About the acceleration rate of relativistic beams by a surface wave in a dielectric laser accelerator

An analysis of the dependence of the acceleration rate of charged particles by a surface wave arising when a laser pulse/(plane wave) is incident on the interface between two dielectric media on the phase velocity of the excited wave is carried out. It is shown that at resonance acceleration this de...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автори: Bolshov, O.O., Vasiliev, A.V., Povrozin, A.I., Sotnikov, G.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2021
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/195637
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:About the acceleration rate of relativistic beams by a surface wave in a dielectric laser accelerator / O.O. Bolshov, A.V. Vasiliev, A.I. Povrozin, G.V. Sotnikov // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 57-60. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-195637
record_format dspace
spelling irk-123456789-1956372023-12-05T19:33:56Z About the acceleration rate of relativistic beams by a surface wave in a dielectric laser accelerator Bolshov, O.O. Vasiliev, A.V. Povrozin, A.I. Sotnikov, G.V. Novel and non-standard acceleration technologies An analysis of the dependence of the acceleration rate of charged particles by a surface wave arising when a laser pulse/(plane wave) is incident on the interface between two dielectric media on the phase velocity of the excited wave is carried out. It is shown that at resonance acceleration this dependence has a maximum, for ultra-relativistic particles the acceleration rate tends to zero. The dependences of the acceleration rate on the phase velocity of the excited wave for various refractive indices (dielectric permittivities) of optically transparent medias are investigated analytically and numerically. Проведено аналіз залежності темпу прискорення заряджених частинок поверхневої хвилею, що виникає при падінні лазерного імпульсу/(плоскої хвилі) на межу розділу двох середовищ, від фазової швидкості хвилі, що збуджується. Показано, що при резонансному прискоренні ця залежність має максимум, для ультрарелятивістських частинок темп прискорення прагне до нуля. Аналітично та чисельно досліджено залежності темпу прискорення від фазової швидкості хвилі, що збуджується, для різних показників заломлення (діелектричної проникності) оптично прозорих матеріалів. Проведен анализ зависимости темпа ускорения заряженных частиц поверхностной волной, возникающей при падении лазерного импульса/(плоской волны) на границу раздела двух сред, от фазовой скорости возбуждаемой волны. Показано, что при резонансном ускорении эта зависимость имеет максимум, для ультрарелятивистских частиц темп ускорения стремится к нулю. Аналитически и численно исследованы зависимости темпа ускорения от фазовой скорости возбуждаемой волны для различных показателей преломления (диэлектрических проницаемостей) оптически прозрачных материалов. 2021 Article About the acceleration rate of relativistic beams by a surface wave in a dielectric laser accelerator / O.O. Bolshov, A.V. Vasiliev, A.I. Povrozin, G.V. Sotnikov // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 57-60. — Бібліогр.: 18 назв. — англ. 1562-6016 PACS: 41.75.Lx, 41.60.-m, 41.75.Ht, 41.85.Ar DOI: https://doi.org/10.46813/2021-136-057 http://dspace.nbuv.gov.ua/handle/123456789/195637 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Novel and non-standard acceleration technologies
Novel and non-standard acceleration technologies
spellingShingle Novel and non-standard acceleration technologies
Novel and non-standard acceleration technologies
Bolshov, O.O.
Vasiliev, A.V.
Povrozin, A.I.
Sotnikov, G.V.
About the acceleration rate of relativistic beams by a surface wave in a dielectric laser accelerator
Вопросы атомной науки и техники
description An analysis of the dependence of the acceleration rate of charged particles by a surface wave arising when a laser pulse/(plane wave) is incident on the interface between two dielectric media on the phase velocity of the excited wave is carried out. It is shown that at resonance acceleration this dependence has a maximum, for ultra-relativistic particles the acceleration rate tends to zero. The dependences of the acceleration rate on the phase velocity of the excited wave for various refractive indices (dielectric permittivities) of optically transparent medias are investigated analytically and numerically.
format Article
author Bolshov, O.O.
Vasiliev, A.V.
Povrozin, A.I.
Sotnikov, G.V.
author_facet Bolshov, O.O.
Vasiliev, A.V.
Povrozin, A.I.
Sotnikov, G.V.
author_sort Bolshov, O.O.
title About the acceleration rate of relativistic beams by a surface wave in a dielectric laser accelerator
title_short About the acceleration rate of relativistic beams by a surface wave in a dielectric laser accelerator
title_full About the acceleration rate of relativistic beams by a surface wave in a dielectric laser accelerator
title_fullStr About the acceleration rate of relativistic beams by a surface wave in a dielectric laser accelerator
title_full_unstemmed About the acceleration rate of relativistic beams by a surface wave in a dielectric laser accelerator
title_sort about the acceleration rate of relativistic beams by a surface wave in a dielectric laser accelerator
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2021
topic_facet Novel and non-standard acceleration technologies
url http://dspace.nbuv.gov.ua/handle/123456789/195637
citation_txt About the acceleration rate of relativistic beams by a surface wave in a dielectric laser accelerator / O.O. Bolshov, A.V. Vasiliev, A.I. Povrozin, G.V. Sotnikov // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 57-60. — Бібліогр.: 18 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT bolshovoo abouttheaccelerationrateofrelativisticbeamsbyasurfacewaveinadielectriclaseraccelerator
AT vasilievav abouttheaccelerationrateofrelativisticbeamsbyasurfacewaveinadielectriclaseraccelerator
AT povrozinai abouttheaccelerationrateofrelativisticbeamsbyasurfacewaveinadielectriclaseraccelerator
AT sotnikovgv abouttheaccelerationrateofrelativisticbeamsbyasurfacewaveinadielectriclaseraccelerator
first_indexed 2025-07-16T23:44:19Z
last_indexed 2025-07-16T23:44:19Z
_version_ 1837849075262685184
fulltext ISSN 1562-6016. ВАНТ. 2021. № 6(136) 57 https://doi.org/10.46813/2021-136-057 ABOUT THE ACCELERATION RATE OF RELATIVISTIC BEAMS BY A SURFACE WAVE IN A DIELECTRIC LASER ACCELERATOR O.O. Bolshov, A.V. Vasiliev, A.I. Povrozin, G.V. Sotnikov National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine E-mail: sotnikov@kipt.kharkov.ua An analysis of the dependence of the acceleration rate of charged particles by a surface wave arising when a la- ser pulse/(plane wave) is incident on the interface between two dielectric media on the phase velocity of the excited wave is carried out. It is shown that at resonance acceleration this dependence has a maximum, for ultra-relativistic particles the acceleration rate tends to zero. The dependences of the acceleration rate on the phase velocity of the excited wave for various refractive indices (dielectric permittivities) of optically transparent medias are investigated analytically and numerically. PACS: 41.75.Lx, 41.60.-m, 41.75.Ht, 41.85.Ar INTRODUCTION The idea of dielectric laser accelerators (DLA), to use dielectric structures for acceleration by waves aris- ing from their illumination with laser beams, arose in the last century [1 - 2]. Subsequent investigations showed the possibility of creating on the basis of this idea compact accelerators with aacceleration rate of ~ 1 GeV/m [3 - 8]. Interest in the use of laser beams to accelerate charged particles has renewed in the last dec- ade due to the widespread use of lasers at the TW level of the micron wavelength and pulse durations 100fs and less. Progress in laser technology has made it possible to proceed to experimental verification and implementa- tion of the basic principles of accelerators based on die- lectric structures (see [9 - 12] and reference there). The existing in NSC KIPT the TW laser system [13] also makes it possible to carry out research on laser ac- celeration in dielectric or chip structures. Due to the phase mismatch between the accelerated beam and the laser-excited wave, the creation of an operating acceler- ator will inevitably require its sectioning with different input beam energies. Our numerical simulation of the acceleration of beams in chip structures did not reveal a significant difference in the acceleration rates as a func- tion of the initial beam energy [14, 15]. At the same time, it was stated in paper [2], and it was theoretically shown in paper [3] that for ultra-relativistic electrons the acceleration rate tends to zero, 2 0 01 1/accE     , 0 is a phase velocity of incident wave. Similar de- pendence on relativistic factor 0 is also given in [16, 17] when studying DLA based on chip or grating struc- tures. The pointed out dependence strongly limits the pos- sibilities of using the DLA scheme in the relativistic region of energies of the accelerated beams. In order to study the exact dependence of the acceleration rate on the beam energy and mitigate the limitations in the rela- tivistic region, we, following the statement of problem [3], will obtain the amplitude of the transmitted wave when the plane wave is incident on the dielectric- vacuum interface and will investigate it dependence on the beam velocity and dielectric material. 1. STATEMENT OF THE PROBLEM AND BASE EQUATIONS Let an elliptically polarized plane wave falls from a optically transparent medium with refractive index n1= n under an angle  onto the boundary between the vacuum and this medium. Geometry of the problem and the coordinate system is given in Fig. 1. For simplicity of perception in Fig. 1 are depicted only electromagnet- ic fields components corresponding to the case of p- polarized plane wave. The boundary surface is the plane y = 0, the incident plane is xz-plane, and the x-axis is directed along the propagation of accelerated beam. In such a frame the components of the electric vector of the incident arbitrary elliptical wave will be of the form Fig. 1. Geometry of the problem and coordinate system. Here is shown the case of p-polarized plane wave is incident from dielectric medium ( 0y  , refractive index 1n n ) on the dielectric-vacuum interface (y=0). The accelerated electron beam moves parallel to the dielectric-vacuum boundary 0 2 || 2 0 2 || 2 1 exp[ ( )] cos exp[ ( )]; exp[ ( )] sin exp[ ( )]; exp[ ( )], i i x x i i y y i z E E i E i E E i E i E E i               (1) where 1 1 2 12x y xk x k y t k x k y t        , ||E and E are amplitudes of p- and s-polarized waves and 1 and 2 are their arbitrary phases. ISSN 1562-6016. ВАНТ. 2021. № 6(136) 58 If sin 1/ n  the incident electromagnetic wave un- dergoes total internal reflection and sin sin 1n   . Then the analytical continuation of Snell's law to the complex plane provides for the wave vector of the transmitted wave 2 2 2 2 2 2 sin , sin 1x yk n k i n          , (2)  is the vacuum wavelength. Having used the Fresnel formulae for the transmis- sion coefficients separately for p-polarized, s-polarized wave obtain their expressions for the case total internal reflection || || 2 2 2 2 2 cos( ) 1 sin cos ( ) in T e n n        , (3) 2 2 cos( ) 1 in T e n      . (4) Here 2 2 || sin 1 ( ) cos( ) n n tg      , 2 2sin 1 ( ) cos( ) n tg n       . Using equations (1), (3), (4) the components of the electric field can be written as || || 2 || || || 2 || 1 cos( )exp[ ( )], sin( )exp[ ( )], exp[ ( )], t x t y t z E T E i E T E i E E T i                   (5) where 2 2sin( ) sin 1n x i n t с с          . Separating the real part from expressions (5), we ob- tain the final expressions for the components of the electric field of transmitted wave 2 || 2 0 2 || 2 2 1 1 1 sin( ), cos( ), cos( ), t x t t y z E E F E E F E E F        (6) and for components of the magnetic field 21 0 1 0 1 1 || 2 0 2 0 1 sin( ), cos( ), cos( ). t x t t y z F H E F H E H E F                (7) In equations (6), (7)   2 2 1 2 2 2 2 2 2 2 2 2 1 1 2 2 || 0 2 cos( ) 2 exp sin ( ) 1 , 1 2 sin( )cos( ) 1 sin ( ) cos 2 exp sin ( ) 1 , 2 [ sin( ) ] , 2 1 [ sin( ) ] , . sin( ) n F n y n n F n n n y n x ct n x ct n                                                     . (8) The equations give the possibility to investigate the dependence of amplitude of transmitted wave on phase velocity surface wave 0 arising when plane wave is incident to dielectric boundary interface undergoing the total internal reflection. It should be pointed that the expressions for the components of the electromagnetic fields of transmitted wave (6)-(8) coincide in form with given in [3]. More general case, when the angle between incident wave and direction of beam propagation is arbi- trary, considered in [8]. However in the limiting case of zeroth this angle (this case correspond to the highest acceleration rate) the expressions [8] go to equations (6)-(8). 2. NUMERICAL ANALYSIS As stated above, we will be interested in the depend- ence of the acceleration rate on the phase velocity of the synchronous wave, or on the initial beam energy. For beams propagating parallel to the dielectric-vacuum interface in the x-axis direction, this acceleration rate Gmax is determined by the amplitude of the longitudinal electric field component 2 max || 2 0 0 ||( ) 1 acG qE F qE F    . (9) In Fig. 2 are shown the dependencies of the ampli- tude of transverse component F2 and longitudinal com- ponent Fac of transmitted wave from phase velocity of the excited wave at the boundary surface y = 0 for the dielectric material of fused silica 1.453n  . Fig. 2. Amplitude of transverse component F2 (at the top) and longitudinal component Fac (at the bottom) of transmitted wave at the boundary surface versus phase velocity of the excited surface wave. Permittivity of dielectric is  = 2.112 (fused silica) From Fig. 2 follows that the transverse component amplitude of transmitted wave monotonically increases over entire interval of permitted 0 when increase the phase velocity of excited surface wave. At the same time the longitudinal electric field increases from 0 1/ 0.7n   to 0 0.858  (this corresponds electron beam energy Wb  0.5 MeV) and then falls quickly to ISSN 1562-6016. ВАНТ. 2021. № 6(136) 59 zero 1 . When Wb  2.1 MeV ( 0 0.858  ) acceleration rate decreases twice. If we chose a different distance over the dielectric plane the then dependencies of transverse component F2 and longitudinal component Fac remain qualitatively the same (Fig. 3 for y =  /2). The maximum of accelerated field is shifted to greater beam energies (compare with Fig. 2) and corresponds to beam energy Wb  1.6 MeV (0 = 0.97). At Wb  50 MeV acceleration rate falls by 10 times in comparison with the maximum. Fig. 3. Amplitude of transverse component F2 (at the top) and longitudinal component Fac (at the bottom) of transmitted wave at y =  /2 versus phase velocity of the excited surface wave. Permittivity of dielectric is  = 2.112 (fused silica) Now let us study the behavior of the longitudinal component of the electric field with a change in the die- lectric medium. In Fig. 4 are shown the dependencies Fac on the phase velocity of excited surface wave for some optically transparent material: fused silica, sap- phire, diamond, schott-IG, gallium indium arsenide and silicon-germanium. With an increase in the dielectric constant, the acceleration rate increases over the entire range of permitted phase velocities of the wave (the top graph), and its maximum shifts towards higher values of the phase velocity (the bottom graph). The latter result is especially important when accelerating more energet- ic electron beams. For case of silicon-germanium medi- um at Wb  50 MeV acceleration rate falls by 8 times in comparison with the maximum. Let us estimate the value of acceleration rate (9) in the best case from the presented in Fig. 4, the case of use for DLA of silicon-germanium medium. 1 While writing this paper we found that alike plotsare given in the paper [18]. Fig. 4. Amplitude longitudinal component Fac (at the bottom) of transmitted wave at y =  /2 versus phase velocity of the excited surface wave: 1 – fused silica  = 2.112  red line; 2 – sapphire  = 3.1329  blue dotted line; 3 – diamond  = 5.76  green dashed line; 4 – schott-IG  = 6.7081  violet dot-dash line; 5 – gal- lium indium arsenide  = 11.05496  cyan line; 6 – sili- con-germanium  = 20.196036  brown dotted line Let the amplitude of incident wave is 1.82 GeV/m (this corresponds the vacuum power density of 4.410 11 W/cm 2 ). In the maximum of acceleration rate (beam energy is 2.4 MeV) the acceleration rate is 1.3 GeV/m. At Wb  50 MeV acceleration rate is 160 MeV/m. CONCLUSIONS I this paper the dependence of the acceleration rate of charged particles by a surface wave arising when a laser pulse/(plane wave) is incident on the interface be- tween two dielectric media on the phase velocity of the excited wave is studied. The dependences of the acceleration rate on the phase velocity of the excited wave for various refractive indices (dielectric permittivities) of optically transparent medias are investigated analytically and numerically. At resonance acceleration these dependencies have the maximum, for ultra-relativistic particles the acceler- ation rate tends to zero. Maximum of acceleration rate increases when refractive index increases. Maximum of acceleration rate shifts to higher initial energy of electrons when refractive index increases. This result is very important for DLA using for beam acceleraton the surface wave arising when laser beam is incident onto dielectric-vacuum boundary under the angle of total internal reflection. ISSN 1562-6016. ВАНТ. 2021. № 6(136) 60 The applicability of the conclusion about a decrease in the acceleration rate when using ultra-relativistic electronic beams to accelerators using a chip or grating structures requires a separate study. ACKNOWLEDGEMENTS The study is supported by the National Research Foun- dation of Ukraine under the program "Leading and Young Scientists Research Support" (project # 2020.02/0299), by NAS of Ukraine program "Perspective investigations on plasma physics, controlled thermonuclear fusion and plasma technologies", project P-1/63-2020. REFERENCES 1. Koichi Shimoda. Proposal for an Electron Accelera- tor Using an Optical Maser // Applied Optics. 1962, v. 1, p. 33-35. 2. A. Lohmann. Electron Acceleration by Light Waves // IBM Technical Note TN5. 1962, p. 169-182. 3. S.A. Kheifetz. Particle motion a surface on which total internal reflection of electromagnetic wave takes plase // Proc. 8-th Int. conf. Higt Energy Accel., CERN, Geneva. 1971, p. 597-599. 4. H.A. Nagorsky, A.Ts. Amatuni, W.M. Harutiunian. Resonance acceleration of charged particles by a surface wave arising at total internal reflection // Proc. 12 th Int. Conf. on High Energy Accelerators, Fermilab. 1983, p. 488-490. 5. J.D. Lawson. Laser accelerators: where dowestand? // Proc. Workshop on the Generation of High Fields for Particle Acceleration to Very High Energies. 1986, p. 3-9. 6. I.V. Borovsky, S.V. Zhylkov, N.A. Khyzhnyak, V.G. Papkovich. To the theory of laser accelerationover dielectric comb // Problems of Atomic Science and Technology. Series “Technics of Physical Experiment”. 1987, № 3(34), p. 69-70. 7. I.V. Borovsky, S.V. Zhylkov, N.A. Khyzhnyak, V.G. Papkovich. About the acceleration of the REB over a dielectric comb // Problems of Atomic Science and Technology. Series “Technics of Physical Ex- periment”. 1987, № 4(35), p. 68-69. 8. R.C. Fernow. Acceleration using total internal re- flection // BNL Report. 1991, № 52290, p. 1-17. 9. E.A. Peralta et al. Demonstration of electron accel- eration in a laser-driven dielectric microstructure // Nature. 2013, v. 503, p. 91-94. 10. J. Breuer and P. Hommelhoff. Laser-based accelera- tion of nonrelativistic electrons at a dielectric struc- ture // Phys. Rev. Lett. 2013, v. 111, p. 134803. 11. R.J. England et al. Dielectric laser accelerators // Rev. Mod. Phys. 2014, v. 86, p. 1337-1389. 12. Li Sun, Weihao Liu, Jie Zhou, et al. GV·m −1 on-chip particle accelerator driven by few-cycle femtosecond laser pulse // New Journal of Physics. 2021, v. 23, p. 063031(10). 13. A.V. Vasiliev, A.N. Dovbnya, A.M. Yegorov, et al. Works in the NSC KIPT on the creation and applica- tion of the cpa laser system // Problems of Atomic Sci- ence and Technology. Series “Plasma Electronics and New Methods of Acceleration”. 2018, № 4, p. 289-292. 14. V. Vasyliev, O. Bolshov, K. Galaydych, A. Povrozin, G.V. Sotnikov. Influence of the profile of the dielectric structure on the electric fields excited by a laser in dielectric accelerators based on chip // Proc. of 12th Int. Particle Acc. Conf. IPAC2021. Campinas, Brazil. 2021, p. 2026-2029, https:// jacow.org/ipac2021/papers/tupab247.pdf 15. A.V. Vasyliev, A.O. Bolshov, K.V. Galaydych, et al. Acceleration of electron bunches using periodic die- lectric structures with and without coating // Prob- lems of Atomic Science and Technology. Series “Plasma Electronics and New Methods of Accelera- tion”. 2021, № 4, p. 60-64. 16. John Breuer. Dielectric laser acceleration of non- relativistic electrons at a photonic structure // Disser- tation an der Fakultat fur Physik der Ludwig Maximilians Universit at Munchen. 2013, p. 118. https:// edoc.ub.unimuenchen.de/16147/1/Breuer_John.pdf 17. N. Schönenberger and P. Hommelhoff. Dielectric Laser Acceleration // arXiv:2008.03958v1 [phys- ics.acc-ph] 10 Aug 2020. 18. M. Kozák, P. Beck, H. Deng, J. Mc Neur, et al. Ac- celeration of sub-relativistic electrons with an eva- nescent optical wave at a planar interface // Opt. Ex- press. 2017, v. 25, p. 19195-19204. Article received 09.10.2021 О ТЕМПЕ УСКОРЕНИЯ РЕЛЯТИВИСТСКИХ ПУЧКОВ ПОВЕРХНОСТНОЙ ВОЛНОЙ В ДИЭЛЕКТРИЧЕСКОМ ЛАЗЕРНОМ УСКОРИТЕЛЕ А.О. Большов, А.В. Васильев, А.И. Поврозин, Г.В. Сотников Проведен анализ зависимости темпа ускорения заряженных частиц поверхностной волной, возникающей при падении лазерного импульса/(плоской волны) на границу раздела двух сред, от фазовой скорости воз- буждаемой волны. Показано, что при резонансном ускорении эта зависимость имеет максимум, для ультра- релятивистских частиц темп ускорения стремится к нулю. Аналитически и численно исследованы зависимо- сти темпа ускорения от фазовой скорости возбуждаемой волны для различных показателей преломления (диэлектрических проницаемостей) оптически прозрачных материалов. ПРО ТЕМП ПРИСКОРЕННЯ РЕЛЯТИВІСТСЬКИХ ПУЧКІВ ПОВЕРХНЕВОЮ ХВИЛЕЮ У ДІЕЛЕКТРИЧНОМУ ЛАЗЕРНОМУ ПРИСКОРЮВАЧІ О.О. Большов, А.В. Васильєв, А.І. Поврозін, Г.В. Сотніков Проведено аналіз залежності темпу прискорення заряджених частинок поверхневої хвилею, що виникає при падінні лазерного імпульсу/(плоскої хвилі) на межу розділу двох середовищ, від фазової швидкості хви- лі, що збуджується. Показано, що при резонансному прискоренні ця залежність має максимум, для ультра- релятивістських частинок темп прискорення прагне до нуля. Аналітично та чисельно досліджено залежності темпу прискорення від фазової швидкості хвилі, що збуджується, для різних показників заломлення (діелек- тричної проникності) оптично прозорих матеріалів.