Optimization of a Compton direct-charge detector for monitoring high-energy bremsstrahlung radiation
The conditions of application of a Compton direct-charge detector (DCD) for monitoring of intensity of the highenergy bremsstrahlung (X-ray) radiation are studied. A method is described for calculation of characteristics of the secondary е,Х-radiation at exit of an electron accelerator, and also for...
Gespeichert in:
Datum: | 2019 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2019
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/195481 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Optimization of a Compton direct-charge detector for monitoring high-energy bremsstrahlung radiation / V.I. Nikiforov, I.N. Shlyakhov, V.A. Shevchenko, A.Eh. Tenishev, V.L. Uvarov // Problems of atomic science and technology. — 2019. — № 6. — С. 158-162. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-195481 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1954812023-12-05T13:24:55Z Optimization of a Compton direct-charge detector for monitoring high-energy bremsstrahlung radiation Nikiforov, V.I. Shlyakhov, I.N. Shevchenko, V.A. Tenishev, A.Eh. Uvarov, V.L. Application of nuclear methods The conditions of application of a Compton direct-charge detector (DCD) for monitoring of intensity of the highenergy bremsstrahlung (X-ray) radiation are studied. A method is described for calculation of characteristics of the secondary е,Х-radiation at exit of an electron accelerator, and also for providing the conditions of the electronic equilibrium. By means of computer simulation, the processes of charge generation in a DCD monitor comprising two plates of different thickness from various metals are analyzed. On the basis of the obtained results, the requirements imposed on DCD composition for providing the maximum of its sensitivity are formulated. It is shown, that within the suggested DCD geometry, the monitor sensitivity reveals a weak dependence on the atomic number of its material at Z>29, and also on the end-point energy of X-rays in the span of 20…100 MeV. Досліджені умови застосування комптонівського ДПЗ для моніторингу високоенергетичного гальмівного випромінювання. Описаний метод розрахунку характеристик вторинного е,Х-випроміннюваня на виході прискорювача електронів, а також забезпечення умови електронної рівноваги. Методом комп'ютерного моделювання вивчені процеси формування зарядів у детекторі, що складається з двох пластин різної товщини з різних металів. На основі отриманих результатів сформовані вимоги до складу ДПЗ для забезпечення максимуму його чутливості. Показано, що у запропонованій геометрії ДПЗ вона слабо залежить від атомного номера матеріалу в області Z > 29 і граничної енергії гальмівного випромінювання в діапазоні 20…100 МеВ. Исследованы условия применения комптоновского детектора прямого заряда (ДПЗ) для мониторинга высокоэнергетического тормозного излучения. Описан метод расчета характеристик вторичного е,Хизлучения на выходе ускорителя электронов и обеспечения условия электронного равновесия. Методом компьютерного моделирования изучены процессы формирования зарядов в ДПЗ, состоящем из двух пластин разной толщины из различных металлов. На основе полученных результатов сформулированы требования к составу ДПЗ для обеспечения максимума его чувствительности. Показано, что в предложенной геометрии ДПЗ она слабо зависит от атомного номера его материала в области Z > 29, а также от граничной энергии тормозного излучения в диапазоне 20…100 МэВ. 2019 Article Optimization of a Compton direct-charge detector for monitoring high-energy bremsstrahlung radiation / V.I. Nikiforov, I.N. Shlyakhov, V.A. Shevchenko, A.Eh. Tenishev, V.L. Uvarov // Problems of atomic science and technology. — 2019. — № 6. — С. 158-162. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 07.85.Fv http://dspace.nbuv.gov.ua/handle/123456789/195481 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Application of nuclear methods Application of nuclear methods |
spellingShingle |
Application of nuclear methods Application of nuclear methods Nikiforov, V.I. Shlyakhov, I.N. Shevchenko, V.A. Tenishev, A.Eh. Uvarov, V.L. Optimization of a Compton direct-charge detector for monitoring high-energy bremsstrahlung radiation Вопросы атомной науки и техники |
description |
The conditions of application of a Compton direct-charge detector (DCD) for monitoring of intensity of the highenergy bremsstrahlung (X-ray) radiation are studied. A method is described for calculation of characteristics of the secondary е,Х-radiation at exit of an electron accelerator, and also for providing the conditions of the electronic equilibrium. By means of computer simulation, the processes of charge generation in a DCD monitor comprising two plates of different thickness from various metals are analyzed. On the basis of the obtained results, the requirements imposed on DCD composition for providing the maximum of its sensitivity are formulated. It is shown, that within the suggested DCD geometry, the monitor sensitivity reveals a weak dependence on the atomic number of its material at Z>29, and also on the end-point energy of X-rays in the span of 20…100 MeV. |
format |
Article |
author |
Nikiforov, V.I. Shlyakhov, I.N. Shevchenko, V.A. Tenishev, A.Eh. Uvarov, V.L. |
author_facet |
Nikiforov, V.I. Shlyakhov, I.N. Shevchenko, V.A. Tenishev, A.Eh. Uvarov, V.L. |
author_sort |
Nikiforov, V.I. |
title |
Optimization of a Compton direct-charge detector for monitoring high-energy bremsstrahlung radiation |
title_short |
Optimization of a Compton direct-charge detector for monitoring high-energy bremsstrahlung radiation |
title_full |
Optimization of a Compton direct-charge detector for monitoring high-energy bremsstrahlung radiation |
title_fullStr |
Optimization of a Compton direct-charge detector for monitoring high-energy bremsstrahlung radiation |
title_full_unstemmed |
Optimization of a Compton direct-charge detector for monitoring high-energy bremsstrahlung radiation |
title_sort |
optimization of a compton direct-charge detector for monitoring high-energy bremsstrahlung radiation |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2019 |
topic_facet |
Application of nuclear methods |
url |
http://dspace.nbuv.gov.ua/handle/123456789/195481 |
citation_txt |
Optimization of a Compton direct-charge detector for monitoring high-energy bremsstrahlung radiation / V.I. Nikiforov, I.N. Shlyakhov, V.A. Shevchenko, A.Eh. Tenishev, V.L. Uvarov // Problems of atomic science and technology. — 2019. — № 6. — С. 158-162. — Бібліогр.: 8 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT nikiforovvi optimizationofacomptondirectchargedetectorformonitoringhighenergybremsstrahlungradiation AT shlyakhovin optimizationofacomptondirectchargedetectorformonitoringhighenergybremsstrahlungradiation AT shevchenkova optimizationofacomptondirectchargedetectorformonitoringhighenergybremsstrahlungradiation AT tenishevaeh optimizationofacomptondirectchargedetectorformonitoringhighenergybremsstrahlungradiation AT uvarovvl optimizationofacomptondirectchargedetectorformonitoringhighenergybremsstrahlungradiation |
first_indexed |
2025-07-16T23:28:46Z |
last_indexed |
2025-07-16T23:28:46Z |
_version_ |
1837848096813350912 |
fulltext |
ISSN 1562-6016. ВАНТ. 2019. №6(124) 158
OPTIMIZATION OF A COMPTON DIRECT-CHARGE DETECTOR
FOR MONITORING HIGH-ENERGY BREMSSTRAHLUNG RADIATION
V.I. Nikiforov, I.N. Shlyakhov, V.A. Shevchenko, A.Eh. Tenishev, V.L. Uvarov
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
E-mail: uvarov@kipt.kharkov.ua
The conditions of application of a Compton direct-charge detector (DCD) for monitoring of intensity of the high-
energy bremsstrahlung (X-ray) radiation are studied. A method is described for calculation of characteristics of the
secondary е,Х-radiation at exit of an electron accelerator, and also for providing the conditions of the electronic
equilibrium. By means of computer simulation, the processes of charge generation in a DCD monitor comprising
two plates of different thickness from various metals are analyzed. On the basis of the obtained results, the require-
ments imposed on DCD composition for providing the maximum of its sensitivity are formulated. It is shown, that
within the suggested DCD geometry, the monitor sensitivity reveals a weak dependence on the atomic number of its
material at Z>29, and also on the end-point energy of X-rays in the span of 20…100 MeV.
PACS: 07.85.Fv
INTRODUCTION
Activation direct-charge detectors (DCD) are used in
atomic energetics for intra-reactor measurement of neu-
tron flux [1]. In the work [2], the possibility was shown
to apply a detector charged with the flux of the Comp-
ton electrons (a Compton DCD) for monitoring of high-
energy bremsstrahlung radiation. Such the sources of
radiation with end-point energy of the photon spectrum of
up to 100 MeV and average power of tens kW are lately
developed for various photonuclear technologies (non-
reactor isotope production, electron accelerator driven
control of sub-critical assemblies etc. – see e.g. [3, 4]).
A detector, described in the Ref. [2], consists of two
metal plates of different thickness fixed on an isolator
and separated with a vacuum gap. When exposure to γ-
radiation, the flux of secondary particles is generated in
the plates. As a result, the one plate (an emitter) ac-
quires the positive charge, when the other plate (a col-
lector) the negative one. The electric current arising in
an external circuit between the collector and emitter is
proportional to the intensity of gammas.
In the work, the optimization of DCD characteristics
is conducted on the basis of analysis of the charge gen-
eration process in the sensor’s plates for monitoring the
high-power X-ray radiation within a wide span of the
photon energy.
1. FORMATION OF ELECTRONIC
EQUILIBRIUM
Braking radiation is obtained by acting with electron
beam on a target-converter maid from a high-Z material
(Ta, W, Au and oth.). The value of the coefficient of the
beam energy Еb transformation into energy of the X-ray
radiation Ех, Ех/Еb, depends on the electron energy Е0,
the material and thickness of the converter. The maxi-
mum yield of the secondary radiation is reached when
the converter thickness makes about half of the electron
range in its material. As a result, a part of the primary
beam electrons leaves the converter besides the braking
radiation. At the same time, correct measurement of
high-energy photon flux is only possible providing the
conditions of electroniс equilibrium in the secondary
radiation. [5]. Those conditions are reached by place-
ment of an additional absorber-filter of primary beam
electrons.
It was shown in the work [6], that the contribution of
each element of the accelerator exit devices into the state
of the secondary radiation is convenient to describe in
unified form via the thickness of that element expressed
in the units of the range of the electrons with energy Е0 in
its material (stopping thickness unit or stu). The sum of
all elements of the tract of the secondary radiation for-
mation, defined in such a way, makes its stopping length.
As a result, it was established, that in the wide range of
the atomic number of the materials (Z = 7…73) and elec-
tron energy Е0=5…100 MeV the condition of maximum
of the conversion coefficient Ех/Eb is provided at a tract
stopping length of about 0.5 stu (a high-Z material) to of
about 0.7 stu (a low-Z one), when the electronic equilib-
rium comes at about 1.2 stu (a high-Z material) to about
1.5 (a low-Z one). So the formation of the secondary ra-
diation takes place in a tract comprising an accelerator’s
exit window, the converter and the electron stopper. Eve-
ry of those devices, in its turn, includes the elements
affecting on characteristics of the secondary radiation
(the foils of the accelerator exit window and of the input
window of the converter, its plates, the water filled gaps
between them, etc.).
2. CONFIGURATION OF ACCELERATOR’S
EXIT DEVICES
The study of the Compton DCD characteristics was
conducted by means of computer simulation with the
use of a transport code PENELOPE/2006 [7]. The cal-
culations were carried out with due regard for the actual
beam parameters of a LU-40 electron Linac of NSC
KIPT [8]. The draft of the accelerator exit devices in a
mode of the X-ray generation and its monitoring using
DCD is given in Fig. 1.
1 2 3 4 5 6 7{
{ {EW C F DCD
Fig. 1. Geometry of the accelerator exit devices
An electron beam passes through the exit window
EW consisting of a Ti foil 50 µm thick (it. 1). The as-
mailto:uvarov@kipt.kharkov.ua
ISSN 1562-6016. ВАНТ. 2019. №6(124) 159
sembly of the X-ray converter C is positioned at a dis-
tance of 12 mm from the foil.
The converter comprises the input and output Ti-foils
by 50 µm in thickness (it. 2, 4), and also 4 Ta-plates each
1mm thick (it.3) with the 1mm spaces between them for
cooling water. Followed the converter an electron filter-
stopper F corresponds a cylinder from aluminium. For
every energy of the beam electrons, its height was deter-
mined to be in compliance with the total stopping length
of 1.4 stu for the (EW+C+F) tract. In this case the for-
mation of the dynamic equilibrium in the secondary radi-
ation at the filter exit can be completed.
For better understanding of nature of the charge
generation in DCD, the transversal size of the tract ele-
ments was considered as equal to 10 cm with the small
distances between all devices. In this case their trans-
versal size exceeds the width of the flux of the second-
ary radiation, and there no need to take into account the
effect of a distance to converter on the detection pro-
cess.
3. FORMATION OF CHARGE IN DETECTOR
The typical beam spectrum of the LU-40 accelerator
with energy Е0= 40 MeV in its peak is given in Fig. 2.
The average electron energy over the spectrum makes
38.54 MeV.
28 30 32 34 36 38 40 42
0,0
0,2
0,4
0,6
0,8
1,0
dN
/d
N
m
ax
Energy (MeV)
Fig. 2. Actual (solid curve) and simulated (dash curve)
spectra of the beam
Fig. 3 demonstrates the results of the calculation of
dependence of Al-filter height providing the stopping
length of the tract of formation of the secondary radia-
tion of 1.4 stu on the electron energy Е0. The character-
istics of the radiation obtained in such a way at the filter
exit and Е0=40 MeV, reduced to the unit of the average
beam current, are given in Table 1.
10 20 30 40 50 60 70 80 90 100 110
1
2
3
4
5
6
7
8
9
10
11
12
13
Filter
E0, MeV
O
pt
im
al
fi
lte
r t
hi
ck
ne
ss
, c
m
Fig. 3. Dependence of optimum height of the electron
filter on initial electron energy
The data on the range of the secondary electrons and
positrons, generated with braking radiation in a number
of materials, are shown in Fig. 4. The results given
hereafter are related to a chosen idealized configuration
of the exit devices and a DCD made from copper. As
the conducted study has shown, that material seems to
be the most promising for such a type of the equipment.
So in Fig. 5, the result of calculations of average ener-
gies Еav of the secondary electrons, positrons and gam-
mas induced in a copper plate in the direction of the
primary radiation Еav (transmitted particles), and also of
the backscatter ones. The normalized spectra of those
particles are given in Fig. 6.
Table 1
Characteristics of the secondary particles at the detector input (Е0= 40 MeV)
Total power,
kW/mA
Photons,
kW/mA
Electrons,
kW/mA
Positrons,
kW/mA
Electron current,
mkA/mA
Positron current,
mkA/mA
9.131 ± 0.035 8.805 ± 0.036 0.2398 ± 0.0079 0.0824 ± 0.0049 52.4 ± 1.5 12.42 ± 0.58
20 40 60 80 100
0,0
0,5
1,0
1,5
2,0
2,5
3,0
Ta
Cu
Zr
Electron range
Positron range
E0, MeV
R
an
ge
, c
m
Al
Fig. 4. Dependence of range of the secondary electrons
and positrons in a set of materials on the energy
of the primary electron beam
ISSN 1562-6016. ВАНТ. 2019. №6(124) 160
10 20 30 40 50 60 70 80 90 100 110
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
1 - positrons
2 - electrons
3 - gammas
transmitted particles
backscattered particles
gammas
electrons
positrons
Ea
v,
M
eV
E0, MeV
1
2
3
Fig. 5. Dependence of average energy of the secondary
particles in copper on the electron energy
in the primary beam
5 10 15 20 25 30 35 40
1E-5
1E-4
1E-3
0,01
0,1
1
Energyav
ph=3.66 MeV, Rangeav
ph= 3.30 cm
Energyav
el=4.49 MeV, Rangeav
el= 0.34 cm
photons
total
electrons
dP
/d
E,
1
/M
eV
Energy, MeV a
0 5 10 15 20
0,0
0,2
0,4
0,6
0,8
1,0
1,2
1,4
photons
total
electrons
dP
/d
E
, 1
/M
eV
Energy, MeV
x20
b
Рис. 6. Normalized spectra of the direct (а)
and backscattered radiation (b) from copper plate
(Е0= 40 MeV)
The dependence of the charge generated with the X-
ray radiation in a single copper plate on its thickness is
presented in Fig. 7. It is seen, that at thickness increas-
ing up to 20 mm, the sign of its charge changes and the
value grows.
0 5 10 15 20
-8
-6
-4
-2
0
2
4
de
po
si
te
d
ch
ar
ge
, m
kC
/
ab
s
(m
C
b
ea
m
)
1-st plate thickness, mm
E0= 40 MeV, Cu
single 1-st plate
Fig. 7. Dependence of normalized deposited charge
in a single copper plate on its thickness at action
of dynamic equilibrium X-ray radiation
The results of calculation on the charges of DCD
fabricated from two copper plates depending on the
thickness of the first at a fixed thickness of the second
(1 mm) are given in Fig. 8. It is evident, that the plates
are oppositely charged. Under such conditions the nega-
tive charge in the first plate reaches maximum at its
thickness of about 20 mm. In the meanwhile, the posi-
tive charge of the thin plate changes faintly.
0 5 10 15 20
-10
-5
0
5
E0= 40 MeV, Cu
two plates, 2-nd=1 mm
1-st plate
2-nd plate
2-nd plate, 1mm,D3cm,S10cm
de
po
sit
ed
ch
ar
ge
, m
kC
/ a
bs
(m
C
be
am
)
1-st plate thickness, mm
1-st plate, 10 mm,D3cm,S10cm
Fig. 8. Dependence of normalized charges generated
with dynamic equilibrium X-ray radiation in the plates
of DCD from copper on the thickness of the first
plate (Е0= 40 MeV)
For comparison, the charges of the plates for the
case when their diameter makes 3 cm, the first is 10 and
second 1 mm thick at a distance from the converter to
DCD of 10 cm, are calculated as well and denoted in
Fig. 8 with the transparent asterisks. It is obvious, that
the differential charge of the plates changes its sign,
when its value (determinative the detector sensibility)
decreases considerably.
For the DCD geometry providing maximum of the
detector sensibility, its value was calculated as the de-
pendence on Z of the detector material (Fig. 9), and also
the dependence of the copper DCD on the end-point
energy of the bremsstrahlung radiation (Fig. 10).
ISSN 1562-6016. ВАНТ. 2019. №6(124) 161
10 20 30 40 50 60 70 80
0
2
4
6
8
10
12
14
16
18
20
TaZr
Cu
Al
E0= 40 MeV
cu
rre
nt
, m
kA
/
ab
s
(m
A
be
am
)
atomic number
Fig. 9. Normalized differential beam between the plates
of DCD depending on its material atomic number
4. DISCUSSION
At a stopping length of the tract of the secondary ra-
diation formation of above 1.4 stu, the flux does not
contain practically the electrons of a primary beam and
consists only from the secondary particles. Under such
conditions the photon component brings 96% of the
secondary radiation power, 3 and 1% of the electron and
positron ones respectively (see Table 1). The positron
flux makes ~25% of particles as compared with the
electrons.
The key factors determinative charging of the
Compton DCD are the fluxes of the electrons oncoming
and outgoing the detector plates. A plate with thickness
less than the average range of the secondary electrons
should be considered as thin, while if the thickness ex-
ceeds the range, it is considered as thick. So for the
DCD materials under study, the secondary electrons
have the lowest range of 1.17 mm in tantalum at
Е0=20 MeV. The maximum range of 2.07 сm takes
place in aluminum at Е0=100 MeV. So a DCD plate by
1mm in thickness can be considered as thin and one by
20 mm as thick in the all span of energy of the beam
electrons under study.
20 40 60 80 100
0,0
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8
2,0
2,2
cu
rre
nt
, m
kA
/
kW
b
re
m
s
E0, MeV
Cu
Fig. 10. Differential current between DCD plates
depending on energy of primary beam electrons
An electron flux acting on first plate of a detector
from side of second one changes its charge state as
compared with the situation when the first plate is sin-
gle. It is connected with the fact that the energy of those
particles (0.8…1.2 MeV) is considerably less than the
energy of the electrons moving onward (see Fig. 6). As
it is evident from Fig. 8, at the presence of a second
plate, the dependence of charge of the first plate on its
thickness shifted in the lump into the negative side (see
Fig. 7).
So a thin plate, being positioned last downstream the
beam, is charged always positively and plays the role of
an emitter. The mayor part of the electrons incident on it
is not absorbed, and so not changes its charge state. At
the same time, the photo- and Compton electrons, gen-
erated under exposure to high-energy photons, leave the
plate forming the positive charge in it. In turn, the thick
plate is always charged positively (see Figs. 7 and 8)
because the mayor part of incident electrons stays in it.
The opposite charge of the plates makes it possible to
obtain a feed-free differential current in a detector’s
circuit.
CONCLUSIONS
A Compton DCD in the form of two parallel plates
of different thickness can be used for monitoring of flux
of high-energy bremsstrahlung photons. For the effec-
tive DCD application, the stopping length of formation
of secondary radiation should be of about 1.4 stu. The
maximum of the DCD sensitivity is provided with the
plates of size exceeding the lateral dimension of a radia-
tion flux, as well as when the thickness of the first plate
(the collector) and of the second plate (the emitter) are
of ~20 mm and of ~1 mm, respectively.
The detector reveals a weak dependence of its sensi-
tivity on the atomic number of the plate material at
Z > 29, and also on the end-point energy of the brems-
strahlung radiation in the range of 20 to 100 MeV.
For verification of previously noted results, an ex-
periment was conducted at the LU-40 electron Linac
(Fig. 11). The converter C was positioned at a distance
of 2 cm from the exit window of the accelerator. The
converter consists of 4 tantalum plates each by 1mm in
thickness separated with air gaps for cooling. The elec-
tron filter F (a cylinder from aluminum 50 mm high)
was situated 15 mm downstream from the converter.
Just behind the filter, a prototype of DCD was placed. It
embraces a housing from stainless steel 5 mm thick with
the two copper plates inside of 20 and 1.5 mm thick
respectively with the 3mm spacing. The flux of X-rays
was entered through the input window (a 50 µm titani-
um foil).
Before the exposure, the device was pumped out us-
ing a forepump. The signals from the plates were trans-
mitted through the coaxial cables, registered with a digi-
tal oscilloscope Siglent SDS 1072 and recorded at an
output medium. The uncertainty of determination of the
signal amplitude was about 15% (k=1).
The accelerator operated in a mode:
electron energy, MeV 39;
pulse repetition rate, Hz 50;
pulse duration, μs 1.5.
The experimental results are given in Fig. 12 and
Table 2.
ISSN 1562-6016. ВАНТ. 2019. №6(124) 162
LU-40
e-
C F DCD
X-
to FP
Fig. 11. Draftt of DCD prototype testing at LU-40 Linac
Fig. 12. Typical oscillogram of the DCD signals
(the pulse beam current is 60 мА):
upper sweep-the first plate,
the lower sweep-the second plate
Table 2
Amplitude of differential signal from DCD plates
Pulse beam current, мА 40 50 60
Differential current, µА 280 340 400
REFERENCES
1. M.G. Mittelman, N.D. Rosenblum. Charge detectors
of ionizing radiation. M.: “Energoizdat”, 1982 (in
Russian).
2. V.L. Uvarov, V.I. Nikiforov, V.A. Shevchenko, et
al. Feed-free monitoring of intense high-energy
bremsstrahlung // Proc. of EPAC 08. 2008, p. 1311-
1313.
3. N.P. Dikiy, A.N. Dovbnya, V.L. Uvarov. Develop-
ment of a New Electron Irradiation Based Technolo-
gy for Technetium-99m Production // Proc. of the 6-
th Europ. Part. Accel. Conf. EPAC’98 (Stockholm,
1998) p. 88-90
4. Y. Gohar, J. Baily, H. Belch, et al. Accelerator-
driven subcritical assembly: concept development
and analyses // Proc. of the RERTR-2004 Int. Meet.
www.iaea.org/inis/collection/.../_Public/36/.../36069
552.pdf
5. Standard ISO/ASTM 51608. Standard Practice for
Dosimetry in an X-ray (Bremsstrahlung) Facility for
Radiation Processing.
6. V.I. Nikiforov, V.L. Uvarov. Analysis of mixed e,X-
radiation along the extraction facilities of electron
accelerators // Atomic Energy. 2009, v. 106, Iss. 4,
p. 281-286.
7. F. Salvat, J.M. Fernandez-Varea, J. Sempau.
PENELOPE-2006. A Code System for Monte-Carlo
Simulation of Electron and Photon Transport. OECD
Nuclear Energy Agecy, Issu-les Moulineous, France,
2006.
8. N.I. Ayzatsky, V.I. Beloglazov, V.P. Bozhko, et al.
Electron 100 MeV Linac Based Facility to Nuclear-
Physical Experimental Investigation // Problems of
Atomic Science and Technology. Series “Nuclear
Physics Investigations”. 2010, № 2, p. 18-22.
Article received 20.10.2019
ОПТИМИЗАЦИЯ КОМПТОНОВСКОГО ДЕТЕКТОРА ПРЯМОГО ЗАРЯДА
ДЛЯ МОНИТОРИНГА ВЫСОКОЭНЕРГЕТИЧНОГО ТОРМОЗНОГО ИЗЛУЧЕНИЯ
В.И. Никифоров, И.Н. Шляхов, В.А. Шевченко, А.Э. Тенишев, В.Л. Уваров
Исследованы условия применения комптоновского детектора прямого заряда (ДПЗ) для мониторинга
высокоэнергетического тормозного излучения. Описан метод расчета характеристик вторичного е,Х-
излучения на выходе ускорителя электронов и обеспечения условия электронного равновесия. Методом
компьютерного моделирования изучены процессы формирования зарядов в ДПЗ, состоящем из двух пла-
стин разной толщины из различных металлов. На основе полученных результатов сформулированы требо-
вания к составу ДПЗ для обеспечения максимума его чувствительности. Показано, что в предложенной гео-
метрии ДПЗ она слабо зависит от атомного номера его материала в области Z > 29, а также от граничной
энергии тормозного излучения в диапазоне 20…100 МэВ.
ОПТИМІЗАЦІЯ КОМПТОНІВСЬКОГО ДЕТЕКТОРА ПРЯМОГО ЗАРЯДУ
ДЛЯ МОНІТОРИНГУ ВИСОКОЕНЕРГЕТИЧНОГО ГАЛЬМІВНОГО ВИПРОМІНЕННЯ
В.І. Нікіфоров, І.М. Шляхов, В.А. Шевченко, А.Е. Тєнішев, В.Л. Уваров
Досліджені умови застосування комптонівського ДПЗ для моніторингу високоенергетичного гальмівного
випромінювання. Описаний метод розрахунку характеристик вторинного е,Х-випроміннюваня на виході
прискорювача електронів, а також забезпечення умови електронної рівноваги. Методом комп'ютерного мо-
делювання вивчені процеси формування зарядів у детекторі, що складається з двох пластин різної товщини з
різних металів. На основі отриманих результатів сформовані вимоги до складу ДПЗ для забезпечення мак-
симуму його чутливості. Показано, що у запропонованій геометрії ДПЗ вона слабо залежить від атомного
номера матеріалу в області Z > 29 і граничної енергії гальмівного випромінювання в діапазоні 20…100 МеВ.
INTRODUCTION
1. FORMATION OF ELECTRONIC EQUILIBRIUM
2. CONFIGURATION OF ACCELERATOR’S EXIT DEVICES
3. FORMATION OF CHARGE IN DETECTOR
|