Formation and monitoring of secondary X-ray radiation under product processing with electron beam
When conducting an industrial radiation processes at an electron accelerator, a part of the beam energy is transformed into bremsstrahlung radiation. In such a way, the mixed e,X-radiation is formed in the area behind an irradiated object. The intensity of the electron and photon components in the r...
Gespeichert in:
Datum: | 2021 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2021
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/195811 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Formation and monitoring of secondary X-ray radiation under product processing with electron beam / R.I. Pomatsalyuk, V.A. Shevchenko D.V. Titov, A.Eh. Tenishev, V.L. Uvarov, A.A. Zakharchenko, V.N. Vereshchaka // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 201-205. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-195811 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1958112023-12-07T12:41:37Z Formation and monitoring of secondary X-ray radiation under product processing with electron beam Pomatsalyuk, R.I. Shevchenko, V.A. Titov, D.V. Tenishev, A.Eh. Uvarov, V.L. Zakharchenko, A.A. Vereshchaka, V.N. Application of accelerators in radiation technologies When conducting an industrial radiation processes at an electron accelerator, a part of the beam energy is transformed into bremsstrahlung radiation. In such a way, the mixed e,X-radiation is formed in the area behind an irradiated object. The intensity of the electron and photon components in the radiation is determined by the energy and power of the primary electron beam, as well as by the parameters of the object and devices located behind it. In paper, the characteristics of the e,X-radiation accompanying the product processing by a scanning electron beam with energy 8…12 MeV at a LU-10 Linac of NSC KIPT are studied. The conditions for obtaining a source of secondary X-rays in the state of electronic equilibrium, as well as its monitoring using an extended free-air ionization chamber are explored. Such an extra-source of radiation can be used for carrying out various non-commercial programs like radiation tests, sanitization of archival materials and cultural heritage objects, etc. При проведенні радіаційно-технологічних програм на прискорювачі електронів частина енергії пучка трансформується в гальмівне випромінювання. Як наслідок, в області за об'єктом формується потік мішаного e,X-випромінювання. Інтенсивність його електронного та фотонного компонентів визначається енергією і потужністю первинного пучка електронів, а також параметрами об’єкта та розміщених за ним пристроїв. Досліджені характеристики e,X-випромінювання, що супроводжує обробку продукції скануючим пучком електронів з енергією 8…12 МеВ на промисловому прискорювачі ЛП-10 ННЦ ХФТІ. Вивчені умови отримання джерела вторинного гальмівного випромінювання в стані електронної рівноваги, а також його моніторингу з використанням протяжної вільно-повітряної іонізаційної камери. Таке додаткове джерело випромінювання може бути використано для проведення різних некомерційних програм, наприклад, радіаційних випробувань, санітарної обробки архівних матеріалів, об’єктів культурної спадщини та інше. При проведении радиационно-технологических программ на ускорителе электронов часть энергии пучка трансформируется в тормозное излучение. В результате, в области за объектом формируется поток смешанного e,X-излучения. Интенсивность его электронного и фотонного компонентов определяется энергией и мощностью первичного пучка электронов, а также параметрами объекта и размещенных за ним устройств. Изучены характеристики e,X-излучения, которое сопровождает обработку продукции сканирующим пучком электронов с энергией 8…12 МэВ на промышленном ускорителе ЛУ-10 ННЦ ХФТИ. Исследованы условия получения источника вторичного тормозного излучения в состоянии электронного равновесия, а также его мониторинга с использованием протяженной свободно-воздушной ионизационной камеры. Такой дополнительный источник излучения может быть использован для проведения некоммерческих программ, например, радиационных испытаний, санитарной обработки архивных материалов, объектов культурного наследия и т.п. 2021 Article Formation and monitoring of secondary X-ray radiation under product processing with electron beam / R.I. Pomatsalyuk, V.A. Shevchenko D.V. Titov, A.Eh. Tenishev, V.L. Uvarov, A.A. Zakharchenko, V.N. Vereshchaka // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 201-205. — Бібліогр.: 12 назв. — англ. 1562-6016 PACS: 87.56.bd; 41.50.+h; 81.40.Wx; 87.53Bn DOI: https://doi.org/10.46813/2021-136-201 http://dspace.nbuv.gov.ua/handle/123456789/195811 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Application of accelerators in radiation technologies Application of accelerators in radiation technologies |
spellingShingle |
Application of accelerators in radiation technologies Application of accelerators in radiation technologies Pomatsalyuk, R.I. Shevchenko, V.A. Titov, D.V. Tenishev, A.Eh. Uvarov, V.L. Zakharchenko, A.A. Vereshchaka, V.N. Formation and monitoring of secondary X-ray radiation under product processing with electron beam Вопросы атомной науки и техники |
description |
When conducting an industrial radiation processes at an electron accelerator, a part of the beam energy is transformed into bremsstrahlung radiation. In such a way, the mixed e,X-radiation is formed in the area behind an irradiated object. The intensity of the electron and photon components in the radiation is determined by the energy and power of the primary electron beam, as well as by the parameters of the object and devices located behind it. In paper, the characteristics of the e,X-radiation accompanying the product processing by a scanning electron beam with energy 8…12 MeV at a LU-10 Linac of NSC KIPT are studied. The conditions for obtaining a source of secondary X-rays in the state of electronic equilibrium, as well as its monitoring using an extended free-air ionization chamber are explored. Such an extra-source of radiation can be used for carrying out various non-commercial programs like radiation tests, sanitization of archival materials and cultural heritage objects, etc. |
format |
Article |
author |
Pomatsalyuk, R.I. Shevchenko, V.A. Titov, D.V. Tenishev, A.Eh. Uvarov, V.L. Zakharchenko, A.A. Vereshchaka, V.N. |
author_facet |
Pomatsalyuk, R.I. Shevchenko, V.A. Titov, D.V. Tenishev, A.Eh. Uvarov, V.L. Zakharchenko, A.A. Vereshchaka, V.N. |
author_sort |
Pomatsalyuk, R.I. |
title |
Formation and monitoring of secondary X-ray radiation under product processing with electron beam |
title_short |
Formation and monitoring of secondary X-ray radiation under product processing with electron beam |
title_full |
Formation and monitoring of secondary X-ray radiation under product processing with electron beam |
title_fullStr |
Formation and monitoring of secondary X-ray radiation under product processing with electron beam |
title_full_unstemmed |
Formation and monitoring of secondary X-ray radiation under product processing with electron beam |
title_sort |
formation and monitoring of secondary x-ray radiation under product processing with electron beam |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2021 |
topic_facet |
Application of accelerators in radiation technologies |
url |
http://dspace.nbuv.gov.ua/handle/123456789/195811 |
citation_txt |
Formation and monitoring of secondary X-ray radiation under product processing with electron beam / R.I. Pomatsalyuk, V.A. Shevchenko D.V. Titov, A.Eh. Tenishev, V.L. Uvarov, A.A. Zakharchenko, V.N. Vereshchaka // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 201-205. — Бібліогр.: 12 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT pomatsalyukri formationandmonitoringofsecondaryxrayradiationunderproductprocessingwithelectronbeam AT shevchenkova formationandmonitoringofsecondaryxrayradiationunderproductprocessingwithelectronbeam AT titovdv formationandmonitoringofsecondaryxrayradiationunderproductprocessingwithelectronbeam AT tenishevaeh formationandmonitoringofsecondaryxrayradiationunderproductprocessingwithelectronbeam AT uvarovvl formationandmonitoringofsecondaryxrayradiationunderproductprocessingwithelectronbeam AT zakharchenkoaa formationandmonitoringofsecondaryxrayradiationunderproductprocessingwithelectronbeam AT vereshchakavn formationandmonitoringofsecondaryxrayradiationunderproductprocessingwithelectronbeam |
first_indexed |
2025-07-17T00:00:52Z |
last_indexed |
2025-07-17T00:00:52Z |
_version_ |
1837850115639869440 |
fulltext |
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 201
https://doi.org/10.46813/2021-136-201
FORMATION AND MONITORING OF SECONDARY X-RAY RADIATION
UNDER PRODUCT PROCESSING WITH ELECTRON BEAM
R.I. Pomatsalyuk, V.A. Shevchenko, D.V. Titov, A.Eh. Tenishev, V.L. Uvarov,
A.A. Zakharchenko, V.N. Vereshchaka
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
E-mail: rompom@kipt.kharkov.ua
When conducting an industrial radiation processes at an electron accelerator, a part of the beam energy is trans-
formed into bremsstrahlung radiation. In such a way, the mixed e,X-radiation is formed in the area behind an irradi-
ated object. The intensity of the electron and photon components in the radiation is determined by the energy and
power of the primary electron beam, as well as by the parameters of the object and devices located behind it. In pa-
per, the characteristics of the e,X-radiation accompanying the product processing by a scanning electron beam with
energy 8…12 MeV at a LU-10 Linac of NSC KIPT are studied. The conditions for obtaining a source of secondary
X-rays in the state of electronic equilibrium, as well as its monitoring using an extended free-air ionization chamber
are explored. Such an extra-source of radiation can be used for carrying out various non-commercial programs like
radiation tests, sanitization of archival materials and cultural heritage objects, etc.
PACS: 87.56.bd; 41.50.+h; 81.40.Wx; 87.53Bn
INTRODUCTION
High-power electron accelerators with beam energy
~10 MeV are widely used in radiation-technological
processes, mainly, for sterilization of medical devices,
as well as of products and feed stocks of pharmaceutical
and food industry, etc. [1]. In the majority of cases, the
processing is carried out directly by an electron beam. If
there is a necessity of debacterization of a load with
high surface density (>10 g/cm
2
), the electron radiation
is preliminary transformed into X-rays having higher
penetration ability. For this, a special intermediate target-
converter maid from a high-Z material is used. Consider-
ing the requirement of even absorbed dose distribution in
a processed object, the efficiency of the primary beam
energy utilization is commonly not higher than 40% un-
der treatment by electrons [2] and 10% for X-rays [3].
In work [4], a concept of a plant realizing simulta-
neously a two-beam e,X-regime by using bremsstrah-
lung radiation, generated in the interaction of electron
beam with the irradiated object and devices positioned
behind it, was proposed. So those elements can be con-
sidered as the constituents of an extended converter, in
which the consecutive transformation of electron beam
into mixed e,X-radiation takes place. The intensity of
the electron component in the latter decreases with the
rise of thickness of the interaction region. In turn the X-
ray component increases at first reaching maximum and
then goes down as a result of photon absorption. The
region of maximum ratio of the total photon energy to
the total energy of the secondary electrons corresponds
to a state of electronic equilibrium.
The e,X-radiation can be described with the use of a
limited set of key parameters [4]. Those characteristics,
in particular, are the ratio of total energy of bremsstrah-
lung photons ЕX, passing a specified plane, to the total
energy of the primary electron beam Еb (the coefficient
of energy conversion), and also the ratio of ЕX to the
total energy of the secondary electrons Ее passing the
same plane (the factor of secondary radiation). As the
universal length of a path of the e,X-radiation for-
mation, the sum of thicknesses of the its constituents
expressed in the units of the extrapolated range of elec-
trons Re with primary energy Е0 in the material of a giv-
en path element (the stopping thickness unit, stu) was
offered. Under such an approach, the dependences of
ЕХ/Еb and ЕХ/Ее on Е0 take on the universal form for the
materials with Z=7…73 in the Е0 range 5…100 MeV,
reaching maximum at a length of the interaction region
of 0.5…0.7 and 1.5…1.7 stu, respectively (Fig. 1).
In the current work, the conditions of formation of
secondary X-ray radiation under product processing at a
LU-10 electron Linac of NSC KIPT [5] with beam en-
ergy up to 12 MeV, as well as of X-rays on-line moni-
toring are studied.
a
b
Fig.1. Dependence e,X-radiation characteristics
on thickness of absorber: coefficient of energy
conversion (a); factor of secondary radiation (b)
mailto:rompom@kipt.kharkov.ua
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 202
1. e,X-FLUX FORMATION
1.1. The irradiator and exit devices of the LU-10 ac-
celerator are located in a concrete vault (Fig. 2). A work
load is transported into the irradiation zone using an
overhead conveyor C. The accelerator structure AS has
a beam scanner S at its output controlled with PC. It
provides the necessary profile of the beam sweep at an
irradiated object (e-Ob). An aluminium stack-monitor
SM for on-line control of beam energy and absorbed
dose is positioned on the axis of the structure at a dis-
tance of 223 cm from the accelerator exit window [6, 7].
The SM size and thickness (751222.6 cm) provide
the absorption above 95% of the electron flux, an also
the electronic equilibrium of gammas behind it.
SM
e-
e-
AS
MA
S C
e_Ob
MIS-1 MIS-2
FC
X-Ob
e,X
H
e-
e-
X-Ray
Fig. 2. Irradiator and exit devices of LU-10 accelerator
A parallel plate free-air ionization chamber IC, in-
tended for monitoring of X-ray energy flux, follows
SM. IC comprises 3 aluminium plates: the two outer by
size 113770.2 cm (height x width x thickness) and
the inner (113530.1 cm).
For the analysis and optimization of a treatment mode
by secondary X-ray radiation, an arbitrary target X in the
form of a plate from PMMA (a standard dosimetry mate-
rial [8]) was positioned behind IC. The lateral size of
the plate is equal to that of SM (Fig. 3).
1.2. The study of e,X-radiation state in the elements
of the formation path was conducted by a MC simulation
technique on the basis of a GEANT4 transport code [9].
Fig. 3. Configuration of LU-10 exit devices
in simulations
For determination of volumetric dose distribution,
the X target by 9 cm in thickness was subdivided into
3 layers. In turn each layer was subdivided into the par-
allelepipeds by 10123 cm in size.
1.3. Fig. 4 shows the results of calculation of e,X-
radiation characteristics along the exit devices of the
LU-10 machine in absence of a load in the main channel
of irradiation with the electron beam (e-channel), and
also in its presence. As an irradiated load (e-Ob), a
phantom from cellulose by size 3510535 cm with
nominal surface density of 4g/cm
2
was considered. In
calculations, the beam energy spectra corresponded to
actual ones (Fig. 5).
F
M
1
F
M
2
F
M
3
F
M
4
F
M
5
F
M
6
F
M
7
F
M
8
F
M
9
F
M
1
0
IC
1
IC
2
IC
3
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
C
o
n
v
er
si
o
n
c
o
ef
fi
ci
en
t
No object, 8 MeV
No object, 10 MeV
No object, 12 MeV
Object, 8 MeV
Object, 10 MeV
Object, 12 MeV
а
F
M
1
F
M
2
F
M
3
F
M
4
F
M
5
F
M
6
F
M
7
F
M
8
F
M
9
F
M
1
0
IC
1
IC
2
IC
3
10-1
100
101
102
S
ec
o
n
d
r
ad
ia
ti
o
n
f
ac
to
r
No object, 8 MeV
No object, 10 MeV
No object, 12 MeV
Object, 8 MeV
Object, 10 MeV
Object, 12 MeV
b
Fig.4. e,X-radiation characteristics in elements of exit
devices of LU-10 accelerator: coefficient of energy
conversion (a); secondary radiation factor (b)
6 7 8 9 10 11 12 13 14 15 16 17 18
0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0
N
i /
N
m
ax
Ebeam , MeV
8 MeV
10 MeV
12 MeV
Fig. 5. LU-10 beam spectra
It is evident, that the addition of ionization chamber
gives some decrease in the photon flux but the gain in
the secondary radiation factor up to its correspondence
to the state of electronic equilibrium. The key parame-
ters of radiation incident on the X target are listed in
Table 1. It is seen, that the average energy of the gam-
mas <Ex> is rather close to that of Co-60.
2. MONITORING OF SECONDARY X-RAYS
2.1. A circuit used for measuring the current of the
ionizing chamber is presented in Fig. 6. A high-voltage
supply provides the bias 200…600 V of negative polari-
ty on the inner plate of IC via a coaxial cable about 60m
in length. The outer plates are electrically connected
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 203
with an integrator comprising the resistor R (12.4 kΩ)
and capacitance C (0.47 µF) with time constant
5.8 msec. A signal from the integrator output connected
to an automated workstation for readout with interval
2 sec into an archiver of an EPICS system.
Table 1
Parameters of e,X-radiation on front surface of X-target
,
g/cm
2
Ex/Ee
Ex/Eb,
%
<Ex>,
MeV
Dmax,
kGy/h/mA
8 MeV
0 115.3 3.90 0.835 10.3
4 111.3 1.41 0.982 2.1
10 MeV
0 59.8 5.36 0.949 20.2
4 98.5 2.05 1.101 3.6
12 MeV
0 22.3 6.67 1.040 40.8
4 74.9 2.74 1.184 6.36
e-, γ
High Voltage
Power Supply
200 – 600 V
R
C
to measuring system
-
+
Ionization
Chamber
Coax. cable ~60 m
Fig. 6. IC-current measuring circuit
2.2. In the experiments, the average accelerator
beam current Iacc was controlled by the pulse rate. The
obtained dependence of IC current on the bias voltage at
different beam pulse rate and scan width is given in
Figs. 7-9. It is evident, that the IC current is proportion-
al to the average electron beam current and tends to sat-
uration with the rise of bias voltage. It does not depend
on the beam scan width (see Fig. 9). That confirms prac-
tically full passing of X-ray flux through the ionization
chamber.
200 250 300 350 400 450 500 550 600
0,00000
0,00005
0,00010
0,00015
0,00020
0,00025
0,00030
0,00035
0,00040
Iacc/8
Iacc/4
Iacc/2
IC
c
u
rr
e
n
t,
A
Power supply, V
Iacc
Iacc/2
Iacc/4
Iacc/8
Iacc
Fig. 7. Dependence of IC current on bias at different
average accelerator current (Iacc=0.73 mA)
0,0000 0,0001 0,0002 0,0003 0,0004 0,0005 0,0006 0,0007 0,0008 0,0009
0,00000
0,00005
0,00010
0,00015
0,00020
0,00025
0,00030
0,00035
0,00040
0,00045
0,00050
0,00055
IC
c
u
rr
e
n
t,
A
Iacc, A
200V
300V
400V
500V
Linear Fit of HV200_G
Linear Fit of HV300_G
Linear Fit of HV400_G
Linear Fit of HV500_H
Fig. 8. Dependence of IC current on accelerator beam
current at different bias voltage
390 400 410 420 430 440 450 460 470 480 490
0,00018
0,00019
0,00020
0,00021
0,00022
0,00023
0,00024
0,00025
0,00026
0,00027
0,00028
0,00029
0,00030
0,00031
0,00032
1.6 g/cm2
Linear Regression for SCAN_G:
Y = A + B * X
Parameter Value Error
--------------------------------------------------
A 2,99704E-4 2,04693E-5
B 2,04998E-8 4,70966E-8
-------------------------------------------------
R SD N P
-------------------------------------------------
0,24284 1,00389 5 0,69388IC
c
u
rr
e
n
t,
A
Scan width, mm
G
Linear Fit of SCAN_G
1.22 g/cm2
Fig. 9. Dependence of IC current on beam scan width
2.3. The dependence of IC current on the conditions
of the product irradiation in the e-channel was calculat-
ed using an analytical model presented in [10] for the
case of pulsed flux of gammas (Fig. 10). It is evident,
that the data of calculations are underestimated by about
8% as compared with the experimental results. The sys-
tematic divergency can be explained with both the mod-
el restrictions and inaccuracy of the data on the coeffi-
cients of the charge transfer in the ionization volume of
the chamber. Its proper calibration enables on-line mon-
itoring of absorbed dose in the X-channel.
200 300 400 500 600
110
120
130
140
150
160
170
180
190
200
210
w = 125 Hz
experiment
calculation
I i
m
p
,
m
A
U, V
Fig. 10. Dependence of IC current on bias
(comparison with model)
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 204
3. OPTIMIZATION OF IRRADIATION
MODE IN X-CHANNEL
3.1. A linear sweep is commonly used at product
processing with the scanned electron beam to provide
the even distribution of the particle density over the load
surface. Conversely, it was shown in work [2], that the
application of a combined scan mode, including the
linear part over one half-period and the sinusoidal part
over the second (Fig. 11), results in the reduction of
dose ununiformity ratio (DUR) as compared with the
double-linear mode. That is why the both variants of the
sweep for the beam with the actual energy spectrum and
similar scan amplitude were examined by the simulation
technique (Fig. 12).
-0.5 0.0 0.5 1.0 1.5 2.0
-1.0
-0.5
0.0
0.5
1.0
m
a
x
t/t
0
Fig. 11. Shape of combined beam sweep
-50 -40 -30 -20 -10 0 10 20 30 40 50
-40
-20
0
20
40
Y
-a
x
is
,
cm
X-axis, cm
1.02
1.30
1.58
1.86
2.14
2.41
2.69
2.97
3.25
X/I, kGy/h/mA
X1 = 4 g/cm2 , 10 MeV
a
-40 -20 0 20 40
-40
-20
0
20
40
Y
-a
x
is
,c
m
X-axis,cm
1.36
1.86
2.37
2.87
3.37
3.87
4.38
4.88
5.38
X/I (X1-1), kGy/h/mA
10 MeV b
b
Fig. 12. Dose rate distribution in X target (Eb= 10 MeV,
surface density of product in e-channel is 4 g/cm
2
):
linear sweep (a); combined sweep (b)
It is evident, that the combined sweep flattens the
dose distribution along the scanning axis. At the other
hand, under the given irradiation mode and size of the
target, DUR reaches 5, while its acceptable value should
be not higher than 1.8 [1].
3.2. For the further smoothing of dose distribution, a
two-sided irradiation mode of a target can be used, as
well as the optimization of target’s size. It is seen in
Fig. 13, that the two-sided processing provides
DUR1.8 along the Z-axis of the target at its thickness
of 65 g/cm
2
.
0 5 10 15 20 25 30 35 40 45 50 55 60 65
0,0
0,5
1,0
1,5
2,0
2,5
<
X
/I
>
,
k
G
y
/h
/m
A
Z, g/cm2
Ee = 10 MeV
= 4 g/cm2
<X/I>
<X/I>, 2-side
Fig. 13. Dose rate distribution along z-axis of X target
for one- and two-sided irradiation
The results of estimating by MC simulation tech-
nique the X-channel capacity at a two-sided object irra-
diation, providing DUR not higher than 1.8, are listed in
Table 2. It is evident, that the optimal size of the X tar-
get depends weakly on the beam energy in contrast to
the throughput capacity.
Table 2
Throughput capacity of X-ray channel
Ee,
MeV
X targ.
size,
(height
width),
cm
X
targ.
weig
ht, kg
Dose rate,
kGy/hmA
X-channel
capacity,
kGykg/h
mA
Max Min
8 12040 312 1.28 0.71 282
10 12045 351 1.98 1.25 438
12 12050 390 3.36 1.87 730
CONCLUSIONS
Product treatment with electron beam is accompa-
nied by generation of secondary e,X-radiation, that can
be transformed into an extra-source of X-rays by the use
of a set of the properly designed devices, positioned
behind an irradiated load. Such a source can be applied
for conducting uncommercial programs like the radia-
tion tests, sanitization of archive materials and objects
of the culture heritage, etc. Under conditions of the LU-10
Linac (10 MeV, 10 kW) the capacity of the X-channel
makes up to 440 kGykg/mAh. In its productivity, such
a radiation channel is comparable with an X-ray source,
obtained by direct conversion of electron beam of an
ILU6 accelerator (2 MeV; 20 kW), as well as with a Co-60
source having activity about 20 kCi [12]. In particular,
the extra X-ray source on the basis of the LU-10 Linac
can provide the sanitization of about 80 tons of the ar-
chive materials with dose 5 kGy and higher per a 1000 h
beam run.
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 205
REFERENCES
1. Industrial Radiation with Electron Beams and X-
rays.
http://iiaglobal.com/uploads/documents/Industrial_R
adiation_eBeam_Xray.pdf.
2. V.I. Nikiforov, R.I. Pomatsalyuk, Yu.V. Rogov,
A.Eh. Tenishev, V.L. Uvarov, A.A. Zakharchenko.
Analysis and Optimization of a Mode of Industrial
Product Processing at an Electron Accelerator //
Problems of Atomic Science and Technology. Series
“Nuclear Physics Investigations”. 2015, № 6, p. 90-
94.
3. V.T. Lazurik, S.A. Pismenesky, G.F. Popov,
D.V. Rudychev, V.G. Rudychev. An increase of uti-
lization efficiency of X-ray beam // Radiation Phys-
ics and Chemistry. 2007, v. 76, p. 1787-1791.
4. V.L. Uvarov, A.N. Dovbnya, N.A. Dovbnya,
V.I. Nikiforov. Electron Linac Based e,X-Facility //
Proc. of the EPAC. 2006, p. 2257-2259.
5. V.I. Nikiforov, V.L. Uvarov. Analysis of Mixed
e,X-radiation along the Extraction Facilities of Elec-
tron Accelerators // Atomic Energy. 2009, v. 106(4),
p. 281-286.
6. V.N. Boriskin, S.A. Vanzha, V.N. Vereshchaka, et
al. Development of radiation technologies and tests
in “Accelerator” // Problems of Atomic Science and
Technology. Series “Nuclear Physics Investiga-
tions”. 2008, № 5, p. 150-154.
7. R.I. Pomatsalyuk, V.A. Shevchenko, I.N. Shlyak-
hov, A.Eh. Tenishev, V.Yu. Titov, D.V. Titov,
V.L. Uvarov, A.A. Zakharchenko. Measurement of
electron beam energy characteristics at an industrial
accelerator // Problems of Atomic Science and Tech-
nology. Series “Nuclear Physics Investigations”.
2017, № 6, p. 3-7.
8. R.I. Pomatsalyuk, V.A. Shevchenko, A.Eh. Tenishev,
D.V. Titov, V.L. Uvarov, A.A. Zakharchenko. De-
velopment of a Method of Absorbed Dose On-line
Monitoring at Product Processing by Scanned Elec-
tron Beam // Problems of Atomic Science and Tech-
nology. Series “Nuclear Physics Investigations”.
2016, № 3, p. 149-153.
9. ISO/ASTM 51276:2019. Practice for Use of a
Polymethylmethacrylate Dosimetry System.
10. J. Allison, K. Amako, J. Apostolakis, et al. Recent
developments in Geant4 // NIM. 2016, A 835,
p. 186-225.
11. V.I. Ivanov. Course of Dosimetry.
“Energoatomizdat”, 1988, p. 79-85 (in Russian).
12. Electron Accelerators for Research, Industry and
Environment the INCT Perspective / A. Chmielewski
and Z. Zimek, eds/, Warsaw, 2019, p. 28.
Article received 04.10.2021
ФОРМИРОВАНИЕ И МОНИТОРИНГ ВТОРИЧНОГО ТОРМОЗНОГО ИЗЛУЧЕНИЯ
ПРИ ОБРАБОТКЕ ПРОДУКЦИИ ПУЧКОМ ЭЛЕКТРОНОВ
Р.И. Помацалюк, В.А. Шевченко, Д.В. Титов, А.Э. Тенишев, В.Л. Уваров, А.А. Захарченко,
В.Н. Верещака
При проведении радиационно-технологических программ на ускорителе электронов часть энергии пучка
трансформируется в тормозное излучение. В результате, в области за объектом формируется поток смешан-
ного e,X-излучения. Интенсивность его электронного и фотонного компонентов определяется энергией и
мощностью первичного пучка электронов, а также параметрами объекта и размещенных за ним устройств.
Изучены характеристики e,X-излучения, которое сопровождает обработку продукции сканирующим пучком
электронов с энергией 8…12 МэВ на промышленном ускорителе ЛУ-10 ННЦ ХФТИ. Исследованы условия
получения источника вторичного тормозного излучения в состоянии электронного равновесия, а также его
мониторинга с использованием протяженной свободно-воздушной ионизационной камеры. Такой дополни-
тельный источник излучения может быть использован для проведения некоммерческих программ, напри-
мер, радиационных испытаний, санитарной обработки архивных материалов, объектов культурного насле-
дия и т.п.
ФОРМУВАННЯ ТА МОНІТОРИНГ ВТОРИННОГО ГАЛЬМІВНОГО ВИПРОМІНЮВАННЯ
ПРИ ОБРОБЦІ ПРОДУКЦІЇ ПУЧКОМ ЕЛЕКТРОНІВ
Р.І. Помацалюк, В.А. Шевченко, Д.В. Тітов, А.Е. Тєнішев, В.Л. Уваров, А.О. Захарченко, В.М. Верещака
При проведенні радіаційно-технологічних програм на прискорювачі електронів частина енергії пучка
трансформується в гальмівне випромінювання. Як наслідок, в області за об'єктом формується потік мішано-
го e,X-випромінювання. Інтенсивність його електронного та фотонного компонентів визначається енергією і
потужністю первинного пучка електронів, а також параметрами об'єкта та розміщених за ним пристроїв.
Досліджені характеристики e,X-випромінювання, що супроводжує обробку продукції скануючим пучком
електронів з енергією 8…12 МеВ на промисловому прискорювачі ЛП-10 ННЦ ХФТІ. Вивчені умови отри-
мання джерела вторинного гальмівного випромінювання в стані електронної рівноваги, а також його моні-
торингу з використанням протяжної вільно-повітряної іонізаційної камери. Таке додаткове джерело випро-
мінювання може бути використано для проведення різних некомерційних програм, наприклад, радіаційних
випробувань, санітарної обробки архівних матеріалів, об'єктів культурної спадщини та інше.
http://iiaglobal.com/uploads/documents/Industrial_Radiation_eBeam_Xray.pdf
http://iiaglobal.com/uploads/documents/Industrial_Radiation_eBeam_Xray.pdf
https://www.scopus.com/sourceid/29513?origin=recordpage
https://www.scopus.com/sourceid/29513?origin=recordpage
|