to
high-energy electrons // Problems of Atomic Science
and Technology. Series “Nuclear Physics Investiga-
tions”. 2018, № 3, p. 91-95.
7. S.K. Romanovsky, V.A. Shevchenko, I.N. Shlyakhov,
A.Eh. Tenishev, V.Yu. Titov, D.V. Titov,
V.L. Uvarov. Dinamics of amorphous dielectrics
lyuminescence induced by pulse electron beam //
Problems of Atomic Science and Technology. Series
“Nuclear Physics Investigations”. 2017, № 6, p. 152.
8. S.A. Yuryev. Optical Properties and Radiation Du-
rability of TiO2 Powders Modified with Nanoparti-
cles of Oxide Compounds //
http://static.freereferates.ru/_avtoreferates/01008071
760.pdf
9. M.N. Konopka, B. Odryk. Luminescence Dosime-
try: Review of Methods, Detectors and their Appli-
cation // Nonlinear Optics Quantum Optics. 2017, v.
48(2), p. 133-146.
Article received 04.10.2019
ПРИМЕНЕНИЕ КАТОДОЛЮМИНЕСЦЕНЦИИ ДЛЯ ON-LINE МОНИТОРИНГА РЕЖИМА
ПРОМЫШЛЕННОГО УСКОРИТЕЛЯ ЭЛЕКТРОНОВ
Р.И. Помацалюк, С.К. Романовский, В.А. Шевченко, А.Э. Тенишев, В.Ю. Титов,
Д.В. Титов, В.Л. Уваров, А.А. Захарченко
Непрерывный мониторинг критических параметров промышленного ускорителя электронов определяет
качество обработки продукции. С этой целью разрабатывают методы бесконтактной диагностики режима
обработки. Одним из таких методов является on-line мониторинг тока пучка, энергии электронов и среднего
значения поглощенной дозы в плоскости сканирования пучка, основанный на использовании широкоаппер-
турного стек-монитора. Исследованы условия применения катодолюминесценции (КЛ), сопровождающей
воздействие ускоренными электронами на аморфные диэлектрики, для юстировки стек-монитора, а также
измерения в on-line режиме величины поглощенной дозы в контрольной точке обрабатываемого объекта и
распределения плотности потока электронов на его поверхности. Показано, что в качестве перспективного
материала для изготовления КЛ-дозиметра может быть использован диоксид титана, который сохраняет ве-
личину радиационно-оптического выхода при интегральной поглощенной дозе до 4 МГр.
ЗАСТОСУВАННЯ КАТОДОЛЮМІНЕСЦЕНЦІЇ ДЛЯ ON-LINE МОНІТОРИНГУ РЕЖИМУ
ПРОМИСЛОВОГО ПРИСКОРЮВАЧА ЕЛЕКТРОНІВ
Р.І. Помацалюк, С.К. Романовський, В.А. Шевченко, А.Е. Тєнішев, В.Ю. Титов,
Д.В. Тітов, В.Л. Уваров, О.О. Захарченко
Безперервний моніторинг критичних параметрів промислового прискорювача електронів забезпечує
якість обробки продукції. З цією метою розробляють методи безконтактної діагностики режиму обробки.
Одним з таких методів є on-line моніторинг струму пучка, енергії електронів і середнього значення поглину-
тої дози в оброблюваному об’єкті в площині сканування пучка, що базується на використанні широкоапер-
турного стек-монітора. Досліджені умови застосування катодолюмінесценції (КЛ), яка супроводжує дію
прискореними електронами на аморфні діелектрики, для юстирування стек-монітора, а також вимірювання в
on-line режимі величини поглинутої дози в контрольній точці та розподілу щільності потоку електронів на
поверхні оброблюваного об'єкту. Показано, що як перспективний матеріал для виготовлення КЛ-детектора
http://static.freereferates.ru/_avtoreferates/01008071760.pdf
http://static.freereferates.ru/_avtoreferates/01008071760.pdf
ISSN 1562-6016. ВАНТ. 2019. №6(124) 172
може бути використаний діоксид титану, який зберігає величину радіаційно-оптичного виходу при інтегра-
льній поглинутій дозі до 4 МГр.
INTRODUCTION
1. CL DIAGNOSTICS
3. CL DOSIMETRY
CONCLUSIONS
REFERENCES
|