Plateau formation on accelerating wakefield for electron-witness-bunch and on decelerating wakefield for driver-bunches in a plasma

Plasma wakefield acceleration promises compact sources of high-brightness relativistic electron and positron beams. Applications (particle colliders and free-electron lasers) of plasma wakefield accelerators demand low energy spread beams and high-efficiency operation. Achieving both requires platea...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автори: Maslov, V.I., Ovsiannikov, R.T., Bondar, D.S., Levchuk, I.P., Onishchenko, I.N.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2021
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/195644
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Plateau formation on accelerating wakefield for electron-witness-bunch and on decelerating wakefield for driver-bunches in a plasma / V.I. Maslov, R.T. Ovsiannikov, D.S. Bondar, I.P. Levchuk, I.N. Onishchenko // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 52-56. — Бібліогр.: 49 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-195644
record_format dspace
spelling irk-123456789-1956442023-12-05T19:40:02Z Plateau formation on accelerating wakefield for electron-witness-bunch and on decelerating wakefield for driver-bunches in a plasma Maslov, V.I. Ovsiannikov, R.T. Bondar, D.S. Levchuk, I.P. Onishchenko, I.N. Novel and non-standard acceleration technologies Plasma wakefield acceleration promises compact sources of high-brightness relativistic electron and positron beams. Applications (particle colliders and free-electron lasers) of plasma wakefield accelerators demand low energy spread beams and high-efficiency operation. Achieving both requires plateau formation on both the accelerating field for witness-bunch and the decelerating fields for driver-bunches by controlled beam loading of the plasma wave with careful tailored current profiles. We demonstrate by numerical simulation by 2.5D PIC code LCODE such optimal beam loading in a linear and blowout electron-driven plasma accelerator with RF generated low and high beam charge and high beam quality. Прискорення кільватерним полем у плазмі може забезпечити компактні джерела релятивістських електронних і позитронних пучків високої яскравості. Використання (колайдери частинок і лазери на вільних електронах) плазмових кільватерних прискорювачів вимагають високої ефективності і пучків з низьким розкидом по енергії. Досягнення того і іншого вимагають формування плато як на прискорюючому полі для згустку, що прискорюється, так і на гальмуючому полі для згустків, що збуджують поле, шляхом контрольованого навантаження пучком плазмової хвилі з ретельно підібраним профілем струму. Ми демонструємо чисельним моделюванням 2,5D PIC-кодом LCODE таке оптимальне навантаження пучком у лінійному і нелінійному режимах у плазмовому прискорювачі зі збудженням електронами, які інжектуються з ВЧ-прискорювача, при невеликому і великому зарядах пучків і високій їх якості. Ускорение кильватерным полем в плазме может обеспечить компактные источники релятивистских электронных и позитронных пучков высокой яркости. Использование (коллайдеры частиц и лазеры на свободных электронах) плазменных кильватерных ускорителей требует высокой эффективности и пучков с малым разбросом по энергии. Достижения того и другого требуют формирования плато как на ускоряющем поле для ускоряемого сгустка, так и на тормозящем поле для сгустков, которые возбуждает поле, путем контролируемой нагрузки пучком плазменной волны с тщательно подобранным профилем тока. Мы демонстрируем численным моделированием 2,5D PIC-кодом LCODE такую оптимальную нагрузку пучком в линейном и нелинейном режимах в плазменном ускорителе с возбуждением электронами, которые инжектируются с ВЧускорителя, при небольшом и большом зарядах пучков и высоком их качестве. 2021 Article Plateau formation on accelerating wakefield for electron-witness-bunch and on decelerating wakefield for driver-bunches in a plasma / V.I. Maslov, R.T. Ovsiannikov, D.S. Bondar, I.P. Levchuk, I.N. Onishchenko // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 52-56. — Бібліогр.: 49 назв. — англ. 1562-6016 PACS: 29.17.+w; 41.75.Lx DOI: https://doi.org/10.46813/2021-136-052 http://dspace.nbuv.gov.ua/handle/123456789/195644 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Novel and non-standard acceleration technologies
Novel and non-standard acceleration technologies
spellingShingle Novel and non-standard acceleration technologies
Novel and non-standard acceleration technologies
Maslov, V.I.
Ovsiannikov, R.T.
Bondar, D.S.
Levchuk, I.P.
Onishchenko, I.N.
Plateau formation on accelerating wakefield for electron-witness-bunch and on decelerating wakefield for driver-bunches in a plasma
Вопросы атомной науки и техники
description Plasma wakefield acceleration promises compact sources of high-brightness relativistic electron and positron beams. Applications (particle colliders and free-electron lasers) of plasma wakefield accelerators demand low energy spread beams and high-efficiency operation. Achieving both requires plateau formation on both the accelerating field for witness-bunch and the decelerating fields for driver-bunches by controlled beam loading of the plasma wave with careful tailored current profiles. We demonstrate by numerical simulation by 2.5D PIC code LCODE such optimal beam loading in a linear and blowout electron-driven plasma accelerator with RF generated low and high beam charge and high beam quality.
format Article
author Maslov, V.I.
Ovsiannikov, R.T.
Bondar, D.S.
Levchuk, I.P.
Onishchenko, I.N.
author_facet Maslov, V.I.
Ovsiannikov, R.T.
Bondar, D.S.
Levchuk, I.P.
Onishchenko, I.N.
author_sort Maslov, V.I.
title Plateau formation on accelerating wakefield for electron-witness-bunch and on decelerating wakefield for driver-bunches in a plasma
title_short Plateau formation on accelerating wakefield for electron-witness-bunch and on decelerating wakefield for driver-bunches in a plasma
title_full Plateau formation on accelerating wakefield for electron-witness-bunch and on decelerating wakefield for driver-bunches in a plasma
title_fullStr Plateau formation on accelerating wakefield for electron-witness-bunch and on decelerating wakefield for driver-bunches in a plasma
title_full_unstemmed Plateau formation on accelerating wakefield for electron-witness-bunch and on decelerating wakefield for driver-bunches in a plasma
title_sort plateau formation on accelerating wakefield for electron-witness-bunch and on decelerating wakefield for driver-bunches in a plasma
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2021
topic_facet Novel and non-standard acceleration technologies
url http://dspace.nbuv.gov.ua/handle/123456789/195644
citation_txt Plateau formation on accelerating wakefield for electron-witness-bunch and on decelerating wakefield for driver-bunches in a plasma / V.I. Maslov, R.T. Ovsiannikov, D.S. Bondar, I.P. Levchuk, I.N. Onishchenko // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 52-56. — Бібліогр.: 49 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT maslovvi plateauformationonacceleratingwakefieldforelectronwitnessbunchandondeceleratingwakefieldfordriverbunchesinaplasma
AT ovsiannikovrt plateauformationonacceleratingwakefieldforelectronwitnessbunchandondeceleratingwakefieldfordriverbunchesinaplasma
AT bondards plateauformationonacceleratingwakefieldforelectronwitnessbunchandondeceleratingwakefieldfordriverbunchesinaplasma
AT levchukip plateauformationonacceleratingwakefieldforelectronwitnessbunchandondeceleratingwakefieldfordriverbunchesinaplasma
AT onishchenkoin plateauformationonacceleratingwakefieldforelectronwitnessbunchandondeceleratingwakefieldfordriverbunchesinaplasma
first_indexed 2025-07-16T23:44:58Z
last_indexed 2025-07-16T23:44:58Z
_version_ 1837849115575189504
fulltext ISSN 1562-6016. ВАНТ. 2021. № 6(136) 52 NOVEL AND NON-STANDARD ACCELERATION TECHNOLOGIES https://doi.org/10.46813/2021-136-052 PLATEAU FORMATION ON ACCELERATING WAKEFIELD FOR ELECTRON-WITNESS-BUNCH AND ON DECELERATING WAKEFIELD FOR DRIVER-BUNCHES IN A PLASMA V.I. Maslov 1,2 , R.T. Ovsiannikov 2 , D.S. Bondar 1,2 , I.P. Levchuk 1 , I.N. Onishchenko 1 1 National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine; 2 V.N. Karazin Kharkiv National University, Kharkiv, Ukraine E-mail: vmaslov@kipt.kharkov.ua Plasma wakefield acceleration promises compact sources of high-brightness relativistic electron and positron beams. Applications (particle colliders and free-electron lasers) of plasma wakefield accelerators demand low energy spread beams and high-efficiency operation. Achieving both requires plateau formation on both the accelerating field for witness-bunch and the decelerating fields for driver-bunches by controlled beam loading of the plasma wave with careful tailored current profiles. We demonstrate by numerical simulation by 2.5D PIC code LCODE such optimal beam loading in a linear and blowout electron-driven plasma accelerator with RF generated low and high beam charge and high beam quality. PACS: 29.17.+w; 41.75.Lx INTRODUCTION Plasma wakefield accelerators have the ability to sustain accelerating gradients to 100 GV∕m [1 - 3]. In conventional accelerators, due to breakdown which oc- curs on the walls of the accelerating structure at high electric fields, accelerating gradients are currently lim- ited to approximately 100 MV∕m [4] due to breakdown. Successful experiments on electron-bunch-driven wake- field acceleration have demonstrated acceleration of GeV-class electrons [3] and have therefore confirmed the relevance of this acceleration method. Plasma wake- field acceleration promises compact sources of high- brightness relativistic electron beams. Because the plasma accelerators provide large accelerating gradients the plasma (see [5 - 45]) accelerators are intensively investigated. However, the quality of electron bunch produced in plasma accelerators is not yet sufficient for the realiza- tion applications. Precise control over the injected elec- tron bunch properties is a key problem for plasma wake- field accelerators. One promising strategy towards the improvement of final quality of the accelerated electron bunch is the use of an electron beam from a convention- al electron linac. Well-developed technologies of radio- frequency linacs allow electron bunches of good quality: small size and small energy spread to be provided. Applications (particle colliders and free-electron la- sers) of plasma wakefield accelerators demand low en- ergy spread beams and high-efficiency operation. Achieving both requires plateau formation on both the accelerating field for witness-bunch and the decelerating fields for driver-bunches by controlled beam loading of the plasma wave with careful tailored current profiles [32, 33, 46]. It has been proposed in [47] to use the beam loading effect (see [32, 33]) to compensate the energy spread of an electron beam in plasma wakefield accelerators. In this paper, we report on numerical investigations on optimization of the self-consistent distribution of an accelerating wakefield of plateau type, which can lead to minimizing the witness-bunch quality degradation dur- ing acceleration by a plasma wakefield, excited by an electron driver-bunches and formation a plateau on de- celerating wakefield in areas of driver-bunches to in- crease efficiency of plasma wakefield accelerator with external injection. Analyzing the dependence of distri- bution of an accelerating and decelerating wakefield on witness-bunch density and driver-bunch density, we have demonstrated a mechanism to compensate the en- ergy spread and to ensure the same deceleration of all electrons of each bunch. We present results of numerical simulation of plasma wakefield excitation by driver-bunches and this wake- field modification, leading to plateau formation, by wit- ness-bunch in its area and by driver-bunches in their areas. The numerical simulation has performed with 2.5D code LCODE [48, 49], which considers the elec- trons of the beam as ensembles of macroparticles, and the electrons of the plasma as a cold electron fluid. We demonstrate by numerical simulation optimal beam loading in a plasma accelerator with RF generated low and high beam charge and high beam quality. We consider the bunch, electrons in which are dis- tributed according to Gaussian in the transverse direc- tion along the radius. We use the cylindrical coordinate system (r, z) and draw the plasma and beam densities and longitudinal electric field at some z as a function of the dimensionless time τ=ωpt or =Vbt-z, Vb is the bunch velocity. Time is normalized on electron plasma fre- quency ωpe -1 , distance – on c/ωpe, bunch current Ib – on Icr=mc 3 /4e, fields – on mcωpe/e. e, m are the charge and mass of the electron, c is the light velocity. mailto:vmaslov@kipt.kharkov.ua ISSN 1562-6016. ВАНТ. 2021. № 6(136) 53 1. INVESTIGATION OF THE PLATEAU FORMATION ON THE DISTRIBUTION OF AN ACCELERATING WAKEFIELD IN A PLASMA BY AN ELECTRON WITNESS-BUNCH To begin with, we consider the wakefield excitation in plasma in blowout regime by short electron bunch and plateau formation by accelerated bunch on the special distribution of an accelerating wakefield Ez() (Fig. 1). One can see that accelerated bunch of a certain charge leads to the formation of a plateau on Ez() at some depth inside the bubble. Fig. 1. The on-axis wakefield excitation Ez by short bunch-driver and plateau formation on Ez() by bunch- witness. Densities of bunches nb on the axis are shown by blue. Plasma electron density ne is shown to be black as a function of the coordinate  along the plasma. The length of driver-bunch is equal to 0.08 of bubble length. The length of witness-bunch is equal to 0.04 of bubble length. The radius of bunches is equal to 0.3. The maximum current of bunch-driver is equal to Ib=0.72. The maximum current of bunch-witness is equal to Ib=0.06. The relativistic factor of bunches is equal to 1000. The arrow shows the plateau In this case, the witness-bunch is in an almost uni- form focusing field (Fig. 2). Fig. 2. The off-axis wakefield excitation Ez by short bunch-driver and plateau formation on Ez() by bunch- witness. The off-axis densities of bunches nb are shown by blue. The off-axis wake focusing force Fr is shown to be yellow as a function of the coordinate  along the plasma. The parameters are identical to Fig. 1. The arrow shows the plateau 2. INVESTIGATION OF THE PLATEAU FORMATION IN A PLASMA BY AN ELECTRON WITNESS-BUNCH ON THE DISTRIBUTION OF AN ACCELERATING WAKEFIELD, EXCITED BY SHORT TRAIN OF RESONANT DRIVER-BUNCHES Now we simulate the plateau formation on the distri- bution of an accelerating wakefield in a plasma by an electron witness-bunch in the case of wakefield excita- tion by short train of resonant electron driver-bunches (Fig. 3). Fig. 3. The on-axis wakefield excitation Ez by short train of resonant electron driver-bunches and plateau formation on Ez() by witness-bunch. Transversal emittance of bunches is shown to be black. The length of bunches is equal to 0.19 of bubble length. The radius of bunches is equal to 0.3. The maximum current of bunch-driver is equal to Ib=2∙10 -3 . The maximum current of bunch-witness is equal to Ib=8∙10 -3 . The arrow shows the plateau Fig. 4. The off-axis wakefield excitation Ez by short train of driver-bunches and plateau formation on Ez() by witness-bunch. The off-axis densities of bunches nb are shown by blue. The off-axis wake focusing force Fr is shown to be yellow as a function of the coordinate  along the plasma. The parameters are identical to Fig. 3. The arrow shows the plateau In this case, the whitness-bunch is entirely in the fo- cusing field (Fig. 4), in contrast to the Gaussian bunch, which would be partially focused and partially defo- cused. ISSN 1562-6016. ВАНТ. 2021. № 6(136) 54 3. INVESTIGATION OF THE PLATEAU FORMATION ON THE DISTRIBUTION OF A DECELERATING WAKEFIELD IN A PLASMA BY AN ELECTRON DRIVER-BUNCHES Now we simulate the plateau formation on the distri- bution of a decelerating wakefield, excited by short train of resonant electron driver-bunches in a plasma (Fig. 5). Fig. 5. The on-axis wakefield excitation Ez by short train of resonant electron driver-bunches and plateau formation on Ez() by driver-bunches. Transversal emittance of bunches is shown to be black. The length of bunches is equal to 0.19 of bubble length. The radius of bunches is equal to 0.3. The maximum current of bunch-driver is equal to Ib=1.2∙10 -2 . The arrows show the plateaus Fig. 6. The off-axis wakefield excitation Ez by short bunch-driver and plateau formation on Ez() by bunch- witness. The off-axis densities of bunches nb are shown by blue. The off-axis wake focusing force is shown to be yellow Fr as a function of the coordinate  along the plasma. The parameters are identical to Fig. 5. The arrows show the plateau In this case, the driver-bunches are entirely in the fo- cusing field (Fig. 6), in contrast to the Gaussian bunch- es, which would be partially focused and partially defo- cused. CONCLUSIONS The evolution of the distribution of accelerating and decelerating wakefields of plateau types has been inves- tigated during wakefield excitation and electron acceler- ation by wakefield in linear and blowout regimes. The plasma wakefield is excited by an electron-bunch or by a short train of electron-bunches. The investigation has performed, using 2.5D PIC simulations by code LCODE. The final quality of the accelerated bunch strongly depends on the distribution of an accelerating wakefield. The part of energy, transferred to wakefield by driver-bunches, also strongly depends on the distribu- tion of an decelerating wakefield. The investigations presented here show that the accelerated and decelerated bunch densities and their shapes can support plateau type distribution of accelerating and decelerating wakefields during acceleration in linear and blowout regimes. This can lead to energy spread of accelerated bunch decrease and to increase of part of energy, trans- ferred to the wakefield by driver-bunches. ACKNOWLEDGEMENTS The study is supported by the National Research Foundation of Ukraine under the program “Leading and Young Scientists Research Support” (project agreement # 2020.02/0299). REFERENCES 1. W.P. Leemans, A.J. Gonsalves, H.-S. Mao, et al. Multi-GeV Electron Beams from Capillary- Discharge-Guided Subpetawatt Laser Pulses in the Self-Trapping Regime // Phys. Rev. Lett. 2014, v. 113, p. 245002. 2. A.J. Gonsalves, K. Nakamura, J. Daniels, et al. Petawatt Laser Guiding and Electron Beam Acceler- ation to 8 GeV in a Laser-Heated Capillary Dis- charge Waveguide // Phys. Rev. Lett. 2019, v. 122, p. 084801. 3. I. Blumenfeld, C.E. Clayton, F.-J. Decker, et al. Energy doubling of 42 GeV electrons in a metre-scale plas- ma wakefield accelerator // Nature, Letters. 2007, v. 445, p. 741-744. 4. E. Esarey, C.B. Schroeder, W.P. Leemans. Physics of laser-driven plasma-based electron accelerators // Rev. Mod. Phys. 2009, v. 81, p. 1229-1285. 5. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, et al. Homogeneous Focusing of Electron Bunch Sequence by Plasma Wakefield // Problems of Atomic Science and Technology. 2012, № 3, p. 159-163. 6. V.I. Maslov, I.N. Onishchenko, I.P. Yarovaya. Plas- ma Wakefield Excitation, Possessing of Homogeneous Focusing of Electron Bunches // Problems of Atomic Science and Technology. 2013, № 1, p. 134-136. 7. V.I. Maslov, I.N. Onishchenko, I.P. Yarovaya. Fields excited and providing a uniform focusing of short relativistic electron bunches in plasma // East European Journal of Physics. 2014, v. 1, № 2, p. 92- 95. 8. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, et al. Transformer Ratio at Interaction of Long Sequence of Electron Bunches with Plasma // Problems of Atomic Science and Technology. 2011, № 3, p. 87-91. 9. V.I. Maslov, I.N. Onishchenko, I.P. Yarovaya. Transformer Ratio at Excitation of Nonlinear Wake- field in Plasma by Shaped Sequence of Electron Bunches with Linear Growth of Charge // Problems ISSN 1562-6016. ВАНТ. 2021. № 6(136) 55 of Atomic Science and Technology. 2012, № 4, p. 128-130. 10. K.V. Lotov, V.I. Maslov, I.N. Onishchenko. Trans- former Ratio in Wake-Field Method of Acceleration for Sequence of Relativistic Electron Bunches // Problems of Atomic Science and Technology. 2010, № 4, p. 85-89. 11. V.I. Maslov, I.N. Onishchenko, I.P. Yarovaya. Wakefield Excitation in Plasma by Sequence of Shaped Electron Bunches // Problems of Atomic Sci- ence and Technology. 2012, № 6, p. 161-163. 12. I.P. Levchuk, V.I. Maslov, I.N. Onishchenko. Trans- former Ratio at Wakefield Excitation by Linearly Shaped Sequence of Short Relativistic Electron Bunches // Problems of Atomic Science and Tech- nology. 2015, № 6, p. 37-41. 13. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, et al. Simulation of plasma wakefield excitation by a se- quence of electron bunches // Problems of Atomic Science and Technology. 2008, № 6, p. 114-116. 14. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, et al. Resonant excitation of plasma wakefield by a nonresonant train of short electron bunches // Plas- ma Phys. Cont. Fus. 2010, v. 52, № 6, p. 065009. 15. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, et al. 2.5D simulation of plasma wakefield excitation by a nonresonant chain of relativistic electron bunches // Problems of Atomic Science and Technology. 2010, № 2, p. 122-124. 16. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, et al. Mechanisms of Synchronization of Relativistic Elec- tron Bunches at Wakefield Excitation in Plasma // Problems of Atomic Science and Technology. 2013, № 4, p. 73-76. 17. I.Y. Kostyukov, A.M. Pukhov. Plasma-based meth- ods for electron acceleration: current status and pro- spects // Phys. Usp. 2015, v. 58(1), p. 81. 18. S.E. Perevalov, K.F. Burdonov, A.V. Kotov, et al. Experimental study of strongly mismatched regime of laser-driven wakefield acceleration // Plasma Phys. Contr. Fus. 2020, v. 62, № 9, p. 094004. 19. A.A. Soloviev, K.F. Burdonov, V.N. Ginzburg, et al. Fast electron generation using PW-class PEARL fa- cility // Nucl. Instr. Meth. Phys. Res. A. 2011, v. 653, № 1, p. 35-41. 20. J. Thomas, I.Yu. Kostyukov, J. Pronold, A. Golovanov, A. Pukhov. Non-linear theory of a cavitated plasma wake in a plasma channel for special applications and control // Phys. Plasm. 2016. v. 23, p. 053108. 21. A. Pukhov, O. Jansen, T. Tueckmantel, et al. Field- reversed bubble in deep plasma channels for high- quality electron acceleration // Phys. Rev. Lett. 2014, v. 113 (24), p. 245003. 22. T. Tajima, J.M. Dawson. Laser Electron Accelerator // Phys. Rev. Lett. 1979, v. 43, p. 267. 23. T. Tajima. Laser Acceleration in Novel Media // Eur. Phys. J. Spec. Top. 2014, v. 223, p. 1037. 24. T. Tajima, K. Nakajima, G. Mourou. Laser Accel- eration // Rivista del Nuovo Cimento 2017, v. 40, p. 33. 25. T. Tajima. Laser acceleration and its future // Proc. Jpn. Acad. Ser. B. 2010, v. 86, p. 147. 26. V.A. Balakirev, I.V. Karas', G.V. Sotnikov. Wake- field excitation by a relativistic electron bunch in a magnetized plasma // Plasma Physics Reports. 2001, v. 26(10), p. 889-892. 27. N.I. Ayzatsky, A.N. Dovbnya, V.A. Kushnir, et al. Electron resonant high-current accelerator for re- search of collective acceleration methods // Plasma Phys. 1994, v. 20, № 7, 8, p. 671-673. 28. Ya.B. Fainberg, N.I. Ayzatsky, V.A. Balakirev, et al. Study of excitation of wakefields in plasma by bunches of relativistic electrons // Problems of Atom- ic Science and Technology. 1997, № 3, 4(31, 32), p. 97-99. 29. A.V. Kirichok, V.M. Kuklin, A.V. Mischin, et al. Modelling of Superradiation Processes Driven by an Ultra-Short Bunch of Charged Particles Moving through a Plasma // Problems of Atomic Science and Technology. 2015, № 4, p. 255-257. 30. V.M. Kuklin. One-dimensional moving bunches of charged particles in plasma // Ukr. Phys. J. 1986, v. 31, № 6, p. 853-857. 31. A.G. Zagorodny, V.M. Kuklin. Features of radiation in nonequilibrium media // Problems of Theoretical Physics. Kharkov, 2014, № 1, 532 p. 32. S. Romeo, M. Ferrario, A.R. Rossi. Beam loading assisted matching scheme for high quality plasma acceleration in linear regime // Phys. Rev. Accel. Beams. 2020, v. 23, p. 071301. 33. T. Katsouleas, S. Wilks, P. Chen, T.J.M. Dawson, J.J. Su. Beam Loading in Plasma Accelerators // Particle Accelerators. 1987, v. 22, p. 81-99. 34. S.V. Bulanov, F. Pegoraro, A.M. Pukhov, A.S. Sakharov. Transverse-Wake Wave Breaking // Phys. Rev. Lett. 1997, v. 78. № 22, p. 4205-4208. 35. V.M. Tsakanov. On collinear wakefield acceleration with high transformer ratio // Nucl. Instr. and Meth. in Phys. Res. A. 1999, v. 432, p. 202-213. 36. E. Esarey, S. Sprangle, J. Krall, A. Ting. Overview of Plasma-Based Accelerator Concepts // IEEE Trans. Plasma Sci. 1996, v. PS-24(2), p. 252. 37. S.S. Baturin, A. Zholents. Upper limit for the accel- erating gradient in the collinear wakefield accelera- tor as a function of the transformer ratio // Phys. Rev. Accel. Beams. 2017, v. 20, p. 061302. 38. S.S. Baturin, G. Andonian, J.B. Rosenzweig. Analyt- ical treatment of the wakefields driven by transverse- ly shaped beams in a planar slow-wave structure // Phys. Rev. Accel. Beams. 2018, v. 21(12), p. 121302. 39. S.S. Baturin, A.D. Kanareykin. Cherenkov radiation from short relativistic bunches: general approach // Phys. Rev. Lett. 2014, v. 113, p. 214801. 40. M.A. Shcherbinin, I.O. Anisimov. Short Cylindrical Electron Bunch Dynamics and Wake Fields` Excita- tion in Plasma with the External Magnetic Field // Problems of Atomic Science and Technology. 2015, № 4(98), p. 124-128. ISSN 1562-6016. ВАНТ. 2021. № 6(136) 56 41. A.G. Khachatryan. Effect of a longitudinal magnetic field on the excitation of plasma wake waves // J. Exper. and Theor. Phys. 2002, v. 94, p. 516-520. 42. R.J. Shalloo, C. Arran, L. Corner, et al. Hydrody- namic optical-field-ionized plasma channels // Phys. Rev. E. 2018, v. 97, p. 053203. 43. A. Picksley, A. Alejo, J. Cowley, et al. Guiding of high-intensity laser pulses in 100-mm-long hydrody- namic optical-field-ionized plasma channels // Phys. Rev. Accel. Beams. 2020, v. 23, p. 081303. 44. R.J. Shalloo, C. Arran, A. Picksley, et al. Low- density hydrodynamic optical-field-ionized plasma channels generated with an axicon lens // Phys. Rev. Accel. Beams. 2019, v. 22, p. 041302. 45. J. Cowley, C. Thornton, C. Arran, et al. Excitation and Control of Plasma Wakefields by Multiple Laser Pulses // Phys. Rev. Lett. 2017, v. 119, p. 044802. 46. V.I. Maslov et al. Numerical Simulation of Plateau Formation by an Electron Bunch on the Distribution of an Accelerating Wakefield in a Plasma // Prob- lems of Atomic Science and Technology. 2020, № 6, p. 47. 47. S. van der Meer, CERN-PS-85-65-AA, CLIC-Note-3 (1985) 7. 48. K.V. Lotov. Simulation of ultrarelativistic beam dy- namics in plasma wakefield accelerator // Phys. Plasmas. 1998, v. 5, № 3, p. 785-791. 49. A.P. Sosedkin, K.V. Lotov. LCODE: A parallel qua- sistatic code for computationally heavy problems of plasma wakefield acceleration // Nucl. Instr. and Meth. in Phys. Res. A. 2016, v. 829, p. 350-352. Article received 11.10.2021 ФОРМИРОВАНИЕ ПЛАТО НА УСКОРЯЮЩЕМ КИЛЬВАТЕРНОМ ПОЛЕ ДЛЯ УСКОРЯЕМЫХ СГУСТКОВ ЭЛЕКТРОНОВ И НА ТОРМОЗЯЩЕМ КИЛЬВАТЕРНОМ ПОЛЕ ДЛЯ СГУСТКОВ, ВОЗБУЖДАЮЩИХ ПОЛЕ В.И. Маслов, Р.Т. Овсянников, Д.C. Бондарь, И.П. Левчук, И.Н. Онищенко Ускорение кильватерным полем в плазме может обеспечить компактные источники релятивистских элек- тронных и позитронных пучков высокой яркости. Использование (коллайдеры частиц и лазеры на свобод- ных электронах) плазменных кильватерных ускорителей требует высокой эффективности и пучков с малым разбросом по энергии. Достижения того и другого требуют формирования плато как на ускоряющем поле для ускоряемого сгустка, так и на тормозящем поле для сгустков, которые возбуждает поле, путем контро- лируемой нагрузки пучком плазменной волны с тщательно подобранным профилем тока. Мы демонстриру- ем численным моделированием 2,5D PIC-кодом LCODE такую оптимальную нагрузку пучком в линейном и нелинейном режимах в плазменном ускорителе с возбуждением электронами, которые инжектируются с ВЧ- ускорителя, при небольшом и большом зарядах пучков и высоком их качестве. ФОРМУВАННЯ ПЛАТО НА ПРИСКОРЮЮЧОМУ КІЛЬВАТЕРНОМУ ПОЛІ ДЛЯ ЗГУСТКІВ ЕЛЕКТРОНІВ, ЩО ПРИСКОРЮЮТЬСЯ, І НА ГАЛЬМУЮЧОМУ КІЛЬВАТЕРНОМУ ПОЛІ ДЛЯ ЗГУСТКІВ, ЩО ЗБУДЖУЮТЬ ПОЛЕ В.І. Маслов, Р.Т. Овсянніков, Д.C. Бондарь, І.П. Левчук, І.М. Оніщенко Прискорення кільватерним полем у плазмі може забезпечити компактні джерела релятивістських елект- ронних і позитронних пучків високої яскравості. Використання (колайдери частинок і лазери на вільних еле- ктронах) плазмових кільватерних прискорювачів вимагають високої ефективності і пучків з низьким розки- дом по енергії. Досягнення того і іншого вимагають формування плато як на прискорюючому полі для згуст- ку, що прискорюється, так і на гальмуючому полі для згустків, що збуджують поле, шляхом контрольованого навантаження пучком плазмової хвилі з ретельно підібраним профілем струму. Ми демонструємо чисельним моделюванням 2,5D PIC-кодом LCODE таке оптимальне навантаження пучком у лінійному і нелінійному режимах у плазмовому прискорювачі зі збудженням електронами, які інжектуються з ВЧ-прискорювача, при невеликому і великому зарядах пучків і високій їх якості. https://link.springer.com/journal/11447 https://link.springer.com/journal/11447 https://scholar.google.ru/citations?view_op=view_citation&hl=ru&user=PT12ndAAAAAJ&sortby=pubdate&citation_for_view=PT12ndAAAAAJ:3NQIlFlcGxIC https://scholar.google.ru/citations?view_op=view_citation&hl=ru&user=PT12ndAAAAAJ&sortby=pubdate&citation_for_view=PT12ndAAAAAJ:3NQIlFlcGxIC https://scholar.google.ru/citations?view_op=view_citation&hl=ru&user=PT12ndAAAAAJ&sortby=pubdate&citation_for_view=PT12ndAAAAAJ:3NQIlFlcGxIC