Use of molybdenite nanoparticles for photonuclear production of technetium-99m

The possibility production of ⁹⁹Mo radioisotope with using recoil nuclei of molybdenite nanoparticles from reaction ¹⁰⁰Mo(γ,n)⁹⁹Mo was investigated. The use of thermally stable molybdenite allows solving the problem of thermal loads of high-power electron beams. The enrichment of radioactive isotope...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автори: Dikiy, N.P., Lyashko, Yu.V., Medvedeva, E.P., Medvedev, D.V., Uvarov, V.L., Fedorets, I.D.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2019
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/195479
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Use of molybdenite nanoparticles for photonuclear production of technetium-99m / N.P. Dikiy, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev, V.L. Uvarov, I.D. Fedorets // Problems of atomic science and technology. — 2019. — № 6. — С. 149-152. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-195479
record_format dspace
spelling irk-123456789-1954792023-12-05T13:24:24Z Use of molybdenite nanoparticles for photonuclear production of technetium-99m Dikiy, N.P. Lyashko, Yu.V. Medvedeva, E.P. Medvedev, D.V. Uvarov, V.L. Fedorets, I.D. Application of nuclear methods The possibility production of ⁹⁹Mo radioisotope with using recoil nuclei of molybdenite nanoparticles from reaction ¹⁰⁰Mo(γ,n)⁹⁹Mo was investigated. The use of thermally stable molybdenite allows solving the problem of thermal loads of high-power electron beams. The enrichment of radioactive isotopes carried out by the effect of SzilardChalmers. Molybdenite nanoparticles were irradiated by bremsstrahlung with Emax=39 MeV. The recoil nuclei of ⁹⁹Mo separated by electrolysis at low concentration. The yield of ⁹⁹Mo from extractable phase amounted 3% for size nanoparticles 350 nm. Досліджено можливість отримання радіоізотопа ⁹⁹Mo з використанням ядер віддачі наночастинок молібденіту з реакції ¹⁰⁰Mo(γ,n)⁹⁹Mo. Використання термостійкого молібденіту дозволяє вирішити проблему теплових навантажень потужних електронних пучків. Збагачення радіоактивних ізотопів здійснювалося за допомогою ефекту Сциларда-Чалмерса. Наночастки молібденіту опромінювалися гальмівним випромінюванням з Emax=39 MeV. Ядра віддачі ⁹⁹Mo були відокремлені електролізом при низькій концентрації. Вихід ⁹⁹Mo з екстрагованої фази склав ~3% для наночастинок розміром 350 нм. Исследована возможность получения радиоизотопа ⁹⁹Mo с использованием ядер отдачи наночастиц молибденита из реакции ¹⁰⁰Mo(γ,n)⁹⁹Mo. Использование термостойкого молибденита позволяет решить проблему тепловых нагрузок мощных электронных пучков. Обогащение радиоактивных изотопов осуществлялось с помощью эффекта Сциларда-Чалмерса. Наночастицы молибденита облучались тормозным излучением с Emax=39 MeV. Ядра отдачи ⁹⁹Mo были отделены электролизом при низкой концентрации. Выход ⁹⁹Mo из экстрагируемой фазы составил ~3% для наночастиц размером 350 нм. 2019 Article Use of molybdenite nanoparticles for photonuclear production of technetium-99m / N.P. Dikiy, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev, V.L. Uvarov, I.D. Fedorets // Problems of atomic science and technology. — 2019. — № 6. — С. 149-152. — Бібліогр.: 16 назв. — англ. 1562-6016 PACS: 28.60; 81.07._b http://dspace.nbuv.gov.ua/handle/123456789/195479 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Application of nuclear methods
Application of nuclear methods
spellingShingle Application of nuclear methods
Application of nuclear methods
Dikiy, N.P.
Lyashko, Yu.V.
Medvedeva, E.P.
Medvedev, D.V.
Uvarov, V.L.
Fedorets, I.D.
Use of molybdenite nanoparticles for photonuclear production of technetium-99m
Вопросы атомной науки и техники
description The possibility production of ⁹⁹Mo radioisotope with using recoil nuclei of molybdenite nanoparticles from reaction ¹⁰⁰Mo(γ,n)⁹⁹Mo was investigated. The use of thermally stable molybdenite allows solving the problem of thermal loads of high-power electron beams. The enrichment of radioactive isotopes carried out by the effect of SzilardChalmers. Molybdenite nanoparticles were irradiated by bremsstrahlung with Emax=39 MeV. The recoil nuclei of ⁹⁹Mo separated by electrolysis at low concentration. The yield of ⁹⁹Mo from extractable phase amounted 3% for size nanoparticles 350 nm.
format Article
author Dikiy, N.P.
Lyashko, Yu.V.
Medvedeva, E.P.
Medvedev, D.V.
Uvarov, V.L.
Fedorets, I.D.
author_facet Dikiy, N.P.
Lyashko, Yu.V.
Medvedeva, E.P.
Medvedev, D.V.
Uvarov, V.L.
Fedorets, I.D.
author_sort Dikiy, N.P.
title Use of molybdenite nanoparticles for photonuclear production of technetium-99m
title_short Use of molybdenite nanoparticles for photonuclear production of technetium-99m
title_full Use of molybdenite nanoparticles for photonuclear production of technetium-99m
title_fullStr Use of molybdenite nanoparticles for photonuclear production of technetium-99m
title_full_unstemmed Use of molybdenite nanoparticles for photonuclear production of technetium-99m
title_sort use of molybdenite nanoparticles for photonuclear production of technetium-99m
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2019
topic_facet Application of nuclear methods
url http://dspace.nbuv.gov.ua/handle/123456789/195479
citation_txt Use of molybdenite nanoparticles for photonuclear production of technetium-99m / N.P. Dikiy, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev, V.L. Uvarov, I.D. Fedorets // Problems of atomic science and technology. — 2019. — № 6. — С. 149-152. — Бібліогр.: 16 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT dikiynp useofmolybdenitenanoparticlesforphotonuclearproductionoftechnetium99m
AT lyashkoyuv useofmolybdenitenanoparticlesforphotonuclearproductionoftechnetium99m
AT medvedevaep useofmolybdenitenanoparticlesforphotonuclearproductionoftechnetium99m
AT medvedevdv useofmolybdenitenanoparticlesforphotonuclearproductionoftechnetium99m
AT uvarovvl useofmolybdenitenanoparticlesforphotonuclearproductionoftechnetium99m
AT fedoretsid useofmolybdenitenanoparticlesforphotonuclearproductionoftechnetium99m
first_indexed 2025-07-16T23:28:38Z
last_indexed 2025-07-16T23:28:38Z
_version_ 1837848087657185280
fulltext ISSN 1562-6016. ВАНТ. 2019. №6(124) 149 APPLICATION OF NUCLEAR METHODS USE OF MOLYBDENITE NANOPARTICLES FOR PHOTONUCLEAR PRODUCTION OF TECHNETIUM-99m N.P. Dikiy1,2, Yu.V. Lyashko1,2, E.P. Medvedeva1,2, D.V. Medvedev1, V.L. Uvarov1, I.D. Fedorets2 1National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine; 2V.N. Karazin Kharkiv National University, Kharkiv, Ukraine E-mail: ndikiy@kipt.kharkov.ua The possibility production of 99Mo radioisotope with using recoil nuclei of molybdenite nanoparticles from reac- tion 100Mo(γ,n)99Mo was investigated. The use of thermally stable molybdenite allows solving the problem of ther- mal loads of high-power electron beams. The enrichment of radioactive isotopes carried out by the effect of Szilard- Chalmers. Molybdenite nanoparticles were irradiated by bremsstrahlung with Emax=39 MeV. The recoil nuclei of 99Mo separated by electrolysis at low concentration. The yield of 99Mo from extractable phase amounted 3% for size nanoparticles 350 nm. PACS: 28.60; 81.07._b INTRODUCTION 99mTc (T1/2=6 h) is being produced from the decay of the 99Mo (T1/2=66 h). 99mTc produces a 140 keV gamma ray and it is an ideal isotope for nuclear medicine imag- ing [1]. 99Mo is using in the preparation of 99Mo-99mTc generator. Usually 99Mo is being produced either by neutron bombardment of MoO3 or as nuclear fission of enriched uranium [1]. A significant difference between of these two procedures is that 99Mo obtained from fis- sion is “carrier free”. This allows to producing of 99Mo with a specific activity of tens of thousands of Ci/g. The method of photonuclear production of 99Mo character- ized by considerable advantages [2 - 4]. The (γ,n)- reaction does not be accompanied by a change in nuclear charge. Therefore, the enrichment of radioactive isotopes is been carried out using the effect of Szilard-Chalmers. The high concentration of 99Mo is required for manufac- turing of 99mTc-99Mo generators. These generators will promote successful using 99mTc in nuclear medicine. A feature of this study is the use of electrolysis to separate of 99mTc. The electrolysis method allows the sepa- ration of 99mTc from solutions with a lower specific con- centration of 99Mo than, for example, when the extraction of 99mTc using methyl ethyl ketone [2 - 4]. Currently molybdenum disulfide intensively investi- gating d. This use molybdenum disulfide in optoelectric device, to molecular and biomolecular sensors, for hy- drodesulfurization catalyst, catalyst for hydrogen evolu- tion reaction, catalyst for water splitting and chemical reaction, various bioapplications [5, 6]. Another appli- cation is photothermal therapy, which takes advantage of its good dispersibility and superior absorbance of near infrared. A molybdenum disulfide dispersion shows 7.8 times higher absorbance than graphene oxide, and its extinction coefficients at 800 nm is 29.2 l·g-1·cm-1, which is higher than gold nanorods. Visualisation of certain organs or cells is one of the most important functions for diagnosis and treatment. Based on the large atomic number of Mo, MoS2 flakes as image contrast agent are using for computed tomogram [5]. The purpose of the present investigation is the pro- duction of a high specific activity 99Mo with using of molybdenite nanoparticles and the effect of Szilard- Chalmers. RESULTS AND DISCUSSION The energy of the recoil nucleus depends on the pulse gamma ray, neutron pulse emitted, and the angle between the directions of doing these pulses. The ener- gy of the recoil nucleus Er expressed by the following expression: , )(2)( )(2 cos )(2)( )(2)(2 2/1 2 2 22 2 2 2 22 2             −++ + −         −++ + + + = Mm c E mMQE mMc MmE c E mMQE mM m cmM ME Er γ γ γγ γ γ θ where Er − recoil energy molybdenum atom; the M is the mass of molybdenum atom; m − mass of the neu- tron; the Q − energy nuclear reaction; c − the speed of light; θ − the angle between the directions of the neu- tron is-started-up and the incident photon The estimate of medial energy of neutrons for gam- ma radiation with the maximum energy of 39 MeV of reaction 100Mo(γ,n)99Mo is equal to 450 keV (Fig. 1) [7]. Therefore, medial energy of recoil nuclei of 99Mo is equal to 4.5 keV. Recoil nuclei 99Mo can leave nanopar- ticles of MoS2 from the depth of 4.5 nm (Fig. 2). Nuclear reaction 100Mo(γ,n)99Mo was used to obtain 99mTc. Samples of molybdenite nanoparticles were acti- vated by bremsstrahlung from a linear electron accelera- tor with E = 39 MeV and I = 4 µA within 2 hours. The size of molybdenite nanoparticles approximately was 300…400 nm. Isotope activity is measured by a Ge(Li)-detector with the energy resolution of 3.2 at 1333 keV line (Fig. 3). It is known that the diffusion coefficients of molybdenum and technetium in molybdenite are differ- ent [8]. This feature is using for separation of 99mTc. ISSN 1562-6016. ВАНТ. 2019. №6(124) 150 Thus, chemical reagents with affinity to technetium [9] are using. Extraction problem of technetium. The parameters of technetium electrolysis were the following: the cur- rent is ~150 mA/cm2, electrolyte temperature − 30°C. Electrolysis carried out in a quartz cell. The increase of productivity of electrochemical deposition of the tech- netium on the carbon cathode reached by means of the use of a rotating electrode. The diffusion limiting cur- rent id for a rotating electrode: id = 0.62 F D2/3ω1/2υ-1/6 Co, where ω − an angular speed of rotation of an electrode; υ − kinematic viscosity; Co − concentration of a re- quired component in volume and D − diffusion factor. Therefore changing the speed of rotation of an elec- trode, we can change the limiting current density. Fig. 1. The energy distribution of photo nucleons predicted by the statistical theory [3] 0 2 4 6 8 10 2 4 6 8 Ra ng e, n m Energy molybdenum, keV range molybdenum in MoS2 Fig. 2. 99Mo ranges in natural molybdenum disulfide 1000 2000 3000 4000 5000 101 102 103 1129 keV 90Nb 1191 keV 96Nb 460 keV 95Nb 569 keV 96Nb235 keV 95mNb 181 keV 99Mo 511 keV 778 keV,99Mo co un ts number channel molybdenite140.5 keV 99mTc 739 keV,99Mo Fig. 3. The spectrum of molybdenite nanoparticles after irradiate by bremstrunglung with Emax=39 MeV Wettability of molybdenite increases with the reduc- tion of the size nanoparticles. Electrolysis oxidation oxidizes the molybdenite surface slightly and oxygen becomes attached to the surface of the molybdenite lay- er (Fig. 4). With prolonged retention after electrolysis oxidation, molybdenum oxide can dissolve as molyb- denum oxide ions, such as MoO2 -4. As a result, the mo- lybdenite surface becomes hydrophobic with prolonged retention [10]. Molybdenite is hydrophobic. On the oth- er hand for molybdenite, with electrolysis oxidation, molybdenum oxide produced but surface keeps weak hydrophobic since molybdenum oxide is soluble. With retention in electrolyte after electrolysis, surface keeps weak hydrophobic since a still small amount of molyb- denum oxide stayed on the surface. Fig. 4. Properties of molybdenum disulfide during electrolysis Fig. 5. Structure of molybdenum disulfide The crystalline structure of molybdenite with hydro- phobic face sand hydrophilic edges shown (Fig. 5). The method of electrolysis works with a great low specific concentration of 99mTc. The specific concentra- tion of 99mTc is in 100 less for this case than at use of extraction with the help of methyl-ethyl ketone (Fig. 6) [11, 12]. 1000 2000 3000 1 10 100 1000 co un ts number channel extract 99mTc 140.5 keV 99mTc 511 keV Fig. 6. The spectrum of extract 99mTc Protons with energy 30 MeV used for production of 99Мо from nanoparticles of MoS2 [13, 14]. Due to unexpected outages or planned and un- planned reactor shutdown, significant 99mTc shortages appeared as a problem since 2008. ISSN 1562-6016. ВАНТ. 2019. №6(124) 151 We note the tendency for the production of the 99Mo isotope at charged particle accelerators. The new meth- ods have a number of advantages compared with the production of 99Mo at the reactors. One can note the almost absence of radioactive waste, as well as the more economic characteristics of the production of the 99Mo isotope [15]. However, there are problems of heat removal from the target. For this reason, sapphire, a ceramic material with one of the highest thermal conductivities (60 Wm−1⋅K−1), and synthetic diamond (CVD), a mate- rial with an extremely high thermal conductivity (up to 2000 Wm−1⋅K−1), are proposed as the components of the target backing plate. In order to minimize the thermal resistance related to the ceramic part (again, to optimize the heat exchange of the target), its thickness was mini- mized [16]. Note that US-based NorthStar Medical Radioiso- topes and Belgium’s Ion Beam Applications (IBA) have signed a contract under which IBA would supply up to eight Rhodotron TT300 HE electron beam accelerators to NorthStar, which has issued purchase orders for the first two units. Six more will be delivered in coming years. This accelerator have very high power and energy resolution: 125 kW, 40 MeV, ~5% energy spread. CONCLUSIONS The possibility of photonuclear production of 99Mo by using recoil nuclei of molybdenite nanoparticles from reaction 100Mo(γ,n)99Mo has been found. The use of thermally stable molybdenite allows solv- ing the problem of thermal loads when using high- power electron beams. The electrolysis of molybdenite nanoparticles allows separating technetium-99m at low concentration. The use MoS2 nanoparticles with size 15 nm and of bremsstrahlung with Emax=25 MeV on 10 kW electron accelerator will allow producing 0.8 GBq/g per day of 99mTc with a high specific activity. It simplifies the use of 99mTc in medical institutions. This work supported by IAEA Research Contract No: UKR-22435 “Production of Tc-99m on Electron Accelerators”. REFERENCES 1. Technetium-99m radiopharmaceuticals: status and trends, Vienna, IAEA, 2009, 360 p. 2. V.L. Uvarov, N.P. Dikiy, A.N. Dovbnya, et al. Elec- tron accelerator`s production of technetium-99m for nuclear medicine // Proceeding of the Particle Ac- celerator Conference, Vancuver, Canada, 12-16 May, 1997, p. 3840-3841. 3. N.I. Aizatsky, N.P. Diky, A.N. Dovbnya, et al. 99Mo and 67Cu isotope yields under production conditions of NSC KIPT ekectron accelerator KUT-30 // Prob- lems of Atomic Science and Technology. Series “Nu- clear Physics Investigations”. 2010, № 2, p. 140- 144. 4. N.P. Dikiy, A.N. Dovbnya, N.V. Krasnoselsky et al. The use of molybdenum oxide nanoparticles for production of free isotope Мo-99 // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigations”. 2015, № 6, p. 154-156. 5. I. Song, C. Parkab, H. Cheul. Synthesis and proper- ties of molybdenum disulphide: from bulk to atomic layers // RSC Adv. 2015, v. 5, p. 7495-7514. 6. M.R.A. Pillai. Metallic radionuclides and therapeu- tic radiopharmaceuticals. Warszawa: “Institute of nuclear chemistry and technology”, 2010, 252 p. 7. V.V. Varlamov, B.S. Ishhanov, I.M. Kapitonov. Photonuclear reactions. Modern status experimental data. M.: “University book”, 2008, 304 p. 8. H.-P. Komsa, A.V. Krasheninnikov. Native defects in bulk and monolayer MoS2 from first principles // Phys. Rev. 2015, v.B91, 125304-17 p. 9. Handbook of Flotation Reagents: Chemistry, Theory and Practice: Flotation of Sulfide Ores / Edited by S.M. Bulatovic. Elsevier Science and Technology Books, 2007, 446 p. 10. H. Miki, H. Matsuoka, T. Hirajima, et al. Electroly- sis Oxidation of Chalcopyrite and Molybdenite for Selective Flotation // Materials Transactions. 2017, v. 58, № 5, p. 761-767. 11. N.P. Dikiy, N.V. Krasnoselsky, Yu.V. Lyashko, et al. Photonuclear production Tc-99m when using na- noparticles molibdenite // Abs. XYII conf. high ener- gy and nucl. phys. Kharkiv, Ukraine. 2019, p. 42. 12. J.O. Tabares, I.M. Ortega, J.L.R. Bahena, et al. Sur- face properties and flotability of molybdenite // Pro- ceedings of China-Mexico Workshop on Minerals Particle Technology, San Luis Potosi, Mexico, 2006, p. 115-124. 13. A.A. Artyukhov, V.A. Zagryadskii, Y.M. Kravets, et al. Measurement of 99Mo Yield in 100Mo(p,x) with 30 MeV Proton Irradiation of Multicomponent Submicron Particles // Atomic Energy. 2018, v. 124, Iss. 4, p. 261-265. 14. A.A. Artyukhov, V.A. Zagryadskii, Y.M. Kravets, et al. 99Mo recoil atoms yield in the 100Mo(p,x) reaction on cyclotron irradiation of Mo nanofilms // J. Label. Compd. Radiopharm. 2019, p. 1-6. 15. A. Taghibi, Khotbeh-Sara, F. Rahmani, K.N. Toosi, et al. Feasibility study on Mo-99 production using hybrid method based on high power electron accel- erator // Proceedings 10-th Int. Particle Accelerator Conference, Melbourne, Australia. 2019, p. 3462- 3465. 16. H. Skliarova, S. Cisternino, G. Cicoria, et al. Innova- tive Target for Production of Technetium-99m by Biomedical Cyclotron // Molecules. 2019, v. 24, Iss. 25, 22 p. Article received 14.10.2019 ISSN 1562-6016. ВАНТ. 2019. №6(124) 152 ИСПОЛЬЗОВАНИЕ НАНОЧАСТИЦ МОЛИБДЕНИТА ДЛЯ ФОТОЯДЕРНОГО ПРОИЗВОДСТВА ТЕХНЕЦИЯ-99m Н.П. Дикий, Ю.В. Ляшко, Е.П. Медведева, Д.В. Медведев, В.Л. Уваров, И.Д. Федорец Исследована возможность получения радиоизотопа 99Mo с использованием ядер отдачи наночастиц мо- либденита из реакции 100Mo(γ,n)99Mo. Использование термостойкого молибденита позволяет решить про- блему тепловых нагрузок мощных электронных пучков. Обогащение радиоактивных изотопов осуществля- лось с помощью эффекта Сциларда-Чалмерса. Наночастицы молибденита облучались тормозным излучени- ем с Emax=39 МэВ. Ядра отдачи 99Mo были отделены электролизом при низкой концентрации. Выход 99Мо из экстрагируемой фазы составил ~3% для наночастиц размером 350 нм. ВИКОРИСТАННЯ НАНОЧАСТИНОК МОЛІБДЕНІТУ ДЛЯ ФОТОЯДЕРНОГО ВИРОБНИЦТВА ТЕХНЕЦІЯ-99m М.П. Дикий, Ю.В. Ляшко, О.П. Медведєва, Д.В. Медведєв, В.Л. Уваров, І.Д. Федорець Досліджено можливість отримання радіоізотопа 99Mo з використанням ядер віддачі наночастинок моліб- деніту з реакції 100Mo(γ,n)99Mo. Використання термостійкого молібденіту дозволяє вирішити проблему теп- лових навантажень потужних електронних пучків. Збагачення радіоактивних ізотопів здійснювалося за до- помогою ефекту Сциларда-Чалмерса. Наночастки молібденіту опромінювалися гальмівним випромінюван- ням з Emax=39 МеВ. Ядра віддачі 99Mo були відокремлені електролізом при низькій концентрації. Вихід 99Mo з екстрагованої фази склав ~3% для наночастинок розміром 350 нм. INTRODUCTION RESULTS AND DISCUSSION references ИСПОЛЬЗОВАНИЕ НАНОЧАСТИЦ МОЛИБДЕНИТА ДЛЯ ФОТОЯДЕРНОГО ПРОИЗВОДСТВА технеция-99m ВИКОРИСТАННЯ НАНОЧАСТИНОК МОЛІБДЕНІТУ ДЛЯ ФОТОЯДЕРНОГО ВИРОБНИЦТВА технеція-99m