Formation and monitoring of secondary X-ray radiation under product processing with electron beam

When conducting an industrial radiation processes at an electron accelerator, a part of the beam energy is transformed into bremsstrahlung radiation. In such a way, the mixed e,X-radiation is formed in the area behind an irradiated object. The intensity of the electron and photon components in the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2021
Hauptverfasser: Pomatsalyuk, R.I., Shevchenko, V.A., Titov, D.V., Tenishev, A.Eh., Uvarov, V.L., Zakharchenko, A.A., Vereshchaka, V.N.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2021
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/195811
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Formation and monitoring of secondary X-ray radiation under product processing with electron beam / R.I. Pomatsalyuk, V.A. Shevchenko D.V. Titov, A.Eh. Tenishev, V.L. Uvarov, A.A. Zakharchenko, V.N. Vereshchaka // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 201-205. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-195811
record_format dspace
spelling irk-123456789-1958112023-12-07T12:41:37Z Formation and monitoring of secondary X-ray radiation under product processing with electron beam Pomatsalyuk, R.I. Shevchenko, V.A. Titov, D.V. Tenishev, A.Eh. Uvarov, V.L. Zakharchenko, A.A. Vereshchaka, V.N. Application of accelerators in radiation technologies When conducting an industrial radiation processes at an electron accelerator, a part of the beam energy is transformed into bremsstrahlung radiation. In such a way, the mixed e,X-radiation is formed in the area behind an irradiated object. The intensity of the electron and photon components in the radiation is determined by the energy and power of the primary electron beam, as well as by the parameters of the object and devices located behind it. In paper, the characteristics of the e,X-radiation accompanying the product processing by a scanning electron beam with energy 8…12 MeV at a LU-10 Linac of NSC KIPT are studied. The conditions for obtaining a source of secondary X-rays in the state of electronic equilibrium, as well as its monitoring using an extended free-air ionization chamber are explored. Such an extra-source of radiation can be used for carrying out various non-commercial programs like radiation tests, sanitization of archival materials and cultural heritage objects, etc. При проведенні радіаційно-технологічних програм на прискорювачі електронів частина енергії пучка трансформується в гальмівне випромінювання. Як наслідок, в області за об'єктом формується потік мішаного e,X-випромінювання. Інтенсивність його електронного та фотонного компонентів визначається енергією і потужністю первинного пучка електронів, а також параметрами об’єкта та розміщених за ним пристроїв. Досліджені характеристики e,X-випромінювання, що супроводжує обробку продукції скануючим пучком електронів з енергією 8…12 МеВ на промисловому прискорювачі ЛП-10 ННЦ ХФТІ. Вивчені умови отримання джерела вторинного гальмівного випромінювання в стані електронної рівноваги, а також його моніторингу з використанням протяжної вільно-повітряної іонізаційної камери. Таке додаткове джерело випромінювання може бути використано для проведення різних некомерційних програм, наприклад, радіаційних випробувань, санітарної обробки архівних матеріалів, об’єктів культурної спадщини та інше. При проведении радиационно-технологических программ на ускорителе электронов часть энергии пучка трансформируется в тормозное излучение. В результате, в области за объектом формируется поток смешанного e,X-излучения. Интенсивность его электронного и фотонного компонентов определяется энергией и мощностью первичного пучка электронов, а также параметрами объекта и размещенных за ним устройств. Изучены характеристики e,X-излучения, которое сопровождает обработку продукции сканирующим пучком электронов с энергией 8…12 МэВ на промышленном ускорителе ЛУ-10 ННЦ ХФТИ. Исследованы условия получения источника вторичного тормозного излучения в состоянии электронного равновесия, а также его мониторинга с использованием протяженной свободно-воздушной ионизационной камеры. Такой дополнительный источник излучения может быть использован для проведения некоммерческих программ, например, радиационных испытаний, санитарной обработки архивных материалов, объектов культурного наследия и т.п. 2021 Article Formation and monitoring of secondary X-ray radiation under product processing with electron beam / R.I. Pomatsalyuk, V.A. Shevchenko D.V. Titov, A.Eh. Tenishev, V.L. Uvarov, A.A. Zakharchenko, V.N. Vereshchaka // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 201-205. — Бібліогр.: 12 назв. — англ. 1562-6016 PACS: 87.56.bd; 41.50.+h; 81.40.Wx; 87.53Bn DOI: https://doi.org/10.46813/2021-136-201 http://dspace.nbuv.gov.ua/handle/123456789/195811 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Application of accelerators in radiation technologies
Application of accelerators in radiation technologies
spellingShingle Application of accelerators in radiation technologies
Application of accelerators in radiation technologies
Pomatsalyuk, R.I.
Shevchenko, V.A.
Titov, D.V.
Tenishev, A.Eh.
Uvarov, V.L.
Zakharchenko, A.A.
Vereshchaka, V.N.
Formation and monitoring of secondary X-ray radiation under product processing with electron beam
Вопросы атомной науки и техники
description When conducting an industrial radiation processes at an electron accelerator, a part of the beam energy is transformed into bremsstrahlung radiation. In such a way, the mixed e,X-radiation is formed in the area behind an irradiated object. The intensity of the electron and photon components in the radiation is determined by the energy and power of the primary electron beam, as well as by the parameters of the object and devices located behind it. In paper, the characteristics of the e,X-radiation accompanying the product processing by a scanning electron beam with energy 8…12 MeV at a LU-10 Linac of NSC KIPT are studied. The conditions for obtaining a source of secondary X-rays in the state of electronic equilibrium, as well as its monitoring using an extended free-air ionization chamber are explored. Such an extra-source of radiation can be used for carrying out various non-commercial programs like radiation tests, sanitization of archival materials and cultural heritage objects, etc.
format Article
author Pomatsalyuk, R.I.
Shevchenko, V.A.
Titov, D.V.
Tenishev, A.Eh.
Uvarov, V.L.
Zakharchenko, A.A.
Vereshchaka, V.N.
author_facet Pomatsalyuk, R.I.
Shevchenko, V.A.
Titov, D.V.
Tenishev, A.Eh.
Uvarov, V.L.
Zakharchenko, A.A.
Vereshchaka, V.N.
author_sort Pomatsalyuk, R.I.
title Formation and monitoring of secondary X-ray radiation under product processing with electron beam
title_short Formation and monitoring of secondary X-ray radiation under product processing with electron beam
title_full Formation and monitoring of secondary X-ray radiation under product processing with electron beam
title_fullStr Formation and monitoring of secondary X-ray radiation under product processing with electron beam
title_full_unstemmed Formation and monitoring of secondary X-ray radiation under product processing with electron beam
title_sort formation and monitoring of secondary x-ray radiation under product processing with electron beam
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2021
topic_facet Application of accelerators in radiation technologies
url http://dspace.nbuv.gov.ua/handle/123456789/195811
citation_txt Formation and monitoring of secondary X-ray radiation under product processing with electron beam / R.I. Pomatsalyuk, V.A. Shevchenko D.V. Titov, A.Eh. Tenishev, V.L. Uvarov, A.A. Zakharchenko, V.N. Vereshchaka // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 201-205. — Бібліогр.: 12 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT pomatsalyukri formationandmonitoringofsecondaryxrayradiationunderproductprocessingwithelectronbeam
AT shevchenkova formationandmonitoringofsecondaryxrayradiationunderproductprocessingwithelectronbeam
AT titovdv formationandmonitoringofsecondaryxrayradiationunderproductprocessingwithelectronbeam
AT tenishevaeh formationandmonitoringofsecondaryxrayradiationunderproductprocessingwithelectronbeam
AT uvarovvl formationandmonitoringofsecondaryxrayradiationunderproductprocessingwithelectronbeam
AT zakharchenkoaa formationandmonitoringofsecondaryxrayradiationunderproductprocessingwithelectronbeam
AT vereshchakavn formationandmonitoringofsecondaryxrayradiationunderproductprocessingwithelectronbeam
first_indexed 2025-07-17T00:00:52Z
last_indexed 2025-07-17T00:00:52Z
_version_ 1837850115639869440
fulltext ISSN 1562-6016. ВАНТ. 2021. № 6(136) 201 https://doi.org/10.46813/2021-136-201 FORMATION AND MONITORING OF SECONDARY X-RAY RADIATION UNDER PRODUCT PROCESSING WITH ELECTRON BEAM R.I. Pomatsalyuk, V.A. Shevchenko, D.V. Titov, A.Eh. Tenishev, V.L. Uvarov, A.A. Zakharchenko, V.N. Vereshchaka National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine E-mail: rompom@kipt.kharkov.ua When conducting an industrial radiation processes at an electron accelerator, a part of the beam energy is trans- formed into bremsstrahlung radiation. In such a way, the mixed e,X-radiation is formed in the area behind an irradi- ated object. The intensity of the electron and photon components in the radiation is determined by the energy and power of the primary electron beam, as well as by the parameters of the object and devices located behind it. In pa- per, the characteristics of the e,X-radiation accompanying the product processing by a scanning electron beam with energy 8…12 MeV at a LU-10 Linac of NSC KIPT are studied. The conditions for obtaining a source of secondary X-rays in the state of electronic equilibrium, as well as its monitoring using an extended free-air ionization chamber are explored. Such an extra-source of radiation can be used for carrying out various non-commercial programs like radiation tests, sanitization of archival materials and cultural heritage objects, etc. PACS: 87.56.bd; 41.50.+h; 81.40.Wx; 87.53Bn INTRODUCTION High-power electron accelerators with beam energy ~10 MeV are widely used in radiation-technological processes, mainly, for sterilization of medical devices, as well as of products and feed stocks of pharmaceutical and food industry, etc. [1]. In the majority of cases, the processing is carried out directly by an electron beam. If there is a necessity of debacterization of a load with high surface density (>10 g/cm 2 ), the electron radiation is preliminary transformed into X-rays having higher penetration ability. For this, a special intermediate target- converter maid from a high-Z material is used. Consider- ing the requirement of even absorbed dose distribution in a processed object, the efficiency of the primary beam energy utilization is commonly not higher than 40% un- der treatment by electrons [2] and 10% for X-rays [3]. In work [4], a concept of a plant realizing simulta- neously a two-beam e,X-regime by using bremsstrah- lung radiation, generated in the interaction of electron beam with the irradiated object and devices positioned behind it, was proposed. So those elements can be con- sidered as the constituents of an extended converter, in which the consecutive transformation of electron beam into mixed e,X-radiation takes place. The intensity of the electron component in the latter decreases with the rise of thickness of the interaction region. In turn the X- ray component increases at first reaching maximum and then goes down as a result of photon absorption. The region of maximum ratio of the total photon energy to the total energy of the secondary electrons corresponds to a state of electronic equilibrium. The e,X-radiation can be described with the use of a limited set of key parameters [4]. Those characteristics, in particular, are the ratio of total energy of bremsstrah- lung photons ЕX, passing a specified plane, to the total energy of the primary electron beam Еb (the coefficient of energy conversion), and also the ratio of ЕX to the total energy of the secondary electrons Ее passing the same plane (the factor of secondary radiation). As the universal length of a path of the e,X-radiation for- mation, the sum of thicknesses of the its constituents expressed in the units of the extrapolated range of elec- trons Re with primary energy Е0 in the material of a giv- en path element (the stopping thickness unit, stu) was offered. Under such an approach, the dependences of ЕХ/Еb and ЕХ/Ее on Е0 take on the universal form for the materials with Z=7…73 in the Е0 range 5…100 MeV, reaching maximum at a length of the interaction region of 0.5…0.7 and 1.5…1.7 stu, respectively (Fig. 1). In the current work, the conditions of formation of secondary X-ray radiation under product processing at a LU-10 electron Linac of NSC KIPT [5] with beam en- ergy up to 12 MeV, as well as of X-rays on-line moni- toring are studied. a b Fig.1. Dependence e,X-radiation characteristics on thickness of absorber: coefficient of energy conversion (a); factor of secondary radiation (b) mailto:rompom@kipt.kharkov.ua ISSN 1562-6016. ВАНТ. 2021. № 6(136) 202 1. e,X-FLUX FORMATION 1.1. The irradiator and exit devices of the LU-10 ac- celerator are located in a concrete vault (Fig. 2). A work load is transported into the irradiation zone using an overhead conveyor C. The accelerator structure AS has a beam scanner S at its output controlled with PC. It provides the necessary profile of the beam sweep at an irradiated object (e-Ob). An aluminium stack-monitor SM for on-line control of beam energy and absorbed dose is positioned on the axis of the structure at a dis- tance of 223 cm from the accelerator exit window [6, 7]. The SM size and thickness (751222.6 cm) provide the absorption above 95% of the electron flux, an also the electronic equilibrium of gammas behind it. SM e- e- AS MA S C e_Ob MIS-1 MIS-2 FC X-Ob e,X H e- e- X-Ray Fig. 2. Irradiator and exit devices of LU-10 accelerator A parallel plate free-air ionization chamber IC, in- tended for monitoring of X-ray energy flux, follows SM. IC comprises 3 aluminium plates: the two outer by size 113770.2 cm (height x width x thickness) and the inner (113530.1 cm). For the analysis and optimization of a treatment mode by secondary X-ray radiation, an arbitrary target X in the form of a plate from PMMA (a standard dosimetry mate- rial [8]) was positioned behind IC. The lateral size of the plate is equal to that of SM (Fig. 3). 1.2. The study of e,X-radiation state in the elements of the formation path was conducted by a MC simulation technique on the basis of a GEANT4 transport code [9]. Fig. 3. Configuration of LU-10 exit devices in simulations For determination of volumetric dose distribution, the X target by 9 cm in thickness was subdivided into 3 layers. In turn each layer was subdivided into the par- allelepipeds by 10123 cm in size. 1.3. Fig. 4 shows the results of calculation of e,X- radiation characteristics along the exit devices of the LU-10 machine in absence of a load in the main channel of irradiation with the electron beam (e-channel), and also in its presence. As an irradiated load (e-Ob), a phantom from cellulose by size 3510535 cm with nominal surface density of 4g/cm 2 was considered. In calculations, the beam energy spectra corresponded to actual ones (Fig. 5). F M 1 F M 2 F M 3 F M 4 F M 5 F M 6 F M 7 F M 8 F M 9 F M 1 0 IC 1 IC 2 IC 3 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 C o n v er si o n c o ef fi ci en t No object, 8 MeV No object, 10 MeV No object, 12 MeV Object, 8 MeV Object, 10 MeV Object, 12 MeV а F M 1 F M 2 F M 3 F M 4 F M 5 F M 6 F M 7 F M 8 F M 9 F M 1 0 IC 1 IC 2 IC 3 10-1 100 101 102 S ec o n d r ad ia ti o n f ac to r No object, 8 MeV No object, 10 MeV No object, 12 MeV Object, 8 MeV Object, 10 MeV Object, 12 MeV b Fig.4. e,X-radiation characteristics in elements of exit devices of LU-10 accelerator: coefficient of energy conversion (a); secondary radiation factor (b) 6 7 8 9 10 11 12 13 14 15 16 17 18 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 N i / N m ax Ebeam , MeV 8 MeV 10 MeV 12 MeV Fig. 5. LU-10 beam spectra It is evident, that the addition of ionization chamber gives some decrease in the photon flux but the gain in the secondary radiation factor up to its correspondence to the state of electronic equilibrium. The key parame- ters of radiation incident on the X target are listed in Table 1. It is seen, that the average energy of the gam- mas <Ex> is rather close to that of Co-60. 2. MONITORING OF SECONDARY X-RAYS 2.1. A circuit used for measuring the current of the ionizing chamber is presented in Fig. 6. A high-voltage supply provides the bias 200…600 V of negative polari- ty on the inner plate of IC via a coaxial cable about 60m in length. The outer plates are electrically connected ISSN 1562-6016. ВАНТ. 2021. № 6(136) 203 with an integrator comprising the resistor R (12.4 kΩ) and capacitance C (0.47 µF) with time constant 5.8 msec. A signal from the integrator output connected to an automated workstation for readout with interval 2 sec into an archiver of an EPICS system. Table 1 Parameters of e,X-radiation on front surface of X-target , g/cm 2 Ex/Ee Ex/Eb, % <Ex>, MeV Dmax, kGy/h/mA 8 MeV 0 115.3 3.90 0.835 10.3 4 111.3 1.41 0.982 2.1 10 MeV 0 59.8 5.36 0.949 20.2 4 98.5 2.05 1.101 3.6 12 MeV 0 22.3 6.67 1.040 40.8 4 74.9 2.74 1.184 6.36 e-, γ High Voltage Power Supply 200 – 600 V R C to measuring system - + Ionization Chamber Coax. cable ~60 m Fig. 6. IC-current measuring circuit 2.2. In the experiments, the average accelerator beam current Iacc was controlled by the pulse rate. The obtained dependence of IC current on the bias voltage at different beam pulse rate and scan width is given in Figs. 7-9. It is evident, that the IC current is proportion- al to the average electron beam current and tends to sat- uration with the rise of bias voltage. It does not depend on the beam scan width (see Fig. 9). That confirms prac- tically full passing of X-ray flux through the ionization chamber. 200 250 300 350 400 450 500 550 600 0,00000 0,00005 0,00010 0,00015 0,00020 0,00025 0,00030 0,00035 0,00040 Iacc/8 Iacc/4 Iacc/2 IC c u rr e n t, A Power supply, V Iacc Iacc/2 Iacc/4 Iacc/8 Iacc Fig. 7. Dependence of IC current on bias at different average accelerator current (Iacc=0.73 mA) 0,0000 0,0001 0,0002 0,0003 0,0004 0,0005 0,0006 0,0007 0,0008 0,0009 0,00000 0,00005 0,00010 0,00015 0,00020 0,00025 0,00030 0,00035 0,00040 0,00045 0,00050 0,00055 IC c u rr e n t, A Iacc, A 200V 300V 400V 500V Linear Fit of HV200_G Linear Fit of HV300_G Linear Fit of HV400_G Linear Fit of HV500_H Fig. 8. Dependence of IC current on accelerator beam current at different bias voltage 390 400 410 420 430 440 450 460 470 480 490 0,00018 0,00019 0,00020 0,00021 0,00022 0,00023 0,00024 0,00025 0,00026 0,00027 0,00028 0,00029 0,00030 0,00031 0,00032 1.6 g/cm2 Linear Regression for SCAN_G: Y = A + B * X Parameter Value Error -------------------------------------------------- A 2,99704E-4 2,04693E-5 B 2,04998E-8 4,70966E-8 ------------------------------------------------- R SD N P ------------------------------------------------- 0,24284 1,00389 5 0,69388IC c u rr e n t, A Scan width, mm G Linear Fit of SCAN_G 1.22 g/cm2 Fig. 9. Dependence of IC current on beam scan width 2.3. The dependence of IC current on the conditions of the product irradiation in the e-channel was calculat- ed using an analytical model presented in [10] for the case of pulsed flux of gammas (Fig. 10). It is evident, that the data of calculations are underestimated by about 8% as compared with the experimental results. The sys- tematic divergency can be explained with both the mod- el restrictions and inaccuracy of the data on the coeffi- cients of the charge transfer in the ionization volume of the chamber. Its proper calibration enables on-line mon- itoring of absorbed dose in the X-channel. 200 300 400 500 600 110 120 130 140 150 160 170 180 190 200 210 w = 125 Hz experiment calculation I i m p , m A U, V Fig. 10. Dependence of IC current on bias (comparison with model) ISSN 1562-6016. ВАНТ. 2021. № 6(136) 204 3. OPTIMIZATION OF IRRADIATION MODE IN X-CHANNEL 3.1. A linear sweep is commonly used at product processing with the scanned electron beam to provide the even distribution of the particle density over the load surface. Conversely, it was shown in work [2], that the application of a combined scan mode, including the linear part over one half-period and the sinusoidal part over the second (Fig. 11), results in the reduction of dose ununiformity ratio (DUR) as compared with the double-linear mode. That is why the both variants of the sweep for the beam with the actual energy spectrum and similar scan amplitude were examined by the simulation technique (Fig. 12). -0.5 0.0 0.5 1.0 1.5 2.0 -1.0 -0.5 0.0 0.5 1.0   m a x t/t 0 Fig. 11. Shape of combined beam sweep -50 -40 -30 -20 -10 0 10 20 30 40 50 -40 -20 0 20 40 Y -a x is , cm X-axis, cm 1.02 1.30 1.58 1.86 2.14 2.41 2.69 2.97 3.25 X/I, kGy/h/mA X1 = 4 g/cm2 , 10 MeV a -40 -20 0 20 40 -40 -20 0 20 40 Y -a x is ,c m X-axis,cm 1.36 1.86 2.37 2.87 3.37 3.87 4.38 4.88 5.38 X/I (X1-1), kGy/h/mA 10 MeV b b Fig. 12. Dose rate distribution in X target (Eb= 10 MeV, surface density of product in e-channel is 4 g/cm 2 ): linear sweep (a); combined sweep (b) It is evident, that the combined sweep flattens the dose distribution along the scanning axis. At the other hand, under the given irradiation mode and size of the target, DUR reaches 5, while its acceptable value should be not higher than 1.8 [1]. 3.2. For the further smoothing of dose distribution, a two-sided irradiation mode of a target can be used, as well as the optimization of target’s size. It is seen in Fig. 13, that the two-sided processing provides DUR1.8 along the Z-axis of the target at its thickness of 65 g/cm 2 . 0 5 10 15 20 25 30 35 40 45 50 55 60 65 0,0 0,5 1,0 1,5 2,0 2,5 < X /I > , k G y /h /m A Z, g/cm2 Ee = 10 MeV  = 4 g/cm2 <X/I> <X/I>, 2-side Fig. 13. Dose rate distribution along z-axis of X target for one- and two-sided irradiation The results of estimating by MC simulation tech- nique the X-channel capacity at a two-sided object irra- diation, providing DUR not higher than 1.8, are listed in Table 2. It is evident, that the optimal size of the X tar- get depends weakly on the beam energy in contrast to the throughput capacity. Table 2 Throughput capacity of X-ray channel Ee, MeV X targ. size, (height  width), cm X targ. weig ht, kg Dose rate, kGy/hmA X-channel capacity, kGykg/h mA Max Min 8 12040 312 1.28 0.71 282 10 12045 351 1.98 1.25 438 12 12050 390 3.36 1.87 730 CONCLUSIONS Product treatment with electron beam is accompa- nied by generation of secondary e,X-radiation, that can be transformed into an extra-source of X-rays by the use of a set of the properly designed devices, positioned behind an irradiated load. Such a source can be applied for conducting uncommercial programs like the radia- tion tests, sanitization of archive materials and objects of the culture heritage, etc. Under conditions of the LU-10 Linac (10 MeV, 10 kW) the capacity of the X-channel makes up to 440 kGykg/mAh. In its productivity, such a radiation channel is comparable with an X-ray source, obtained by direct conversion of electron beam of an ILU6 accelerator (2 MeV; 20 kW), as well as with a Co-60 source having activity about 20 kCi [12]. In particular, the extra X-ray source on the basis of the LU-10 Linac can provide the sanitization of about 80 tons of the ar- chive materials with dose 5 kGy and higher per a 1000 h beam run. ISSN 1562-6016. ВАНТ. 2021. № 6(136) 205 REFERENCES 1. Industrial Radiation with Electron Beams and X- rays. http://iiaglobal.com/uploads/documents/Industrial_R adiation_eBeam_Xray.pdf. 2. V.I. Nikiforov, R.I. Pomatsalyuk, Yu.V. Rogov, A.Eh. Tenishev, V.L. Uvarov, A.A. Zakharchenko. Analysis and Optimization of a Mode of Industrial Product Processing at an Electron Accelerator // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigations”. 2015, № 6, p. 90- 94. 3. V.T. Lazurik, S.A. Pismenesky, G.F. Popov, D.V. Rudychev, V.G. Rudychev. An increase of uti- lization efficiency of X-ray beam // Radiation Phys- ics and Chemistry. 2007, v. 76, p. 1787-1791. 4. V.L. Uvarov, A.N. Dovbnya, N.A. Dovbnya, V.I. Nikiforov. Electron Linac Based e,X-Facility // Proc. of the EPAC. 2006, p. 2257-2259. 5. V.I. Nikiforov, V.L. Uvarov. Analysis of Mixed e,X-radiation along the Extraction Facilities of Elec- tron Accelerators // Atomic Energy. 2009, v. 106(4), p. 281-286. 6. V.N. Boriskin, S.A. Vanzha, V.N. Vereshchaka, et al. Development of radiation technologies and tests in “Accelerator” // Problems of Atomic Science and Technology. Series “Nuclear Physics Investiga- tions”. 2008, № 5, p. 150-154. 7. R.I. Pomatsalyuk, V.A. Shevchenko, I.N. Shlyak- hov, A.Eh. Tenishev, V.Yu. Titov, D.V. Titov, V.L. Uvarov, A.A. Zakharchenko. Measurement of electron beam energy characteristics at an industrial accelerator // Problems of Atomic Science and Tech- nology. Series “Nuclear Physics Investigations”. 2017, № 6, p. 3-7. 8. R.I. Pomatsalyuk, V.A. Shevchenko, A.Eh. Tenishev, D.V. Titov, V.L. Uvarov, A.A. Zakharchenko. De- velopment of a Method of Absorbed Dose On-line Monitoring at Product Processing by Scanned Elec- tron Beam // Problems of Atomic Science and Tech- nology. Series “Nuclear Physics Investigations”. 2016, № 3, p. 149-153. 9. ISO/ASTM 51276:2019. Practice for Use of a Polymethylmethacrylate Dosimetry System. 10. J. Allison, K. Amako, J. Apostolakis, et al. Recent developments in Geant4 // NIM. 2016, A 835, p. 186-225. 11. V.I. Ivanov. Course of Dosimetry. “Energoatomizdat”, 1988, p. 79-85 (in Russian). 12. Electron Accelerators for Research, Industry and Environment the INCT Perspective / A. Chmielewski and Z. Zimek, eds/, Warsaw, 2019, p. 28. Article received 04.10.2021 ФОРМИРОВАНИЕ И МОНИТОРИНГ ВТОРИЧНОГО ТОРМОЗНОГО ИЗЛУЧЕНИЯ ПРИ ОБРАБОТКЕ ПРОДУКЦИИ ПУЧКОМ ЭЛЕКТРОНОВ Р.И. Помацалюк, В.А. Шевченко, Д.В. Титов, А.Э. Тенишев, В.Л. Уваров, А.А. Захарченко, В.Н. Верещака При проведении радиационно-технологических программ на ускорителе электронов часть энергии пучка трансформируется в тормозное излучение. В результате, в области за объектом формируется поток смешан- ного e,X-излучения. Интенсивность его электронного и фотонного компонентов определяется энергией и мощностью первичного пучка электронов, а также параметрами объекта и размещенных за ним устройств. Изучены характеристики e,X-излучения, которое сопровождает обработку продукции сканирующим пучком электронов с энергией 8…12 МэВ на промышленном ускорителе ЛУ-10 ННЦ ХФТИ. Исследованы условия получения источника вторичного тормозного излучения в состоянии электронного равновесия, а также его мониторинга с использованием протяженной свободно-воздушной ионизационной камеры. Такой дополни- тельный источник излучения может быть использован для проведения некоммерческих программ, напри- мер, радиационных испытаний, санитарной обработки архивных материалов, объектов культурного насле- дия и т.п. ФОРМУВАННЯ ТА МОНІТОРИНГ ВТОРИННОГО ГАЛЬМІВНОГО ВИПРОМІНЮВАННЯ ПРИ ОБРОБЦІ ПРОДУКЦІЇ ПУЧКОМ ЕЛЕКТРОНІВ Р.І. Помацалюк, В.А. Шевченко, Д.В. Тітов, А.Е. Тєнішев, В.Л. Уваров, А.О. Захарченко, В.М. Верещака При проведенні радіаційно-технологічних програм на прискорювачі електронів частина енергії пучка трансформується в гальмівне випромінювання. Як наслідок, в області за об'єктом формується потік мішано- го e,X-випромінювання. Інтенсивність його електронного та фотонного компонентів визначається енергією і потужністю первинного пучка електронів, а також параметрами об'єкта та розміщених за ним пристроїв. Досліджені характеристики e,X-випромінювання, що супроводжує обробку продукції скануючим пучком електронів з енергією 8…12 МеВ на промисловому прискорювачі ЛП-10 ННЦ ХФТІ. Вивчені умови отри- мання джерела вторинного гальмівного випромінювання в стані електронної рівноваги, а також його моні- торингу з використанням протяжної вільно-повітряної іонізаційної камери. Таке додаткове джерело випро- мінювання може бути використано для проведення різних некомерційних програм, наприклад, радіаційних випробувань, санітарної обробки архівних матеріалів, об'єктів культурної спадщини та інше. http://iiaglobal.com/uploads/documents/Industrial_Radiation_eBeam_Xray.pdf http://iiaglobal.com/uploads/documents/Industrial_Radiation_eBeam_Xray.pdf https://www.scopus.com/sourceid/29513?origin=recordpage https://www.scopus.com/sourceid/29513?origin=recordpage