Formation of mixed X,n-radiation field at an electron accelerator

For conducting photonuclear programs with the use of a high-intensity photon source the latter is ordinary obtained by transformation of an electron beam into X-ray radiation. Such a process is performed using an intermediate target-converter maid from a high-Z material. The (γ,n) reactions take pla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2022
Hauptverfasser: Zakharchenko, A.A., Uvarov, V.L., Malets, Eu.B.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2022
Schriftenreihe:Problems of Atomic Science and Technology
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/195787
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Formation of mixed X,n-radiation field at an electron accelerator / A.A. Zakharchenko, V.L. Uvarov, Eu.B. Malets // Problems of Atomic Science and Technology. — 2022. — № 5. — С. 68-72. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-195787
record_format dspace
spelling irk-123456789-1957872023-12-07T12:14:45Z Formation of mixed X,n-radiation field at an electron accelerator Zakharchenko, A.A. Uvarov, V.L. Malets, Eu.B. Linear charged-particle accelerators For conducting photonuclear programs with the use of a high-intensity photon source the latter is ordinary obtained by transformation of an electron beam into X-ray radiation. Such a process is performed using an intermediate target-converter maid from a high-Z material. The (γ,n) reactions take place in the converter under the action of high-energy bremsstrahlung photons. As a result, a quasi-isotropic neutron flux escapes the converter jointly with the photon beam directed forward. The parameters of the both types of radiation, as well as the ratio of their intensities play the important role depending on a program under way. In work, the spatial radiant characteristics of the mixed X,n-radiation generated with the electron beam in the converter located together with an isotopic target in the middle of a neutron moderator in the electron energy range 40…95 MeV and various size of the moderator are studied by computer simulations with the use of a GEANT4 transport code. Для виконання фотоядерних програм з використанням джерела фотонів великої інтенсивності останнє зазвичай одержують шляхом трансформації пучка електронів у гальмівне випромінення. Цей процес здійснюють за допомогою проміжної мішені-конвертера, який виготовляють з матеріалу з великим Z. Під дією високоенергетичних гальмівних фотонів у конвертері відбуваються (γ,n)-реакції. Як результат, з нього, крім спрямованого уперед потоку фотонів, виходить також квазіізоторопний потік нейтронів. Параметри обох видів випромінення, так само як і співвідношення їх інтенсивностей, грають важливу роль залежно від програми, що виконується. У роботі методом комп’ютерного моделювання з використанням транспортного коду GEANT4 досліджено просторово-енергетичні характеристики мішаного X,n-випромінення, яке генерується електронним пучком у конвертері з танталу, що розміщений разом з ізотопною мішенню у середині модератора нейтронів, при енергії електронів у діапазоні 40…95 МеВ і різному розмірі модератора. 2022 Article Formation of mixed X,n-radiation field at an electron accelerator / A.A. Zakharchenko, V.L. Uvarov, Eu.B. Malets // Problems of Atomic Science and Technology. — 2022. — № 5. — С. 68-72. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 87.56.bd; 41.50.+h;81.40.Wx; 87.53Bn DOI: https://doi.org/10.46813/2022-141-068 http://dspace.nbuv.gov.ua/handle/123456789/195787 en Problems of Atomic Science and Technology Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Linear charged-particle accelerators
Linear charged-particle accelerators
spellingShingle Linear charged-particle accelerators
Linear charged-particle accelerators
Zakharchenko, A.A.
Uvarov, V.L.
Malets, Eu.B.
Formation of mixed X,n-radiation field at an electron accelerator
Problems of Atomic Science and Technology
description For conducting photonuclear programs with the use of a high-intensity photon source the latter is ordinary obtained by transformation of an electron beam into X-ray radiation. Such a process is performed using an intermediate target-converter maid from a high-Z material. The (γ,n) reactions take place in the converter under the action of high-energy bremsstrahlung photons. As a result, a quasi-isotropic neutron flux escapes the converter jointly with the photon beam directed forward. The parameters of the both types of radiation, as well as the ratio of their intensities play the important role depending on a program under way. In work, the spatial radiant characteristics of the mixed X,n-radiation generated with the electron beam in the converter located together with an isotopic target in the middle of a neutron moderator in the electron energy range 40…95 MeV and various size of the moderator are studied by computer simulations with the use of a GEANT4 transport code.
format Article
author Zakharchenko, A.A.
Uvarov, V.L.
Malets, Eu.B.
author_facet Zakharchenko, A.A.
Uvarov, V.L.
Malets, Eu.B.
author_sort Zakharchenko, A.A.
title Formation of mixed X,n-radiation field at an electron accelerator
title_short Formation of mixed X,n-radiation field at an electron accelerator
title_full Formation of mixed X,n-radiation field at an electron accelerator
title_fullStr Formation of mixed X,n-radiation field at an electron accelerator
title_full_unstemmed Formation of mixed X,n-radiation field at an electron accelerator
title_sort formation of mixed x,n-radiation field at an electron accelerator
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2022
topic_facet Linear charged-particle accelerators
url http://dspace.nbuv.gov.ua/handle/123456789/195787
citation_txt Formation of mixed X,n-radiation field at an electron accelerator / A.A. Zakharchenko, V.L. Uvarov, Eu.B. Malets // Problems of Atomic Science and Technology. — 2022. — № 5. — С. 68-72. — Бібліогр.: 10 назв. — англ.
series Problems of Atomic Science and Technology
work_keys_str_mv AT zakharchenkoaa formationofmixedxnradiationfieldatanelectronaccelerator
AT uvarovvl formationofmixedxnradiationfieldatanelectronaccelerator
AT maletseub formationofmixedxnradiationfieldatanelectronaccelerator
first_indexed 2025-07-16T23:58:50Z
last_indexed 2025-07-16T23:58:50Z
_version_ 1837849987632857088
fulltext 68 ISSN 1562-6016. Problems of Atomic Science and Technology. 2022. №5(141) https://doi.org/10.46813/2022-141-068 FORMATION OF MIXED X,n-RADIATION FIELD AT AN ELECTRON ACCELERATOR A.A. Zakharchenko 1 , V.L. Uvarov 1 , Eu.B. Malets 2 1 National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine; 2 H.S. Skovoroda Kharkiv National Pedagogical University, Kharkiv, Ukraine E-mail: uvarov@kipt.kharkov.ua For conducting photonuclear programs with the use of a high-intensity photon source the latter is ordinary ob- tained by transformation of an electron beam into X-ray radiation. Such a process is performed using an intermedi- ate target-converter maid from a high-Z material. The (,n) reactions take place in the converter under the action of high-energy bremsstrahlung photons. As a result, a quasi-isotropic neutron flux escapes the converter jointly with the photon beam directed forward. The parameters of the both types of radiation, as well as the ratio of their intensi- ties play the important role depending on a program under way. In work, the spatial radiant characteristics of the mixed X,n-radiation generated with the electron beam in the converter located together with an isotopic target in the middle of a neutron moderator in the electron energy range 40…95 MeV and various size of the moderator are stud- ied by computer simulations with the use of a GEANT4 transport code. PACS: 87.56.bd; 41.50.+h;81.40.Wx; 87.53Bn INTRODUCTION Pulse neuron sources on the basis of electron accel- erator provide the possibility to measure the cross section of the neutron-capture reactions at neutron energy in the range from thermal one until tens MeV using a time-of- flight technique. The most widespread way to obtain such radiation field is the neutron generation by (,sn) reaction in a converter of the bremsstrahlung (X-ray) radiation exposed to an electron beam. A specially developed moderator is commonly applied to increase the yield of the low-energy neutrons (see e.g. [1]). A promise area of application of the mixed Х,n-radiation with the thermalized spectrum of the neu- tron component is photonuclear technology of isotope production, in particular, of medical assignment [2]. In work, the possibility to control the radiation flux density and neutron spectrum at an isotopic target by moderator size and electron beam energy is studied by computer simulation on the basis of a GEANT4 code [3]. 1. SIMULATION CONDITIONS 1.1. In the research of processes of the neutron gen- eration and moderation, a device outlined in Fig. 1 was considered as the basis. It comprises a branch tube from aluminum 1, which axes coincides with the axes of the electron beam. At the tube centre, the bremsstrahlung converter K and isotopic target M are positioned. The converter consists of four tantalum plates each by 1mm in thickness separated with the same gaps for cooling. For measuring the isotope yield under joint acting of X-rays and thermalized neutrons, the tube with the con- verter and target were located in the middle of the mod- erator. Detail description of the latter is given in the work. A channel for placement of neutron activation detectors was preliminary maid in the moderator body. 1.2. At the beginning of the research, the data on the cross section of the 181 Ta(,sn) 181-s Ta reactions that pro- vide the photoneutron generation in the Ta converter were checked. Their excitation functions calculated by a TALYS-1.95 package [4] and used in simulations were compared with those obtained experimentally (Fig. 2). Fig. 1. Target station with the neutron moderator 10 15 20 25 30 35 40 45 0 100 200 300 400 500 C ro ss -s ec ti o n , m b E , MeV talys Ta181(g,n)Ta180 Ta181(g,2n)Ta179 Ta181(g,3n)Ta178 Total neutron production Experiment Ta-180, [5] Ta-180, [6] Ta-179, [7] Ta-179, [8] Fig. 2. Cross section of the Ta 181 (,sn)Ta 181-s reactions (TALYS + experiment) For comparison the cross sections of the neutron photogeneration in tantalum computed by TALYS and GEANT4 codes respectively are represented in Fig. 3. It is seen that in the area of giant dipole resonance (GDR) both presentations of the excitation function are in good agreement. For calculation of the neutron yield from the converter into the front and back half-space relative to the electron beam, and also energy distribution of the neutrons, the circuit given in Fig. 4, was used. mailto:uvarov@kipt.kharkov.ua ISSN 1562-6016. Problems of Atomic Science and Technology. 2022. №5(141) 69 10 20 30 40 50 60 70 80 90 100 0 100 200 300 400 500 600 C ro ss -s ec ti o n , m b E , MeV Ta-181(g,n) talys geant4 LEND Fig. 3. Cross section of the Ta 181 (,sn)Ta 181-s reaction (TALYS + GEANT4 LEND) Fig. 4. Geometry of calculation of the photoneutron yield from the converter 2. RESULTS 2.1. In Figs. 5, 6 the results of modeling of the neu- tron reduced yield, spectrum and output angle from the converter at an electron beam energy of 40 MeV are given. 0 1 2 3 4 5 6 7 8 9 10 10-7 10-6 10-5 10-4 n i / N b ea m , n eu tr o n s p er e le ct ro n E , MeV plusZ minus0Z sphere40 Fig. 5. Energy distribution of neutrons: plusZ – towards Z axis (the plain A(+)); minus0Z – against Z axis (the plain B(–)); sphere40 – the total yield into sphere 4 0 10 20 30 40 50 60 70 0,00 0,01 0,02 0,03 n i / S n i Q, degree plus0Z minus0Z Fig. 6. Neutron distribution vs output angle from the converter The results of simulation of the photoneutron spectra in the electron energy range that provides a LU-40m accelerator of NSC KIPT [9] are presented in Fig. 7 and Table 1. For speedup, the calculations were carried out with step 0.1 MeV. It is evident that the major part of neutrons has the energy less than 2.5 MeV. 0 5 10 15 20 25 10-7 10-6 10-5 10-4 n i / N e , n eu tr o n s p er e le ct ro n E , MeV 40 MeV 60 MeV 95 MeV Fig. 7. Photoneutron spectra at various electron beam energy Table 1 Asymmetry of the neutron escape from the converter when the simulation geometry given in Fig. 4 E, MeV nA(+)/nB(–)* 40 1.170 60 1.167 95 1.168 *nA(+)/nB(–) – is the asymmetry coefficient (the ra- tio of the neutron yield into the A plain to their yield into the B plain). 2.2. For the study of the moderator size impact on the spectrum and flux of the photoneutrons at the target, the devices were used, which layout is given in Fig. 8. In particular a moderator measuring 20×20, 30×30, and 40×40 cm was considered. The results of simulations are presented in Tabs. 2–6 and in Figs. 9–11. The ob- tained characteristics of the X-ray flux on the target as well as the data on the relative yield of the photons and photoneutrons are displayed in Figs. 12–14. 70 ISSN 1562-6016. Problems of Atomic Science and Technology. 2022. №5(141) Table 2 Characteristics of the total neutron yield from the converter at various electron beam energy Ee, MeV Simulated tracks Neutron yield Neutron per electron (n/e) nS/e/cm 2 * nS/100 A 40 1.67E+08 250588 1.50E-03 1.49E-05 9.27E+09 60 1.64E+08 309814 1.89E-03 1.87E-05 1.17E+10 95 1.58E+08 346973 2.20E-03 2.17E-05 1.36E+10 *Mean density of the neutron flux on a sphere by 2.835 cm in radius, nS – reduced total neutron yield a b Fig. 8. Geometry of simulation of the neutron flux in region of the isotopic target: а – without moderator (1 – accelerator’s exit window; 2 – tantalum converter with the virtual spherical neutron counter 3); b – with moderator (4 – paraffin-graphite moderator; 5 – channel for the neutron activation detectors (the virtual spherical neutron counter is placed in the depth of the channel)) Table 3 Characteristics of the neutron flux in the target region (without converter) Ee, MeV Nbeam n converter n target target/conv ntarg/e ntarg/e/cm 2 40 1.14×10 8 164301 17923 0.109 1.57×10 –4 1.68×10 –6 Table 4 Characteristics of the neutron flux in the target region (with converter) Ee, MeV Nbeam n converter n target target/conv ntarg/e ntarg/e/cm 2 20×20 сm 40 1.31×10 8 189928 41403 0.218 3.16×10 –4 3.38×10 –6 30×30 сm 40 2.3×10 8 334008 76540 0.229 3.33×10 –4 3.56×10 –6 40×40 сm 40 1.27×10 8 184742 42682 0.231 3.36×10 –4 3.6×10 –6 Table 5 Characteristics of the neutron flux in the activation detectors region Ee, MeV Nbeam n converter n detect detect/conv ndet/e ndet/e/cm 2 ndet/s/cm 2 for 100 A 20×20 сm 40 1.31×10 8 189928 1955 0.01 1.49×10 –5 2.11×10 –6 1.32×10 9 30×30 сm 40 2.3×10 8 334008 4118 0.012 1.79×10 –5 2.54×10 –6 1.58×10 9 40×40 сm 40 1.27×10 8 184742 2341 0.013 1.84×10 –5 2.61×10 –6 1.63×10 9 ISSN 1562-6016. Problems of Atomic Science and Technology. 2022. №5(141) 71 Table 6 Yield of neutrons with energy less than 100 keV (without moderator and at its different size) Ee, MeV Nbeam n (En < 0.1 MeV) n0.1/Nbeam No moderator 40 1.14×10 8 1308 8.72×10 –6 20×20 сm 40 1.31×10 8 19692 1.50×10 –4 30×30 сm 40 2.3×10 8 38259 1.66×10 –4 40×40 сm 40 1.27×10 8 21720 1.71×10 –4 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 10-7 10-6 10-5 10-4 n /e , n eu tr o n p er e le ct ro n E , MeV Ebeam = 40 MeV no moderator Fig. 9. Photoneutron spectrum in the target region depending on presence of the 30×30 cm moderator (40 MeV beam energy) 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 10-7 10-6 10-5 10-4 n /e , n eu tr o n p er e le ct ro n En , MeV Ebeam = 40 MeV 20ґ20 cm 30ґ30 cm 40ґ40 cm Fig. 10. Photoneutron spectra in the target region depending on moderator size (40 MeV beam energy) 10-3 10-2 10-1 10-7 10-6 N th er m al / N be am En , meV 30ґ30 cm 40 MeV 60 MeV 95 MeV Fig. 11. Spectra of the thermalized neutrons at the target region 10 20 30 40 50 60 70 80 90 0.0 2.0x10-2 4.0x10-2 6.0x10-2 8.0x10-2 1.0x10-1 1.2x10-1 N  / N b ea m / D E , 1 /M eV E , MeV 30ґ30 cm 40 MeV 60 MeV 95 MeV Fig. 12. Spectrum of the bremsstrahlung photons on the target 35 40 45 50 55 60 65 70 75 80 85 90 95 100 10-5 10-4 10-3 10-2 10-1 100 30ґ30 cm Total neutrons Thermal neutrons Bremsstrahlung photons P ar ti cl es p er e le ct ro n Ee , MeV Fig. 13. Comparative yield of photoneutrons and bremsstrahlung photons 35 40 45 50 55 60 65 70 75 80 85 90 95 100 1.0x10-4 2.0x10-4 3.0x10-4 4.0x10-4 5.0x10-4 6.0x10-4 30ґ30 cm Total neutrons Thermal neutrons N eu tr o n p er p h o to n Ee , MeV Fig. 14. Photoneutron yield per one above-threshold photon (Eth = 8.02 MeV) Еn , MeV 72 ISSN 1562-6016. Problems of Atomic Science and Technology. 2022. №5(141) CONCLUSIONS 1. The obtained results of the simulations on the yield of photoneutrons from the tantalum converter at the presence of the neutron moderator and without it are in satisfactory agreement with the data of measurements conducted earlier with the use of rhenium neutron detec- tors activated by the reaction 187 Re (n,) 188 Re [10]. 2. The neutron distribution over the output angle from the converter is characterized by asymmetry with preference along the electron beam direction. The asymmetry coefficient is about 1.17 and doesn’t depend on the electron energy in range 40…95 MeV. 3. The size of paraffin-graphite moderator of 30×30 cm seems being close to optimal as its expansion to 40×40 cm provides the gain in the thermalized neu- tron yield not higher than 1%. 4. The total yield of photoneutrons from the brems- strahlung converter makes about of 10 –4 of the yield of the above-threshold photons. The latter doesn‘t depend virtually on the presence of a moderator. REFERENCES 1. K. Devan, A. Meaze, Guinyun Kim, et al. Photo- Neutrons Produced at the Pohang Neutron Facility Based on an Electron Linac // J. of Korean Phys. Soc. July 2006, v. 49, № 1, p. 89-96. 2. A.N. Dovbnya, Yu.V. Rogov, V.A. Shevchenko, et al. A Study of 192 Ir Production Conditions at an Elec- tron Accelerator // Phys. of Part. & Nucl. Lett. 2014, v. 11, № 5, p. 691-694. 3. J. Allison, K. Amako, J. Apostolakis, et al. Recent developments in Geant4 // NIM. 2016, A835, p. 186- 225. 4. TALYS-1.95, https://tendl.web.psi.ch/tendl_2019/talys. htmlhttps://tendl.web.psi.ch/tendl_2019/talys.html. 5. H. Utsunomiya, H. Akimune, S. Goko, et al. Cross section measurements of the 181 Ta(,n) 180 Ta reaction near threshold and the p-process nucleosynthesis // Phys. Rev., Part C, Nucl. Phys. 2003, v. 67, p. 015807. 6. S. Goko, H. Utsunomiya, S. Goriely, et al. Partial photoneutron cross sections for the isomeric state 180 Ta-m // Phys. Rev. Letts. 2006, v. 96, p. 192501. 7. G.P. Antropov, I.E. Mitrofanov, B.S. Russkikh. Pho- toneutron reactions on Al, S, Ta, and Bi // Izv. Rossi- iskoi Akademii Nauk, Ser. Fiz. 1967, v. 31, p. 336 (in Russian). 8. R.L. Bramblett, J.T. Caldwell, G.F. Auchampaugh, S.C. Fultz. Photoneutron cross sections of Ta 181 and Ho 165 // Phys. Rev. 1963, v. 129, p. 2723. 9. M.I. Aizatskyi, V.I. Beloglasov, V.N. Boriskin, et al. State and Prospects of the Linac Based Nuclear- Physics Complex with Energy of Electrons up to 100 MeV // Problems of Atomic Science and Tech- nology. Series “Nuclear Physics Investigations”. 2014, № 3, p. 60-63. 10. T.V. Malykhina, A.A. Torgovkin, A.V. Torgovkin, et al. A Study of Mixed X,n-Radiation Field in Photonuclear Isotope Production // Ibid. 2008, №5 (50), p. 184-188 (in Russian). Article received 19.07.2022 ФОРМУВАННЯ ПОЛЯ МІШАНОГО X,n-ВИПРОМІНЕННЯ НА ПРИСКОРЮВАЧІ ЕЛЕКТРОНІВ О.О. Захарченко, В.Л. Уваров, Ю.В. Малец Для виконання фотоядерних програм з використанням джерела фотонів великої інтенсивності останнє зазвичай одержують шляхом трансформації пучка електронів у гальмівне випромінення. Цей процес здійс- нюють за допомогою проміжної мішені-конвертера, який виготовляють з матеріалу з великим Z. Під дією високоенергетичних гальмівних фотонів у конвертері відбуваються (,n)-реакції. Як результат, з нього, крім спрямованого уперед потоку фотонів, виходить також квазіізоторопний потік нейтронів. Параметри обох видів випромінення, так само як і співвідношення їх інтенсивностей, грають важливу роль залежно від про- грами, що виконується. У роботі методом комп´ютерного моделювання з використанням транспортного ко- ду GEANT4 досліджено просторово-енергетичні характеристики мішаного X,n-випромінення, яке генеру- ється електронним пучком у конвертері з танталу, що розміщений разом з ізотопною мішенню у середині модератора нейтронів, при енергії електронів у діапазоні 40…95 МеВ і різному розмірі модератора. https://tendl.web.psi.ch/tendl_2019/talys.%20html https://tendl.web.psi.ch/tendl_2019/talys.%20html https://tendl.web.psi.ch/tendl_2019/talys.html