Plateau formation on accelerating wakefield for electron-witness-bunch and on decelerating wakefield for driver-bunches in a plasma
Plasma wakefield acceleration promises compact sources of high-brightness relativistic electron and positron beams. Applications (particle colliders and free-electron lasers) of plasma wakefield accelerators demand low energy spread beams and high-efficiency operation. Achieving both requires platea...
Збережено в:
Дата: | 2021 |
---|---|
Автори: | , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2021
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/195644 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Plateau formation on accelerating wakefield for electron-witness-bunch and on decelerating wakefield for driver-bunches in a plasma / V.I. Maslov, R.T. Ovsiannikov, D.S. Bondar, I.P. Levchuk, I.N. Onishchenko // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 52-56. — Бібліогр.: 49 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-195644 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1956442023-12-05T19:40:02Z Plateau formation on accelerating wakefield for electron-witness-bunch and on decelerating wakefield for driver-bunches in a plasma Maslov, V.I. Ovsiannikov, R.T. Bondar, D.S. Levchuk, I.P. Onishchenko, I.N. Novel and non-standard acceleration technologies Plasma wakefield acceleration promises compact sources of high-brightness relativistic electron and positron beams. Applications (particle colliders and free-electron lasers) of plasma wakefield accelerators demand low energy spread beams and high-efficiency operation. Achieving both requires plateau formation on both the accelerating field for witness-bunch and the decelerating fields for driver-bunches by controlled beam loading of the plasma wave with careful tailored current profiles. We demonstrate by numerical simulation by 2.5D PIC code LCODE such optimal beam loading in a linear and blowout electron-driven plasma accelerator with RF generated low and high beam charge and high beam quality. Прискорення кільватерним полем у плазмі може забезпечити компактні джерела релятивістських електронних і позитронних пучків високої яскравості. Використання (колайдери частинок і лазери на вільних електронах) плазмових кільватерних прискорювачів вимагають високої ефективності і пучків з низьким розкидом по енергії. Досягнення того і іншого вимагають формування плато як на прискорюючому полі для згустку, що прискорюється, так і на гальмуючому полі для згустків, що збуджують поле, шляхом контрольованого навантаження пучком плазмової хвилі з ретельно підібраним профілем струму. Ми демонструємо чисельним моделюванням 2,5D PIC-кодом LCODE таке оптимальне навантаження пучком у лінійному і нелінійному режимах у плазмовому прискорювачі зі збудженням електронами, які інжектуються з ВЧ-прискорювача, при невеликому і великому зарядах пучків і високій їх якості. Ускорение кильватерным полем в плазме может обеспечить компактные источники релятивистских электронных и позитронных пучков высокой яркости. Использование (коллайдеры частиц и лазеры на свободных электронах) плазменных кильватерных ускорителей требует высокой эффективности и пучков с малым разбросом по энергии. Достижения того и другого требуют формирования плато как на ускоряющем поле для ускоряемого сгустка, так и на тормозящем поле для сгустков, которые возбуждает поле, путем контролируемой нагрузки пучком плазменной волны с тщательно подобранным профилем тока. Мы демонстрируем численным моделированием 2,5D PIC-кодом LCODE такую оптимальную нагрузку пучком в линейном и нелинейном режимах в плазменном ускорителе с возбуждением электронами, которые инжектируются с ВЧускорителя, при небольшом и большом зарядах пучков и высоком их качестве. 2021 Article Plateau formation on accelerating wakefield for electron-witness-bunch and on decelerating wakefield for driver-bunches in a plasma / V.I. Maslov, R.T. Ovsiannikov, D.S. Bondar, I.P. Levchuk, I.N. Onishchenko // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 52-56. — Бібліогр.: 49 назв. — англ. 1562-6016 PACS: 29.17.+w; 41.75.Lx DOI: https://doi.org/10.46813/2021-136-052 http://dspace.nbuv.gov.ua/handle/123456789/195644 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Novel and non-standard acceleration technologies Novel and non-standard acceleration technologies |
spellingShingle |
Novel and non-standard acceleration technologies Novel and non-standard acceleration technologies Maslov, V.I. Ovsiannikov, R.T. Bondar, D.S. Levchuk, I.P. Onishchenko, I.N. Plateau formation on accelerating wakefield for electron-witness-bunch and on decelerating wakefield for driver-bunches in a plasma Вопросы атомной науки и техники |
description |
Plasma wakefield acceleration promises compact sources of high-brightness relativistic electron and positron beams. Applications (particle colliders and free-electron lasers) of plasma wakefield accelerators demand low energy spread beams and high-efficiency operation. Achieving both requires plateau formation on both the accelerating field for witness-bunch and the decelerating fields for driver-bunches by controlled beam loading of the plasma wave with careful tailored current profiles. We demonstrate by numerical simulation by 2.5D PIC code LCODE such optimal beam loading in a linear and blowout electron-driven plasma accelerator with RF generated low and high beam charge and high beam quality. |
format |
Article |
author |
Maslov, V.I. Ovsiannikov, R.T. Bondar, D.S. Levchuk, I.P. Onishchenko, I.N. |
author_facet |
Maslov, V.I. Ovsiannikov, R.T. Bondar, D.S. Levchuk, I.P. Onishchenko, I.N. |
author_sort |
Maslov, V.I. |
title |
Plateau formation on accelerating wakefield for electron-witness-bunch and on decelerating wakefield for driver-bunches in a plasma |
title_short |
Plateau formation on accelerating wakefield for electron-witness-bunch and on decelerating wakefield for driver-bunches in a plasma |
title_full |
Plateau formation on accelerating wakefield for electron-witness-bunch and on decelerating wakefield for driver-bunches in a plasma |
title_fullStr |
Plateau formation on accelerating wakefield for electron-witness-bunch and on decelerating wakefield for driver-bunches in a plasma |
title_full_unstemmed |
Plateau formation on accelerating wakefield for electron-witness-bunch and on decelerating wakefield for driver-bunches in a plasma |
title_sort |
plateau formation on accelerating wakefield for electron-witness-bunch and on decelerating wakefield for driver-bunches in a plasma |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2021 |
topic_facet |
Novel and non-standard acceleration technologies |
url |
http://dspace.nbuv.gov.ua/handle/123456789/195644 |
citation_txt |
Plateau formation on accelerating wakefield for electron-witness-bunch and on decelerating wakefield for driver-bunches in a plasma / V.I. Maslov, R.T. Ovsiannikov, D.S. Bondar, I.P. Levchuk, I.N. Onishchenko // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 52-56. — Бібліогр.: 49 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT maslovvi plateauformationonacceleratingwakefieldforelectronwitnessbunchandondeceleratingwakefieldfordriverbunchesinaplasma AT ovsiannikovrt plateauformationonacceleratingwakefieldforelectronwitnessbunchandondeceleratingwakefieldfordriverbunchesinaplasma AT bondards plateauformationonacceleratingwakefieldforelectronwitnessbunchandondeceleratingwakefieldfordriverbunchesinaplasma AT levchukip plateauformationonacceleratingwakefieldforelectronwitnessbunchandondeceleratingwakefieldfordriverbunchesinaplasma AT onishchenkoin plateauformationonacceleratingwakefieldforelectronwitnessbunchandondeceleratingwakefieldfordriverbunchesinaplasma |
first_indexed |
2025-07-16T23:44:58Z |
last_indexed |
2025-07-16T23:44:58Z |
_version_ |
1837849115575189504 |
fulltext |
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 52
NOVEL AND NON-STANDARD ACCELERATION TECHNOLOGIES
https://doi.org/10.46813/2021-136-052
PLATEAU FORMATION ON ACCELERATING WAKEFIELD
FOR ELECTRON-WITNESS-BUNCH AND ON DECELERATING
WAKEFIELD FOR DRIVER-BUNCHES IN A PLASMA
V.I. Maslov
1,2
, R.T. Ovsiannikov
2
, D.S. Bondar
1,2
, I.P. Levchuk
1
, I.N. Onishchenko
1
1
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine;
2
V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
E-mail: vmaslov@kipt.kharkov.ua
Plasma wakefield acceleration promises compact sources of high-brightness relativistic electron and positron
beams. Applications (particle colliders and free-electron lasers) of plasma wakefield accelerators demand low energy
spread beams and high-efficiency operation. Achieving both requires plateau formation on both the accelerating field
for witness-bunch and the decelerating fields for driver-bunches by controlled beam loading of the plasma wave with
careful tailored current profiles. We demonstrate by numerical simulation by 2.5D PIC code LCODE such optimal
beam loading in a linear and blowout electron-driven plasma accelerator with RF generated low and high beam
charge and high beam quality.
PACS: 29.17.+w; 41.75.Lx
INTRODUCTION
Plasma wakefield accelerators have the ability to
sustain accelerating gradients to 100 GV∕m [1 - 3]. In
conventional accelerators, due to breakdown which oc-
curs on the walls of the accelerating structure at high
electric fields, accelerating gradients are currently lim-
ited to approximately 100 MV∕m [4] due to breakdown.
Successful experiments on electron-bunch-driven wake-
field acceleration have demonstrated acceleration of
GeV-class electrons [3] and have therefore confirmed
the relevance of this acceleration method. Plasma wake-
field acceleration promises compact sources of high-
brightness relativistic electron beams. Because the
plasma accelerators provide large accelerating gradients
the plasma (see [5 - 45]) accelerators are intensively
investigated.
However, the quality of electron bunch produced in
plasma accelerators is not yet sufficient for the realiza-
tion applications. Precise control over the injected elec-
tron bunch properties is a key problem for plasma wake-
field accelerators. One promising strategy towards the
improvement of final quality of the accelerated electron
bunch is the use of an electron beam from a convention-
al electron linac. Well-developed technologies of radio-
frequency linacs allow electron bunches of good quality:
small size and small energy spread to be provided.
Applications (particle colliders and free-electron la-
sers) of plasma wakefield accelerators demand low en-
ergy spread beams and high-efficiency operation.
Achieving both requires plateau formation on both the
accelerating field for witness-bunch and the decelerating
fields for driver-bunches by controlled beam loading of
the plasma wave with careful tailored current profiles
[32, 33, 46]. It has been proposed in [47] to use the
beam loading effect (see [32, 33]) to compensate the
energy spread of an electron beam in plasma wakefield
accelerators.
In this paper, we report on numerical investigations
on optimization of the self-consistent distribution of an
accelerating wakefield of plateau type, which can lead to
minimizing the witness-bunch quality degradation dur-
ing acceleration by a plasma wakefield, excited by an
electron driver-bunches and formation a plateau on de-
celerating wakefield in areas of driver-bunches to in-
crease efficiency of plasma wakefield accelerator with
external injection. Analyzing the dependence of distri-
bution of an accelerating and decelerating wakefield on
witness-bunch density and driver-bunch density, we
have demonstrated a mechanism to compensate the en-
ergy spread and to ensure the same deceleration of all
electrons of each bunch.
We present results of numerical simulation of plasma
wakefield excitation by driver-bunches and this wake-
field modification, leading to plateau formation, by wit-
ness-bunch in its area and by driver-bunches in their
areas. The numerical simulation has performed with
2.5D code LCODE [48, 49], which considers the elec-
trons of the beam as ensembles of macroparticles, and
the electrons of the plasma as a cold electron fluid. We
demonstrate by numerical simulation optimal beam
loading in a plasma accelerator with RF generated low
and high beam charge and high beam quality.
We consider the bunch, electrons in which are dis-
tributed according to Gaussian in the transverse direc-
tion along the radius. We use the cylindrical coordinate
system (r, z) and draw the plasma and beam densities
and longitudinal electric field at some z as a function of
the dimensionless time τ=ωpt or =Vbt-z, Vb is the bunch
velocity. Time is normalized on electron plasma fre-
quency ωpe
-1
, distance – on c/ωpe, bunch current Ib – on
Icr=mc
3
/4e, fields – on mcωpe/e. e, m are the charge and
mass of the electron, c is the light velocity.
mailto:vmaslov@kipt.kharkov.ua
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 53
1. INVESTIGATION OF THE PLATEAU
FORMATION ON THE DISTRIBUTION
OF AN ACCELERATING WAKEFIELD
IN A PLASMA BY AN ELECTRON
WITNESS-BUNCH
To begin with, we consider the wakefield excitation
in plasma in blowout regime by short electron bunch and
plateau formation by accelerated bunch on the special
distribution of an accelerating wakefield Ez() (Fig. 1).
One can see that accelerated bunch of a certain charge
leads to the formation of a plateau on Ez() at some
depth inside the bubble.
Fig. 1. The on-axis wakefield excitation Ez by short
bunch-driver and plateau formation on Ez() by bunch-
witness. Densities of bunches nb on the axis are shown
by blue. Plasma electron density ne is shown to be black
as a function of the coordinate along the plasma.
The length of driver-bunch is equal to 0.08 of bubble
length. The length of witness-bunch is equal to 0.04
of bubble length. The radius of bunches is equal to 0.3.
The maximum current of bunch-driver is equal
to Ib=0.72. The maximum current of bunch-witness
is equal to Ib=0.06. The relativistic factor of bunches
is equal to 1000. The arrow shows the plateau
In this case, the witness-bunch is in an almost uni-
form focusing field (Fig. 2).
Fig. 2. The off-axis wakefield excitation Ez by short
bunch-driver and plateau formation on Ez() by bunch-
witness. The off-axis densities of bunches nb are shown
by blue. The off-axis wake focusing force Fr is shown
to be yellow as a function of the coordinate along
the plasma. The parameters are identical to Fig. 1.
The arrow shows the plateau
2. INVESTIGATION OF THE PLATEAU
FORMATION IN A PLASMA
BY AN ELECTRON WITNESS-BUNCH
ON THE DISTRIBUTION
OF AN ACCELERATING WAKEFIELD,
EXCITED BY SHORT TRAIN
OF RESONANT DRIVER-BUNCHES
Now we simulate the plateau formation on the distri-
bution of an accelerating wakefield in a plasma by an
electron witness-bunch in the case of wakefield excita-
tion by short train of resonant electron driver-bunches
(Fig. 3).
Fig. 3. The on-axis wakefield excitation Ez by short
train of resonant electron driver-bunches and plateau
formation on Ez() by witness-bunch. Transversal
emittance of bunches is shown to be black. The length
of bunches is equal to 0.19 of bubble length. The radius
of bunches is equal to 0.3. The maximum current
of bunch-driver is equal to Ib=2∙10
-3
. The maximum
current of bunch-witness is equal to Ib=8∙10
-3
.
The arrow shows the plateau
Fig. 4. The off-axis wakefield excitation Ez by short
train of driver-bunches and plateau formation on Ez()
by witness-bunch. The off-axis densities of bunches nb
are shown by blue. The off-axis wake focusing force Fr
is shown to be yellow as a function of the coordinate
along the plasma. The parameters are identical
to Fig. 3. The arrow shows the plateau
In this case, the whitness-bunch is entirely in the fo-
cusing field (Fig. 4), in contrast to the Gaussian bunch,
which would be partially focused and partially defo-
cused.
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 54
3. INVESTIGATION OF THE PLATEAU
FORMATION ON THE DISTRIBUTION
OF A DECELERATING WAKEFIELD
IN A PLASMA BY AN ELECTRON
DRIVER-BUNCHES
Now we simulate the plateau formation on the distri-
bution of a decelerating wakefield, excited by short train
of resonant electron driver-bunches in a plasma (Fig. 5).
Fig. 5. The on-axis wakefield excitation Ez by short
train of resonant electron driver-bunches and plateau
formation on Ez() by driver-bunches. Transversal
emittance of bunches is shown to be black. The length
of bunches is equal to 0.19 of bubble length. The radius
of bunches is equal to 0.3. The maximum current
of bunch-driver is equal to Ib=1.2∙10
-2
.
The arrows show the plateaus
Fig. 6. The off-axis wakefield excitation Ez by short
bunch-driver and plateau formation on Ez() by bunch-
witness. The off-axis densities of bunches nb are shown
by blue. The off-axis wake focusing force is shown
to be yellow Fr as a function of the coordinate along
the plasma. The parameters are identical to Fig. 5.
The arrows show the plateau
In this case, the driver-bunches are entirely in the fo-
cusing field (Fig. 6), in contrast to the Gaussian bunch-
es, which would be partially focused and partially defo-
cused.
CONCLUSIONS
The evolution of the distribution of accelerating and
decelerating wakefields of plateau types has been inves-
tigated during wakefield excitation and electron acceler-
ation by wakefield in linear and blowout regimes. The
plasma wakefield is excited by an electron-bunch or by a
short train of electron-bunches. The investigation has
performed, using 2.5D PIC simulations by code
LCODE. The final quality of the accelerated bunch
strongly depends on the distribution of an accelerating
wakefield. The part of energy, transferred to wakefield
by driver-bunches, also strongly depends on the distribu-
tion of an decelerating wakefield. The investigations
presented here show that the accelerated and decelerated
bunch densities and their shapes can support plateau
type distribution of accelerating and decelerating
wakefields during acceleration in linear and blowout
regimes. This can lead to energy spread of accelerated
bunch decrease and to increase of part of energy, trans-
ferred to the wakefield by driver-bunches.
ACKNOWLEDGEMENTS
The study is supported by the National Research
Foundation of Ukraine under the program “Leading and
Young Scientists Research Support” (project agreement
# 2020.02/0299).
REFERENCES
1. W.P. Leemans, A.J. Gonsalves, H.-S. Mao, et al.
Multi-GeV Electron Beams from Capillary-
Discharge-Guided Subpetawatt Laser Pulses in the
Self-Trapping Regime // Phys. Rev. Lett. 2014,
v. 113, p. 245002.
2. A.J. Gonsalves, K. Nakamura, J. Daniels, et al.
Petawatt Laser Guiding and Electron Beam Acceler-
ation to 8 GeV in a Laser-Heated Capillary Dis-
charge Waveguide // Phys. Rev. Lett. 2019, v. 122,
p. 084801.
3. I. Blumenfeld, C.E. Clayton, F.-J. Decker, et al. Energy
doubling of 42 GeV electrons in a metre-scale plas-
ma wakefield accelerator // Nature, Letters. 2007,
v. 445, p. 741-744.
4. E. Esarey, C.B. Schroeder, W.P. Leemans. Physics
of laser-driven plasma-based electron accelerators //
Rev. Mod. Phys. 2009, v. 81, p. 1229-1285.
5. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, et al.
Homogeneous Focusing of Electron Bunch Sequence
by Plasma Wakefield // Problems of Atomic Science
and Technology. 2012, № 3, p. 159-163.
6. V.I. Maslov, I.N. Onishchenko, I.P. Yarovaya. Plas-
ma Wakefield Excitation, Possessing of Homogeneous
Focusing of Electron Bunches // Problems of Atomic
Science and Technology. 2013, № 1, p. 134-136.
7. V.I. Maslov, I.N. Onishchenko, I.P. Yarovaya.
Fields excited and providing a uniform focusing of
short relativistic electron bunches in plasma // East
European Journal of Physics. 2014, v. 1, № 2, p. 92-
95.
8. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, et al.
Transformer Ratio at Interaction of Long Sequence of
Electron Bunches with Plasma // Problems of Atomic
Science and Technology. 2011, № 3, p. 87-91.
9. V.I. Maslov, I.N. Onishchenko, I.P. Yarovaya.
Transformer Ratio at Excitation of Nonlinear Wake-
field in Plasma by Shaped Sequence of Electron
Bunches with Linear Growth of Charge // Problems
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 55
of Atomic Science and Technology. 2012, № 4,
p. 128-130.
10. K.V. Lotov, V.I. Maslov, I.N. Onishchenko. Trans-
former Ratio in Wake-Field Method of Acceleration
for Sequence of Relativistic Electron Bunches //
Problems of Atomic Science and Technology. 2010,
№ 4, p. 85-89.
11. V.I. Maslov, I.N. Onishchenko, I.P. Yarovaya.
Wakefield Excitation in Plasma by Sequence of
Shaped Electron Bunches // Problems of Atomic Sci-
ence and Technology. 2012, № 6, p. 161-163.
12. I.P. Levchuk, V.I. Maslov, I.N. Onishchenko. Trans-
former Ratio at Wakefield Excitation by Linearly
Shaped Sequence of Short Relativistic Electron
Bunches // Problems of Atomic Science and Tech-
nology. 2015, № 6, p. 37-41.
13. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, et al.
Simulation of plasma wakefield excitation by a se-
quence of electron bunches // Problems of Atomic
Science and Technology. 2008, № 6, p. 114-116.
14. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, et al.
Resonant excitation of plasma wakefield by a
nonresonant train of short electron bunches // Plas-
ma Phys. Cont. Fus. 2010, v. 52, № 6, p. 065009.
15. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, et al.
2.5D simulation of plasma wakefield excitation by a
nonresonant chain of relativistic electron bunches //
Problems of Atomic Science and Technology. 2010,
№ 2, p. 122-124.
16. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, et al.
Mechanisms of Synchronization of Relativistic Elec-
tron Bunches at Wakefield Excitation in Plasma //
Problems of Atomic Science and Technology. 2013,
№ 4, p. 73-76.
17. I.Y. Kostyukov, A.M. Pukhov. Plasma-based meth-
ods for electron acceleration: current status and pro-
spects // Phys. Usp. 2015, v. 58(1), p. 81.
18. S.E. Perevalov, K.F. Burdonov, A.V. Kotov, et al.
Experimental study of strongly mismatched regime
of laser-driven wakefield acceleration // Plasma
Phys. Contr. Fus. 2020, v. 62, № 9, p. 094004.
19. A.A. Soloviev, K.F. Burdonov, V.N. Ginzburg, et al.
Fast electron generation using PW-class PEARL fa-
cility // Nucl. Instr. Meth. Phys. Res. A. 2011, v. 653,
№ 1, p. 35-41.
20. J. Thomas, I.Yu. Kostyukov, J. Pronold, A. Golovanov,
A. Pukhov. Non-linear theory of a cavitated plasma
wake in a plasma channel for special applications
and control // Phys. Plasm. 2016. v. 23, p. 053108.
21. A. Pukhov, O. Jansen, T. Tueckmantel, et al. Field-
reversed bubble in deep plasma channels for high-
quality electron acceleration // Phys. Rev. Lett. 2014,
v. 113 (24), p. 245003.
22. T. Tajima, J.M. Dawson. Laser Electron Accelerator
// Phys. Rev. Lett. 1979, v. 43, p. 267.
23. T. Tajima. Laser Acceleration in Novel Media //
Eur. Phys. J. Spec. Top. 2014, v. 223, p. 1037.
24. T. Tajima, K. Nakajima, G. Mourou. Laser Accel-
eration // Rivista del Nuovo Cimento 2017, v. 40,
p. 33.
25. T. Tajima. Laser acceleration and its future // Proc.
Jpn. Acad. Ser. B. 2010, v. 86, p. 147.
26. V.A. Balakirev, I.V. Karas', G.V. Sotnikov. Wake-
field excitation by a relativistic electron bunch in a
magnetized plasma // Plasma Physics Reports. 2001,
v. 26(10), p. 889-892.
27. N.I. Ayzatsky, A.N. Dovbnya, V.A. Kushnir, et al.
Electron resonant high-current accelerator for re-
search of collective acceleration methods // Plasma
Phys. 1994, v. 20, № 7, 8, p. 671-673.
28. Ya.B. Fainberg, N.I. Ayzatsky, V.A. Balakirev, et al.
Study of excitation of wakefields in plasma by
bunches of relativistic electrons // Problems of Atom-
ic Science and Technology. 1997, № 3, 4(31, 32),
p. 97-99.
29. A.V. Kirichok, V.M. Kuklin, A.V. Mischin, et al.
Modelling of Superradiation Processes Driven by an
Ultra-Short Bunch of Charged Particles Moving
through a Plasma // Problems of Atomic Science and
Technology. 2015, № 4, p. 255-257.
30. V.M. Kuklin. One-dimensional moving bunches of
charged particles in plasma // Ukr. Phys. J. 1986,
v. 31, № 6, p. 853-857.
31. A.G. Zagorodny, V.M. Kuklin. Features of radiation
in nonequilibrium media // Problems of Theoretical
Physics. Kharkov, 2014, № 1, 532 p.
32. S. Romeo, M. Ferrario, A.R. Rossi. Beam loading
assisted matching scheme for high quality plasma
acceleration in linear regime // Phys. Rev. Accel.
Beams. 2020, v. 23, p. 071301.
33. T. Katsouleas, S. Wilks, P. Chen, T.J.M. Dawson,
J.J. Su. Beam Loading in Plasma Accelerators //
Particle Accelerators. 1987, v. 22, p. 81-99.
34. S.V. Bulanov, F. Pegoraro, A.M. Pukhov,
A.S. Sakharov. Transverse-Wake Wave Breaking //
Phys. Rev. Lett. 1997, v. 78. № 22, p. 4205-4208.
35. V.M. Tsakanov. On collinear wakefield acceleration
with high transformer ratio // Nucl. Instr. and Meth.
in Phys. Res. A. 1999, v. 432, p. 202-213.
36. E. Esarey, S. Sprangle, J. Krall, A. Ting. Overview
of Plasma-Based Accelerator Concepts // IEEE
Trans. Plasma Sci. 1996, v. PS-24(2), p. 252.
37. S.S. Baturin, A. Zholents. Upper limit for the accel-
erating gradient in the collinear wakefield accelera-
tor as a function of the transformer ratio // Phys. Rev.
Accel. Beams. 2017, v. 20, p. 061302.
38. S.S. Baturin, G. Andonian, J.B. Rosenzweig. Analyt-
ical treatment of the wakefields driven by transverse-
ly shaped beams in a planar slow-wave structure //
Phys. Rev. Accel. Beams. 2018, v. 21(12),
p. 121302.
39. S.S. Baturin, A.D. Kanareykin. Cherenkov radiation
from short relativistic bunches: general approach //
Phys. Rev. Lett. 2014, v. 113, p. 214801.
40. M.A. Shcherbinin, I.O. Anisimov. Short Cylindrical
Electron Bunch Dynamics and Wake Fields` Excita-
tion in Plasma with the External Magnetic Field //
Problems of Atomic Science and Technology. 2015,
№ 4(98), p. 124-128.
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 56
41. A.G. Khachatryan. Effect of a longitudinal magnetic
field on the excitation of plasma wake waves // J.
Exper. and Theor. Phys. 2002, v. 94, p. 516-520.
42. R.J. Shalloo, C. Arran, L. Corner, et al. Hydrody-
namic optical-field-ionized plasma channels // Phys.
Rev. E. 2018, v. 97, p. 053203.
43. A. Picksley, A. Alejo, J. Cowley, et al. Guiding of
high-intensity laser pulses in 100-mm-long hydrody-
namic optical-field-ionized plasma channels // Phys.
Rev. Accel. Beams. 2020, v. 23, p. 081303.
44. R.J. Shalloo, C. Arran, A. Picksley, et al. Low-
density hydrodynamic optical-field-ionized plasma
channels generated with an axicon lens // Phys. Rev.
Accel. Beams. 2019, v. 22, p. 041302.
45. J. Cowley, C. Thornton, C. Arran, et al. Excitation
and Control of Plasma Wakefields by Multiple Laser
Pulses // Phys. Rev. Lett. 2017, v. 119, p. 044802.
46. V.I. Maslov et al. Numerical Simulation of Plateau
Formation by an Electron Bunch on the Distribution
of an Accelerating Wakefield in a Plasma // Prob-
lems of Atomic Science and Technology. 2020, № 6,
p. 47.
47. S. van der Meer, CERN-PS-85-65-AA, CLIC-Note-3
(1985) 7.
48. K.V. Lotov. Simulation of ultrarelativistic beam dy-
namics in plasma wakefield accelerator // Phys.
Plasmas. 1998, v. 5, № 3, p. 785-791.
49. A.P. Sosedkin, K.V. Lotov. LCODE: A parallel qua-
sistatic code for computationally heavy problems of
plasma wakefield acceleration // Nucl. Instr. and
Meth. in Phys. Res. A. 2016, v. 829, p. 350-352.
Article received 11.10.2021
ФОРМИРОВАНИЕ ПЛАТО НА УСКОРЯЮЩЕМ КИЛЬВАТЕРНОМ ПОЛЕ ДЛЯ УСКОРЯЕМЫХ
СГУСТКОВ ЭЛЕКТРОНОВ И НА ТОРМОЗЯЩЕМ КИЛЬВАТЕРНОМ ПОЛЕ ДЛЯ СГУСТКОВ,
ВОЗБУЖДАЮЩИХ ПОЛЕ
В.И. Маслов, Р.Т. Овсянников, Д.C. Бондарь, И.П. Левчук, И.Н. Онищенко
Ускорение кильватерным полем в плазме может обеспечить компактные источники релятивистских элек-
тронных и позитронных пучков высокой яркости. Использование (коллайдеры частиц и лазеры на свобод-
ных электронах) плазменных кильватерных ускорителей требует высокой эффективности и пучков с малым
разбросом по энергии. Достижения того и другого требуют формирования плато как на ускоряющем поле
для ускоряемого сгустка, так и на тормозящем поле для сгустков, которые возбуждает поле, путем контро-
лируемой нагрузки пучком плазменной волны с тщательно подобранным профилем тока. Мы демонстриру-
ем численным моделированием 2,5D PIC-кодом LCODE такую оптимальную нагрузку пучком в линейном и
нелинейном режимах в плазменном ускорителе с возбуждением электронами, которые инжектируются с ВЧ-
ускорителя, при небольшом и большом зарядах пучков и высоком их качестве.
ФОРМУВАННЯ ПЛАТО НА ПРИСКОРЮЮЧОМУ КІЛЬВАТЕРНОМУ ПОЛІ ДЛЯ ЗГУСТКІВ
ЕЛЕКТРОНІВ, ЩО ПРИСКОРЮЮТЬСЯ, І НА ГАЛЬМУЮЧОМУ КІЛЬВАТЕРНОМУ ПОЛІ
ДЛЯ ЗГУСТКІВ, ЩО ЗБУДЖУЮТЬ ПОЛЕ
В.І. Маслов, Р.Т. Овсянніков, Д.C. Бондарь, І.П. Левчук, І.М. Оніщенко
Прискорення кільватерним полем у плазмі може забезпечити компактні джерела релятивістських елект-
ронних і позитронних пучків високої яскравості. Використання (колайдери частинок і лазери на вільних еле-
ктронах) плазмових кільватерних прискорювачів вимагають високої ефективності і пучків з низьким розки-
дом по енергії. Досягнення того і іншого вимагають формування плато як на прискорюючому полі для згуст-
ку, що прискорюється, так і на гальмуючому полі для згустків, що збуджують поле, шляхом контрольованого
навантаження пучком плазмової хвилі з ретельно підібраним профілем струму. Ми демонструємо чисельним
моделюванням 2,5D PIC-кодом LCODE таке оптимальне навантаження пучком у лінійному і нелінійному
режимах у плазмовому прискорювачі зі збудженням електронами, які інжектуються з ВЧ-прискорювача, при
невеликому і великому зарядах пучків і високій їх якості.
https://link.springer.com/journal/11447
https://link.springer.com/journal/11447
https://scholar.google.ru/citations?view_op=view_citation&hl=ru&user=PT12ndAAAAAJ&sortby=pubdate&citation_for_view=PT12ndAAAAAJ:3NQIlFlcGxIC
https://scholar.google.ru/citations?view_op=view_citation&hl=ru&user=PT12ndAAAAAJ&sortby=pubdate&citation_for_view=PT12ndAAAAAJ:3NQIlFlcGxIC
https://scholar.google.ru/citations?view_op=view_citation&hl=ru&user=PT12ndAAAAAJ&sortby=pubdate&citation_for_view=PT12ndAAAAAJ:3NQIlFlcGxIC
|