Optimization of a Compton direct-charge detector for monitoring high-energy bremsstrahlung radiation

The conditions of application of a Compton direct-charge detector (DCD) for monitoring of intensity of the highenergy bremsstrahlung (X-ray) radiation are studied. A method is described for calculation of characteristics of the secondary е,Х-radiation at exit of an electron accelerator, and also for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2019
Hauptverfasser: Nikiforov, V.I., Shlyakhov, I.N., Shevchenko, V.A., Tenishev, A.Eh., Uvarov, V.L.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2019
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/195481
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Optimization of a Compton direct-charge detector for monitoring high-energy bremsstrahlung radiation / V.I. Nikiforov, I.N. Shlyakhov, V.A. Shevchenko, A.Eh. Tenishev, V.L. Uvarov // Problems of atomic science and technology. — 2019. — № 6. — С. 158-162. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-195481
record_format dspace
spelling irk-123456789-1954812023-12-05T13:24:55Z Optimization of a Compton direct-charge detector for monitoring high-energy bremsstrahlung radiation Nikiforov, V.I. Shlyakhov, I.N. Shevchenko, V.A. Tenishev, A.Eh. Uvarov, V.L. Application of nuclear methods The conditions of application of a Compton direct-charge detector (DCD) for monitoring of intensity of the highenergy bremsstrahlung (X-ray) radiation are studied. A method is described for calculation of characteristics of the secondary е,Х-radiation at exit of an electron accelerator, and also for providing the conditions of the electronic equilibrium. By means of computer simulation, the processes of charge generation in a DCD monitor comprising two plates of different thickness from various metals are analyzed. On the basis of the obtained results, the requirements imposed on DCD composition for providing the maximum of its sensitivity are formulated. It is shown, that within the suggested DCD geometry, the monitor sensitivity reveals a weak dependence on the atomic number of its material at Z>29, and also on the end-point energy of X-rays in the span of 20…100 MeV. Досліджені умови застосування комптонівського ДПЗ для моніторингу високоенергетичного гальмівного випромінювання. Описаний метод розрахунку характеристик вторинного е,Х-випроміннюваня на виході прискорювача електронів, а також забезпечення умови електронної рівноваги. Методом комп'ютерного моделювання вивчені процеси формування зарядів у детекторі, що складається з двох пластин різної товщини з різних металів. На основі отриманих результатів сформовані вимоги до складу ДПЗ для забезпечення максимуму його чутливості. Показано, що у запропонованій геометрії ДПЗ вона слабо залежить від атомного номера матеріалу в області Z > 29 і граничної енергії гальмівного випромінювання в діапазоні 20…100 МеВ. Исследованы условия применения комптоновского детектора прямого заряда (ДПЗ) для мониторинга высокоэнергетического тормозного излучения. Описан метод расчета характеристик вторичного е,Хизлучения на выходе ускорителя электронов и обеспечения условия электронного равновесия. Методом компьютерного моделирования изучены процессы формирования зарядов в ДПЗ, состоящем из двух пластин разной толщины из различных металлов. На основе полученных результатов сформулированы требования к составу ДПЗ для обеспечения максимума его чувствительности. Показано, что в предложенной геометрии ДПЗ она слабо зависит от атомного номера его материала в области Z > 29, а также от граничной энергии тормозного излучения в диапазоне 20…100 МэВ. 2019 Article Optimization of a Compton direct-charge detector for monitoring high-energy bremsstrahlung radiation / V.I. Nikiforov, I.N. Shlyakhov, V.A. Shevchenko, A.Eh. Tenishev, V.L. Uvarov // Problems of atomic science and technology. — 2019. — № 6. — С. 158-162. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 07.85.Fv http://dspace.nbuv.gov.ua/handle/123456789/195481 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Application of nuclear methods
Application of nuclear methods
spellingShingle Application of nuclear methods
Application of nuclear methods
Nikiforov, V.I.
Shlyakhov, I.N.
Shevchenko, V.A.
Tenishev, A.Eh.
Uvarov, V.L.
Optimization of a Compton direct-charge detector for monitoring high-energy bremsstrahlung radiation
Вопросы атомной науки и техники
description The conditions of application of a Compton direct-charge detector (DCD) for monitoring of intensity of the highenergy bremsstrahlung (X-ray) radiation are studied. A method is described for calculation of characteristics of the secondary е,Х-radiation at exit of an electron accelerator, and also for providing the conditions of the electronic equilibrium. By means of computer simulation, the processes of charge generation in a DCD monitor comprising two plates of different thickness from various metals are analyzed. On the basis of the obtained results, the requirements imposed on DCD composition for providing the maximum of its sensitivity are formulated. It is shown, that within the suggested DCD geometry, the monitor sensitivity reveals a weak dependence on the atomic number of its material at Z>29, and also on the end-point energy of X-rays in the span of 20…100 MeV.
format Article
author Nikiforov, V.I.
Shlyakhov, I.N.
Shevchenko, V.A.
Tenishev, A.Eh.
Uvarov, V.L.
author_facet Nikiforov, V.I.
Shlyakhov, I.N.
Shevchenko, V.A.
Tenishev, A.Eh.
Uvarov, V.L.
author_sort Nikiforov, V.I.
title Optimization of a Compton direct-charge detector for monitoring high-energy bremsstrahlung radiation
title_short Optimization of a Compton direct-charge detector for monitoring high-energy bremsstrahlung radiation
title_full Optimization of a Compton direct-charge detector for monitoring high-energy bremsstrahlung radiation
title_fullStr Optimization of a Compton direct-charge detector for monitoring high-energy bremsstrahlung radiation
title_full_unstemmed Optimization of a Compton direct-charge detector for monitoring high-energy bremsstrahlung radiation
title_sort optimization of a compton direct-charge detector for monitoring high-energy bremsstrahlung radiation
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2019
topic_facet Application of nuclear methods
url http://dspace.nbuv.gov.ua/handle/123456789/195481
citation_txt Optimization of a Compton direct-charge detector for monitoring high-energy bremsstrahlung radiation / V.I. Nikiforov, I.N. Shlyakhov, V.A. Shevchenko, A.Eh. Tenishev, V.L. Uvarov // Problems of atomic science and technology. — 2019. — № 6. — С. 158-162. — Бібліогр.: 8 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT nikiforovvi optimizationofacomptondirectchargedetectorformonitoringhighenergybremsstrahlungradiation
AT shlyakhovin optimizationofacomptondirectchargedetectorformonitoringhighenergybremsstrahlungradiation
AT shevchenkova optimizationofacomptondirectchargedetectorformonitoringhighenergybremsstrahlungradiation
AT tenishevaeh optimizationofacomptondirectchargedetectorformonitoringhighenergybremsstrahlungradiation
AT uvarovvl optimizationofacomptondirectchargedetectorformonitoringhighenergybremsstrahlungradiation
first_indexed 2025-07-16T23:28:46Z
last_indexed 2025-07-16T23:28:46Z
_version_ 1837848096813350912
fulltext ISSN 1562-6016. ВАНТ. 2019. №6(124) 158 OPTIMIZATION OF A COMPTON DIRECT-CHARGE DETECTOR FOR MONITORING HIGH-ENERGY BREMSSTRAHLUNG RADIATION V.I. Nikiforov, I.N. Shlyakhov, V.A. Shevchenko, A.Eh. Tenishev, V.L. Uvarov National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine E-mail: uvarov@kipt.kharkov.ua The conditions of application of a Compton direct-charge detector (DCD) for monitoring of intensity of the high- energy bremsstrahlung (X-ray) radiation are studied. A method is described for calculation of characteristics of the secondary е,Х-radiation at exit of an electron accelerator, and also for providing the conditions of the electronic equilibrium. By means of computer simulation, the processes of charge generation in a DCD monitor comprising two plates of different thickness from various metals are analyzed. On the basis of the obtained results, the require- ments imposed on DCD composition for providing the maximum of its sensitivity are formulated. It is shown, that within the suggested DCD geometry, the monitor sensitivity reveals a weak dependence on the atomic number of its material at Z>29, and also on the end-point energy of X-rays in the span of 20…100 MeV. PACS: 07.85.Fv INTRODUCTION Activation direct-charge detectors (DCD) are used in atomic energetics for intra-reactor measurement of neu- tron flux [1]. In the work [2], the possibility was shown to apply a detector charged with the flux of the Comp- ton electrons (a Compton DCD) for monitoring of high- energy bremsstrahlung radiation. Such the sources of radiation with end-point energy of the photon spectrum of up to 100 MeV and average power of tens kW are lately developed for various photonuclear technologies (non- reactor isotope production, electron accelerator driven control of sub-critical assemblies etc. – see e.g. [3, 4]). A detector, described in the Ref. [2], consists of two metal plates of different thickness fixed on an isolator and separated with a vacuum gap. When exposure to γ- radiation, the flux of secondary particles is generated in the plates. As a result, the one plate (an emitter) ac- quires the positive charge, when the other plate (a col- lector) the negative one. The electric current arising in an external circuit between the collector and emitter is proportional to the intensity of gammas. In the work, the optimization of DCD characteristics is conducted on the basis of analysis of the charge gen- eration process in the sensor’s plates for monitoring the high-power X-ray radiation within a wide span of the photon energy. 1. FORMATION OF ELECTRONIC EQUILIBRIUM Braking radiation is obtained by acting with electron beam on a target-converter maid from a high-Z material (Ta, W, Au and oth.). The value of the coefficient of the beam energy Еb transformation into energy of the X-ray radiation Ех, Ех/Еb, depends on the electron energy Е0, the material and thickness of the converter. The maxi- mum yield of the secondary radiation is reached when the converter thickness makes about half of the electron range in its material. As a result, a part of the primary beam electrons leaves the converter besides the braking radiation. At the same time, correct measurement of high-energy photon flux is only possible providing the conditions of electroniс equilibrium in the secondary radiation. [5]. Those conditions are reached by place- ment of an additional absorber-filter of primary beam electrons. It was shown in the work [6], that the contribution of each element of the accelerator exit devices into the state of the secondary radiation is convenient to describe in unified form via the thickness of that element expressed in the units of the range of the electrons with energy Е0 in its material (stopping thickness unit or stu). The sum of all elements of the tract of the secondary radiation for- mation, defined in such a way, makes its stopping length. As a result, it was established, that in the wide range of the atomic number of the materials (Z = 7…73) and elec- tron energy Е0=5…100 MeV the condition of maximum of the conversion coefficient Ех/Eb is provided at a tract stopping length of about 0.5 stu (a high-Z material) to of about 0.7 stu (a low-Z one), when the electronic equilib- rium comes at about 1.2 stu (a high-Z material) to about 1.5 (a low-Z one). So the formation of the secondary ra- diation takes place in a tract comprising an accelerator’s exit window, the converter and the electron stopper. Eve- ry of those devices, in its turn, includes the elements affecting on characteristics of the secondary radiation (the foils of the accelerator exit window and of the input window of the converter, its plates, the water filled gaps between them, etc.). 2. CONFIGURATION OF ACCELERATOR’S EXIT DEVICES The study of the Compton DCD characteristics was conducted by means of computer simulation with the use of a transport code PENELOPE/2006 [7]. The cal- culations were carried out with due regard for the actual beam parameters of a LU-40 electron Linac of NSC KIPT [8]. The draft of the accelerator exit devices in a mode of the X-ray generation and its monitoring using DCD is given in Fig. 1. 1 2 3 4 5 6 7{ { {EW C F DCD Fig. 1. Geometry of the accelerator exit devices An electron beam passes through the exit window EW consisting of a Ti foil 50 µm thick (it. 1). The as- mailto:uvarov@kipt.kharkov.ua ISSN 1562-6016. ВАНТ. 2019. №6(124) 159 sembly of the X-ray converter C is positioned at a dis- tance of 12 mm from the foil. The converter comprises the input and output Ti-foils by 50 µm in thickness (it. 2, 4), and also 4 Ta-plates each 1mm thick (it.3) with the 1mm spaces between them for cooling water. Followed the converter an electron filter- stopper F corresponds a cylinder from aluminium. For every energy of the beam electrons, its height was deter- mined to be in compliance with the total stopping length of 1.4 stu for the (EW+C+F) tract. In this case the for- mation of the dynamic equilibrium in the secondary radi- ation at the filter exit can be completed. For better understanding of nature of the charge generation in DCD, the transversal size of the tract ele- ments was considered as equal to 10 cm with the small distances between all devices. In this case their trans- versal size exceeds the width of the flux of the second- ary radiation, and there no need to take into account the effect of a distance to converter on the detection pro- cess. 3. FORMATION OF CHARGE IN DETECTOR The typical beam spectrum of the LU-40 accelerator with energy Е0= 40 MeV in its peak is given in Fig. 2. The average electron energy over the spectrum makes 38.54 MeV. 28 30 32 34 36 38 40 42 0,0 0,2 0,4 0,6 0,8 1,0 dN /d N m ax Energy (MeV) Fig. 2. Actual (solid curve) and simulated (dash curve) spectra of the beam Fig. 3 demonstrates the results of the calculation of dependence of Al-filter height providing the stopping length of the tract of formation of the secondary radia- tion of 1.4 stu on the electron energy Е0. The character- istics of the radiation obtained in such a way at the filter exit and Е0=40 MeV, reduced to the unit of the average beam current, are given in Table 1. 10 20 30 40 50 60 70 80 90 100 110 1 2 3 4 5 6 7 8 9 10 11 12 13 Filter E0, MeV O pt im al fi lte r t hi ck ne ss , c m Fig. 3. Dependence of optimum height of the electron filter on initial electron energy The data on the range of the secondary electrons and positrons, generated with braking radiation in a number of materials, are shown in Fig. 4. The results given hereafter are related to a chosen idealized configuration of the exit devices and a DCD made from copper. As the conducted study has shown, that material seems to be the most promising for such a type of the equipment. So in Fig. 5, the result of calculations of average ener- gies Еav of the secondary electrons, positrons and gam- mas induced in a copper plate in the direction of the primary radiation Еav (transmitted particles), and also of the backscatter ones. The normalized spectra of those particles are given in Fig. 6. Table 1 Characteristics of the secondary particles at the detector input (Е0= 40 MeV) Total power, kW/mA Photons, kW/mA Electrons, kW/mA Positrons, kW/mA Electron current, mkA/mA Positron current, mkA/mA 9.131 ± 0.035 8.805 ± 0.036 0.2398 ± 0.0079 0.0824 ± 0.0049 52.4 ± 1.5 12.42 ± 0.58 20 40 60 80 100 0,0 0,5 1,0 1,5 2,0 2,5 3,0 Ta Cu Zr Electron range Positron range E0, MeV R an ge , c m Al Fig. 4. Dependence of range of the secondary electrons and positrons in a set of materials on the energy of the primary electron beam ISSN 1562-6016. ВАНТ. 2019. №6(124) 160 10 20 30 40 50 60 70 80 90 100 110 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 - positrons 2 - electrons 3 - gammas transmitted particles backscattered particles gammas electrons positrons Ea v, M eV E0, MeV 1 2 3 Fig. 5. Dependence of average energy of the secondary particles in copper on the electron energy in the primary beam 5 10 15 20 25 30 35 40 1E-5 1E-4 1E-3 0,01 0,1 1 Energyav ph=3.66 MeV, Rangeav ph= 3.30 cm Energyav el=4.49 MeV, Rangeav el= 0.34 cm photons total electrons dP /d E, 1 /M eV Energy, MeV a 0 5 10 15 20 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 photons total electrons dP /d E , 1 /M eV Energy, MeV x20 b Рис. 6. Normalized spectra of the direct (а) and backscattered radiation (b) from copper plate (Е0= 40 MeV) The dependence of the charge generated with the X- ray radiation in a single copper plate on its thickness is presented in Fig. 7. It is seen, that at thickness increas- ing up to 20 mm, the sign of its charge changes and the value grows. 0 5 10 15 20 -8 -6 -4 -2 0 2 4 de po si te d ch ar ge , m kC / ab s (m C b ea m ) 1-st plate thickness, mm E0= 40 MeV, Cu single 1-st plate Fig. 7. Dependence of normalized deposited charge in a single copper plate on its thickness at action of dynamic equilibrium X-ray radiation The results of calculation on the charges of DCD fabricated from two copper plates depending on the thickness of the first at a fixed thickness of the second (1 mm) are given in Fig. 8. It is evident, that the plates are oppositely charged. Under such conditions the nega- tive charge in the first plate reaches maximum at its thickness of about 20 mm. In the meanwhile, the posi- tive charge of the thin plate changes faintly. 0 5 10 15 20 -10 -5 0 5 E0= 40 MeV, Cu two plates, 2-nd=1 mm 1-st plate 2-nd plate 2-nd plate, 1mm,D3cm,S10cm de po sit ed ch ar ge , m kC / a bs (m C be am ) 1-st plate thickness, mm 1-st plate, 10 mm,D3cm,S10cm Fig. 8. Dependence of normalized charges generated with dynamic equilibrium X-ray radiation in the plates of DCD from copper on the thickness of the first plate (Е0= 40 MeV) For comparison, the charges of the plates for the case when their diameter makes 3 cm, the first is 10 and second 1 mm thick at a distance from the converter to DCD of 10 cm, are calculated as well and denoted in Fig. 8 with the transparent asterisks. It is obvious, that the differential charge of the plates changes its sign, when its value (determinative the detector sensibility) decreases considerably. For the DCD geometry providing maximum of the detector sensibility, its value was calculated as the de- pendence on Z of the detector material (Fig. 9), and also the dependence of the copper DCD on the end-point energy of the bremsstrahlung radiation (Fig. 10). ISSN 1562-6016. ВАНТ. 2019. №6(124) 161 10 20 30 40 50 60 70 80 0 2 4 6 8 10 12 14 16 18 20 TaZr Cu Al E0= 40 MeV cu rre nt , m kA / ab s (m A be am ) atomic number Fig. 9. Normalized differential beam between the plates of DCD depending on its material atomic number 4. DISCUSSION At a stopping length of the tract of the secondary ra- diation formation of above 1.4 stu, the flux does not contain practically the electrons of a primary beam and consists only from the secondary particles. Under such conditions the photon component brings 96% of the secondary radiation power, 3 and 1% of the electron and positron ones respectively (see Table 1). The positron flux makes ~25% of particles as compared with the electrons. The key factors determinative charging of the Compton DCD are the fluxes of the electrons oncoming and outgoing the detector plates. A plate with thickness less than the average range of the secondary electrons should be considered as thin, while if the thickness ex- ceeds the range, it is considered as thick. So for the DCD materials under study, the secondary electrons have the lowest range of 1.17 mm in tantalum at Е0=20 MeV. The maximum range of 2.07 сm takes place in aluminum at Е0=100 MeV. So a DCD plate by 1mm in thickness can be considered as thin and one by 20 mm as thick in the all span of energy of the beam electrons under study. 20 40 60 80 100 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 cu rre nt , m kA / kW b re m s E0, MeV Cu Fig. 10. Differential current between DCD plates depending on energy of primary beam electrons An electron flux acting on first plate of a detector from side of second one changes its charge state as compared with the situation when the first plate is sin- gle. It is connected with the fact that the energy of those particles (0.8…1.2 MeV) is considerably less than the energy of the electrons moving onward (see Fig. 6). As it is evident from Fig. 8, at the presence of a second plate, the dependence of charge of the first plate on its thickness shifted in the lump into the negative side (see Fig. 7). So a thin plate, being positioned last downstream the beam, is charged always positively and plays the role of an emitter. The mayor part of the electrons incident on it is not absorbed, and so not changes its charge state. At the same time, the photo- and Compton electrons, gen- erated under exposure to high-energy photons, leave the plate forming the positive charge in it. In turn, the thick plate is always charged positively (see Figs. 7 and 8) because the mayor part of incident electrons stays in it. The opposite charge of the plates makes it possible to obtain a feed-free differential current in a detector’s circuit. CONCLUSIONS A Compton DCD in the form of two parallel plates of different thickness can be used for monitoring of flux of high-energy bremsstrahlung photons. For the effec- tive DCD application, the stopping length of formation of secondary radiation should be of about 1.4 stu. The maximum of the DCD sensitivity is provided with the plates of size exceeding the lateral dimension of a radia- tion flux, as well as when the thickness of the first plate (the collector) and of the second plate (the emitter) are of ~20 mm and of ~1 mm, respectively. The detector reveals a weak dependence of its sensi- tivity on the atomic number of the plate material at Z > 29, and also on the end-point energy of the brems- strahlung radiation in the range of 20 to 100 MeV. For verification of previously noted results, an ex- periment was conducted at the LU-40 electron Linac (Fig. 11). The converter C was positioned at a distance of 2 cm from the exit window of the accelerator. The converter consists of 4 tantalum plates each by 1mm in thickness separated with air gaps for cooling. The elec- tron filter F (a cylinder from aluminum 50 mm high) was situated 15 mm downstream from the converter. Just behind the filter, a prototype of DCD was placed. It embraces a housing from stainless steel 5 mm thick with the two copper plates inside of 20 and 1.5 mm thick respectively with the 3mm spacing. The flux of X-rays was entered through the input window (a 50 µm titani- um foil). Before the exposure, the device was pumped out us- ing a forepump. The signals from the plates were trans- mitted through the coaxial cables, registered with a digi- tal oscilloscope Siglent SDS 1072 and recorded at an output medium. The uncertainty of determination of the signal amplitude was about 15% (k=1). The accelerator operated in a mode: electron energy, MeV 39; pulse repetition rate, Hz 50; pulse duration, μs 1.5. The experimental results are given in Fig. 12 and Table 2. ISSN 1562-6016. ВАНТ. 2019. №6(124) 162 LU-40 e- C F DCD X- to FP Fig. 11. Draftt of DCD prototype testing at LU-40 Linac Fig. 12. Typical oscillogram of the DCD signals (the pulse beam current is 60 мА): upper sweep-the first plate, the lower sweep-the second plate Table 2 Amplitude of differential signal from DCD plates Pulse beam current, мА 40 50 60 Differential current, µА 280 340 400 REFERENCES 1. M.G. Mittelman, N.D. Rosenblum. Charge detectors of ionizing radiation. M.: “Energoizdat”, 1982 (in Russian). 2. V.L. Uvarov, V.I. Nikiforov, V.A. Shevchenko, et al. Feed-free monitoring of intense high-energy bremsstrahlung // Proc. of EPAC 08. 2008, p. 1311- 1313. 3. N.P. Dikiy, A.N. Dovbnya, V.L. Uvarov. Develop- ment of a New Electron Irradiation Based Technolo- gy for Technetium-99m Production // Proc. of the 6- th Europ. Part. Accel. Conf. EPAC’98 (Stockholm, 1998) p. 88-90 4. Y. Gohar, J. Baily, H. Belch, et al. Accelerator- driven subcritical assembly: concept development and analyses // Proc. of the RERTR-2004 Int. Meet. www.iaea.org/inis/collection/.../_Public/36/.../36069 552.pdf 5. Standard ISO/ASTM 51608. Standard Practice for Dosimetry in an X-ray (Bremsstrahlung) Facility for Radiation Processing. 6. V.I. Nikiforov, V.L. Uvarov. Analysis of mixed e,X- radiation along the extraction facilities of electron accelerators // Atomic Energy. 2009, v. 106, Iss. 4, p. 281-286. 7. F. Salvat, J.M. Fernandez-Varea, J. Sempau. PENELOPE-2006. A Code System for Monte-Carlo Simulation of Electron and Photon Transport. OECD Nuclear Energy Agecy, Issu-les Moulineous, France, 2006. 8. N.I. Ayzatsky, V.I. Beloglazov, V.P. Bozhko, et al. Electron 100 MeV Linac Based Facility to Nuclear- Physical Experimental Investigation // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigations”. 2010, № 2, p. 18-22. Article received 20.10.2019 ОПТИМИЗАЦИЯ КОМПТОНОВСКОГО ДЕТЕКТОРА ПРЯМОГО ЗАРЯДА ДЛЯ МОНИТОРИНГА ВЫСОКОЭНЕРГЕТИЧНОГО ТОРМОЗНОГО ИЗЛУЧЕНИЯ В.И. Никифоров, И.Н. Шляхов, В.А. Шевченко, А.Э. Тенишев, В.Л. Уваров Исследованы условия применения комптоновского детектора прямого заряда (ДПЗ) для мониторинга высокоэнергетического тормозного излучения. Описан метод расчета характеристик вторичного е,Х- излучения на выходе ускорителя электронов и обеспечения условия электронного равновесия. Методом компьютерного моделирования изучены процессы формирования зарядов в ДПЗ, состоящем из двух пла- стин разной толщины из различных металлов. На основе полученных результатов сформулированы требо- вания к составу ДПЗ для обеспечения максимума его чувствительности. Показано, что в предложенной гео- метрии ДПЗ она слабо зависит от атомного номера его материала в области Z > 29, а также от граничной энергии тормозного излучения в диапазоне 20…100 МэВ. ОПТИМІЗАЦІЯ КОМПТОНІВСЬКОГО ДЕТЕКТОРА ПРЯМОГО ЗАРЯДУ ДЛЯ МОНІТОРИНГУ ВИСОКОЕНЕРГЕТИЧНОГО ГАЛЬМІВНОГО ВИПРОМІНЕННЯ В.І. Нікіфоров, І.М. Шляхов, В.А. Шевченко, А.Е. Тєнішев, В.Л. Уваров Досліджені умови застосування комптонівського ДПЗ для моніторингу високоенергетичного гальмівного випромінювання. Описаний метод розрахунку характеристик вторинного е,Х-випроміннюваня на виході прискорювача електронів, а також забезпечення умови електронної рівноваги. Методом комп'ютерного мо- делювання вивчені процеси формування зарядів у детекторі, що складається з двох пластин різної товщини з різних металів. На основі отриманих результатів сформовані вимоги до складу ДПЗ для забезпечення мак- симуму його чутливості. Показано, що у запропонованій геометрії ДПЗ вона слабо залежить від атомного номера матеріалу в області Z > 29 і граничної енергії гальмівного випромінювання в діапазоні 20…100 МеВ. INTRODUCTION 1. FORMATION OF ELECTRONIC EQUILIBRIUM 2. CONFIGURATION OF ACCELERATOR’S EXIT DEVICES 3. FORMATION OF CHARGE IN DETECTOR