The age of detrite zircon from metasedimentary rocks of the Ternuvate strata (West Azov block of the Ukrainian Shield)

The Ternuvate strata comprise metamorphic rocks that make up the Haichur arcuate structure, which is about 72 km long. Its western part lies within the Andriivka fault zone, which separates the Vovcha and Huliaipole blocks, while the eastern part is located within the Ternuvate fault zone, traced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2023
Hauptverfasser: Artemenko, G.V., Shumlyanskyy, L.V., Dovbysh, L.S.
Format: Artikel
Sprache:English
Veröffentlicht: Видавничий дім "Академперіодика" НАН України 2023
Schriftenreihe:Доповіді НАН України
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/195852
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The age of detrite zircon from metasedimentary rocks of the Ternuvate strata (West Azov block of the Ukrainian Shield) / G.V. Artemenko, L.V. Shumlyanskyy, L.S. Dovbysh // Доповіді Національної академії наук України. — 2023. — № 3. — С. 49-59. — Бібліогр.: 29 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-195852
record_format dspace
spelling irk-123456789-1958522023-12-07T16:11:34Z The age of detrite zircon from metasedimentary rocks of the Ternuvate strata (West Azov block of the Ukrainian Shield) Artemenko, G.V. Shumlyanskyy, L.V. Dovbysh, L.S. Науки про Землю The Ternuvate strata comprise metamorphic rocks that make up the Haichur arcuate structure, which is about 72 km long. Its western part lies within the Andriivka fault zone, which separates the Vovcha and Huliaipole blocks, while the eastern part is located within the Ternuvate fault zone, traced on the Remivka block. The rocks composing the Haichur structure have irregular and laterally variable composition, changeable thickness, and exhibit dynamometamorphic structures of boudinage and schistosity. The upper part of the Ternuvate strata mainly consists of metasedimentary rocks, including gneisses, biotite schists, garnet-biotite, magnetite-amphibole, and feldspar quartzites. The lower part comprises volcanogenic rocks such as amphibolites, metaultrabasites, and biotite-amphibole gneisses. Using the LAICP- MS method, 38 zircon crystals from muscovite-biotite gneisses in the upper part of the Ternuvate strata were analyzed. Based on the geochemical data, these zircons are metamorphosed graywackes. The zircon crystals belong to several age populations (3.65-3.45 and 3.3-2.95 Ga), corresponding to the major stages of Archean crust formation in the West Azov domain, including the formation of the oldest basement and granite-greenstone complexes of the Paleoarchean and Mesoarchean ages. Identical populations of detrital zircon were found in the early Precambrian metaterrigenous rocks of the Krutobalka Formation in the Sorokyne greenstone structure. The correspondence between the Paleoarchean crust (3.45-3.65 Ga) of the West Azov block of the Ukrainian Shield and the Kursk-Besedine granulitegneiss area of the Kursk Magnetic Anomaly block is evident, while the Paleoarchean and Mesoarchean complexes (2.9- 3.3 Ga) correspond to the Mykhailivka and Orel-Tim granite-greenstone area of the Kursk Magnetic Anomaly block. The Archean complexes of Sarmatia are of the same age as similar formations in the Kaapvaal craton in South Africa, Bastar craton in India, North China Craton, Slave craton in Canada, and others, which formed during the Eoarchaean. Тернуватська товща метаморфічних порід складає Гайчурську структуру дугоподібної форми завдовжки близько 72 км. Її західна частина знаходиться в зоні Андріївського розлому, який розділяє Вовчанський та Гуляйпільський блоки, а східна — у зоні Тернуватського розлому на Ремівському блоці. Породи, що формують Гайчурську структуру, характеризуються строкатим та мінливим по латералі складом та змінною потужністю, в них спостерігаються динамоструктури — розлінзування та розсланцювання. Верхня світа тернуватської товщі складена переважно метаосадовими породами — гнейсами та сланцями біотитовими, гранат-біотитовими, глиноземистими, магнетит-амфіболовими та польовошпатовими кварцитами. Ниж- ня світа представлена вулканогенними породами — амфіболітами, метаультрабазитами та гнейсами біотит-амфіболовими. Методом LA-ICP-MS було продатовано 38 кристалів циркону з мусковіт-біотитових гнейсів верхньої світи тернуватської товщі, які за петрохімічними даними відповідають метаморфізованим граувакам. Серед них виявлено три популяції циркону — 3,65—3,45; 3,3 і 3,2—2,95 млрд років, які відповідають трьом етапам формування архейської кори Західноприазовського домену: утворенню найдавнішого фундаменту та граніт-зеленокам’яних комплексів палеоархейського і мезоархейського віку. Згідно з результатами зіставлення породних асоціацій Українського щита та Курської магнітної аномалії, очевидна відповідність палеоархейської кори (3,45—3,65 млрд років) Західноприазовського блока і Курсько-Бесединської грануліт-гнейсової області, а палеоархей-мезоархейські комплекси (2,9—3,3 млрд років) відповідають Михайлівській і Орловсько-Тимській структурам граніт-зеленокам’яної області Курської магнітної аномалії. Архейські комплекси Сарматського континенту є одновіковими з подібними утвореннями кратону Каапвааль у Південній Африці, Бастар в Індії, Північно-Китайського кратону, кратону Слейв у Канаді та інших, що формувалися починаючи з еоархею. 2023 Article The age of detrite zircon from metasedimentary rocks of the Ternuvate strata (West Azov block of the Ukrainian Shield) / G.V. Artemenko, L.V. Shumlyanskyy, L.S. Dovbysh // Доповіді Національної академії наук України. — 2023. — № 3. — С. 49-59. — Бібліогр.: 29 назв. — англ. 1025-6415 DOI: doi.org/10.15407/dopovidi2023.03.049 http://dspace.nbuv.gov.ua/handle/123456789/195852 550.4 (477); 551.21:551.24 en Доповіді НАН України Видавничий дім "Академперіодика" НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Науки про Землю
Науки про Землю
spellingShingle Науки про Землю
Науки про Землю
Artemenko, G.V.
Shumlyanskyy, L.V.
Dovbysh, L.S.
The age of detrite zircon from metasedimentary rocks of the Ternuvate strata (West Azov block of the Ukrainian Shield)
Доповіді НАН України
description The Ternuvate strata comprise metamorphic rocks that make up the Haichur arcuate structure, which is about 72 km long. Its western part lies within the Andriivka fault zone, which separates the Vovcha and Huliaipole blocks, while the eastern part is located within the Ternuvate fault zone, traced on the Remivka block. The rocks composing the Haichur structure have irregular and laterally variable composition, changeable thickness, and exhibit dynamometamorphic structures of boudinage and schistosity. The upper part of the Ternuvate strata mainly consists of metasedimentary rocks, including gneisses, biotite schists, garnet-biotite, magnetite-amphibole, and feldspar quartzites. The lower part comprises volcanogenic rocks such as amphibolites, metaultrabasites, and biotite-amphibole gneisses. Using the LAICP- MS method, 38 zircon crystals from muscovite-biotite gneisses in the upper part of the Ternuvate strata were analyzed. Based on the geochemical data, these zircons are metamorphosed graywackes. The zircon crystals belong to several age populations (3.65-3.45 and 3.3-2.95 Ga), corresponding to the major stages of Archean crust formation in the West Azov domain, including the formation of the oldest basement and granite-greenstone complexes of the Paleoarchean and Mesoarchean ages. Identical populations of detrital zircon were found in the early Precambrian metaterrigenous rocks of the Krutobalka Formation in the Sorokyne greenstone structure. The correspondence between the Paleoarchean crust (3.45-3.65 Ga) of the West Azov block of the Ukrainian Shield and the Kursk-Besedine granulitegneiss area of the Kursk Magnetic Anomaly block is evident, while the Paleoarchean and Mesoarchean complexes (2.9- 3.3 Ga) correspond to the Mykhailivka and Orel-Tim granite-greenstone area of the Kursk Magnetic Anomaly block. The Archean complexes of Sarmatia are of the same age as similar formations in the Kaapvaal craton in South Africa, Bastar craton in India, North China Craton, Slave craton in Canada, and others, which formed during the Eoarchaean.
format Article
author Artemenko, G.V.
Shumlyanskyy, L.V.
Dovbysh, L.S.
author_facet Artemenko, G.V.
Shumlyanskyy, L.V.
Dovbysh, L.S.
author_sort Artemenko, G.V.
title The age of detrite zircon from metasedimentary rocks of the Ternuvate strata (West Azov block of the Ukrainian Shield)
title_short The age of detrite zircon from metasedimentary rocks of the Ternuvate strata (West Azov block of the Ukrainian Shield)
title_full The age of detrite zircon from metasedimentary rocks of the Ternuvate strata (West Azov block of the Ukrainian Shield)
title_fullStr The age of detrite zircon from metasedimentary rocks of the Ternuvate strata (West Azov block of the Ukrainian Shield)
title_full_unstemmed The age of detrite zircon from metasedimentary rocks of the Ternuvate strata (West Azov block of the Ukrainian Shield)
title_sort age of detrite zircon from metasedimentary rocks of the ternuvate strata (west azov block of the ukrainian shield)
publisher Видавничий дім "Академперіодика" НАН України
publishDate 2023
topic_facet Науки про Землю
url http://dspace.nbuv.gov.ua/handle/123456789/195852
citation_txt The age of detrite zircon from metasedimentary rocks of the Ternuvate strata (West Azov block of the Ukrainian Shield) / G.V. Artemenko, L.V. Shumlyanskyy, L.S. Dovbysh // Доповіді Національної академії наук України. — 2023. — № 3. — С. 49-59. — Бібліогр.: 29 назв. — англ.
series Доповіді НАН України
work_keys_str_mv AT artemenkogv theageofdetritezirconfrommetasedimentaryrocksoftheternuvatestratawestazovblockoftheukrainianshield
AT shumlyanskyylv theageofdetritezirconfrommetasedimentaryrocksoftheternuvatestratawestazovblockoftheukrainianshield
AT dovbyshls theageofdetritezirconfrommetasedimentaryrocksoftheternuvatestratawestazovblockoftheukrainianshield
AT artemenkogv ageofdetritezirconfrommetasedimentaryrocksoftheternuvatestratawestazovblockoftheukrainianshield
AT shumlyanskyylv ageofdetritezirconfrommetasedimentaryrocksoftheternuvatestratawestazovblockoftheukrainianshield
AT dovbyshls ageofdetritezirconfrommetasedimentaryrocksoftheternuvatestratawestazovblockoftheukrainianshield
first_indexed 2025-07-17T00:06:45Z
last_indexed 2025-07-17T00:06:45Z
_version_ 1837850492696264704
fulltext 49 ОПОВІДІ НАЦІОНАЛЬНОЇ АКАДЕМІЇ НАУК УКРАЇНИ ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2023. № 3: 49—59 C i t a t i o n: Artemenko G.V., Shumlyanskyy L.V., Dovbysh L.S. Th e age of detrite zircon from metasedimentary rocks of the Ternuvate strata (West Azov block of the Ukrainian Shield). Dopov. Nac. akad. nauk Ukr. 2023. No 3. P. 49—59. https://doi.org/10.15407/dopovidi2023.03.049 © Publisher PH «Akademperiodyka» of the NAS of Ukraine, 2022. Th is is an open access article under the CC BY- NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/) НАУКИ ПРО ЗЕМЛЮ GEOSCIENCES https://doi.org/10.15407/dopovidi2023.03.049 UDC 550.4 (477); 551.21:551.24 G.V. Artemenko1, https://orcid.org/0000-0002-4528-6853 L.V. Shumlyanskyy1, 2, https://orcid.org/0000-0002-6775-4419 L.S. Dovbysh1 1 M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine, Kyiv 2 Curtin University, School of Earth and Planetary Sciences, Perth, Australia E-mail: regulgeo@gmail.com, leonid.shumlyanskyy@curtin.edu.au, Th e age of detrital zircon from metasedimentary rocks of the Ternuvate strata (West Azov block of the Ukrainian Shield) Presented by Academician of the NAS of Ukraine O.M. Ponomarenko Th e Ternuvate strata comprise metamorphic rocks that make up the Haichur arcuate structure, which is about 72 km long. Its western part lies within the Andriivka fault zone, which separates the Vovcha and Huliaipole blocks, while the eastern part is located within the Ternuvate fault zone, traced on the Remivka block. Th e rocks composing the Haichur structure have irregular and laterally variable composition, changeable thickness, and exhibit dynamometamorphic structures of boudinage and schistosity. Th e upper part of the Ternuvate strata mainly consists of metasedimentary rocks, including gneisses, biotite schists, garnet-biotite, magnetite-amphibole, and feldspar quartzites. Th e lower part comprises volcanogenic rocks such as amphibolites, metaultrabasites, and biotite-amphibole gneisses. Using the LA- ICP-MS method, 38 zircon crystals from muscovite-biotite gneisses in the upper part of the Ternuvate strata were analyzed. Based on the geochemical data, these zircons are metamorphosed graywackes. Th e zircon crystals belong to several age populations (3.65-3.45 and 3.3-2.95 Ga), corresponding to the major stages of Archean crust formation in the West Azov domain, including the formation of the oldest basement and granite-greenstone complexes of the Paleoarchean and Mesoarchean ages. Identical populations of detrital zircon were found in the early Precambrian metaterrigenous rocks of the Krutobalka Formation in the Sorokyne greenstone structure. Th e correspondence between the Paleoarchean crust (3.45-3.65 Ga) of the West Azov block of the Ukrainian Shield and the Kursk-Besedine granulite- gneiss area of the Kursk Magnetic Anomaly block is evident, while the Paleoarchean and Mesoarchean complexes (2.9- 3.3 Ga) correspond to the Mykhailivka and Orel-Tim granite-greenstone area of the Kursk Magnetic Anomaly block. Th e Archean complexes of Sarmatia are of the same age as similar formations in the Kaapvaal craton in South Africa, Bastar craton in India, North China Craton, Slave craton in Canada, and others, which formed during the Eoarchaean. Keywords: Haichur structure, Ternuvate sequence, muscovite-biotite gneiss, Huliaipole block, Vovcha block, Remivka block, zircon, U-Pb age, metasedimentary rocks. 50 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2023. No 3 G.V. Artemenko, L.V. Shumlyanskyy, L.S. Dovbysh Introduction. Th e Haichur arcuate structure is a complex trough-shaped structure that extends for approximately 72 km, with a monoclinal structure present in its southern part (Fig. 1) [1]. Its western part is located within the Andriivka fault zone, which separates the Vovcha and Huli- aipole blocks, while the eastern part occurs in the Ternuvate fault zone, traced on the Remivka block. Th e metamorphic rocks that comprise the Haichur structure exhibit irregular and lateral- ly variable composition and changing thickness. Th ey display dynamometamorphic structures, including boudinage and schistosity. Th e Haichur structure consists of metavolcanogenic and metassedimentary rocks, as well as granitoids that have been strongly aff ected by dislocation metamorphism, and rocks from the old basement that have been displaced due to tectonic pro- cesses. Th e metamorphosed volcanogenic and sedimentary rocks within the Haichur structure belong to the Ternuvate strata, which are divided into two formations [2]. Th e upper formation, with a thickness of up to 800 m, primarily consists of biotite, muscovite-biotite, garnet-biotite, sillimanite-garnet, locally with cordierite, graphite, biotite-garnet, magnetite-tremolite-garnet gneisses and schists, magnetite-amphibole, feldspar, and amphibole-magnetite quartzites. In the eastern part of the structure, there are layers of amphibole-magnetite quartzites that extend for 0.5—1.0 km [1]. Th e lower formation, with a thickness of up to 350 m, consists of amphibolites, metaultraba- sites, and amphibole-biotite gneiss. Th e Ternuvate strata reaches its maximum thickness of 1.0 km on the eastern fl ank of the Haichur structure, while the minimum thickness of about 100 m is observed on its western fl ank. Paleoproterozoic granites dated at 2.2 Ga cut through the metamor- phic rocks of the Ternuvate strata [3]. Th e Haichur structure is considered by the authors [1, 2] as a greenstone structure similar to the Kosyvtseve greenstone belt, with the upper terrigenous section of the Haichur structure having escaped denudation. On the other hand, other authors [4] suggest that the lower part of the Ternuvate strata consists of rocks from the West Azov Group, while the upper part belongs to the Central Azov Group. Fig. 1. A schematic geological map of the junction zone of the Huliaipole, Vovcha and Remiv- ka blocks [1], with changes and additions 51ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2023. № 3 Th e age of detrite zircon from metasedimentary rocks of the Ternuvate strata (West Azov block of the Ukrainian Shield) Research Objectives. Th e research objectives were focused on reconstructing the genesis and determining the age of formation of the volcanogenic sedimentary rocks within the Ternuvate strata. Due to the strong tec- tonic overprint, establishing the genesis of the gneiss- es and schists within the Ternuvate strata is challeng- ing. To determine their initial nature, the diagrams of A.A. Predovskyi (FAK) [5] and Al2O3 — (K2O+Na2O) [6] were utilized. Zircon from the biotite gneisses of the Ternuvate strata was dated using the LA-ICP-MS meth- od (sample 89-227, borehole 160, depth 149.8-154.5 m) (Fig. 2). Research methods. Th e research methods involved extracting zircon from the rock using a shaking table, heavy liquids, and a magnetic separator to obtain a heavy non-magnetic fraction. Zircons were then hand-picked under a binocular microscope. Zircon morphology was studied using an optical microscope, and the internal structure was documented using cathodoluminescence. U-Pb isotopic data were collected using laser ablation inductively coupled plasma mass spectrometry (LA-ICP- MS) at the GeoHistory Facility, John de Laeter Centre, Curtin University. Zircon standard OG1 (3465 ± 0.6 Ma [8]; all uncertainties at 2σ) was used as the primary reference material, and secondary standards GJ-1 (601.2 ± 0.4 Ma [9]), and Plešovice (337.13 ± 0.37 Ma [10]) were analyzed for comparison. Th e secondary standards provided weight- ed mean 207Pb/206Pb ages and 238U/206Pb ages within the uncertainty of the recommended values. Th e time-resolved mass spectra were reduced using Iolite 3.7™ [11] and references therein, with fi nal ages calculated using Isoplot. Silicate rock analyses were carried out at the IGMOF of the NAS of Ukraine, Kyiv. Characteristics of the studied muscovite-biotite gneiss of the Ternuvate strata. Th e stud- ied muscovite-biotite gneiss from the Ternuvate strata was recovered from borehole 160, located in the northernmost part of the Haichur arcuate structure (see Figs 1, 2). Beneath the weathering crust, within the depth interval of 133.8-180.5 m, muscovite-bearing biotite gneiss was retrieved. Th e gneiss exhibits indistinct banding, resulting from the alternation of biotite-rich gneiss with relatively leucocratic (biotite below 10 %) gneiss variety. Feldspar is occasionally observed as porphyroblasts, ranging in size up to 5 mm, or as lenses up to 5×6 mm. Biotite fl akes vary in size from 0.5×1.0 mm to 3×5 mm. At diff erent intervals, biotite forms clusters, giving the rocks a spotted structure. Th e gneisses are intruded by veins of aplite granite, which can reach up to 2 cm in thickness. Smp. 89-227 Dh. 160 133.8 146.0 180.5 183.6 185.8 196.0 198.3 206.0 209.5 214.9 224.7 245.4 266.5 220.0 1 2 3 4 5 6 7 Fig. 2. Schematic log of the borehole No. 160 aft er [7]: 1 — biotite and two-mica plagioclase gneiss; 2 — two-mica gneiss; 3 — two-mi- ca sillimanite-bearing gneiss; 4 — sillimanite-garnet-biotite plagio- clase gneiss; 5 — quartzite; 6 — biotite granite; 7 — sampling interval 52 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2023. No 3 G.V. Artemenko, L.V. Shumlyanskyy, L.S. Dovbysh A sample (89-227) representing muscovite-biotite gneiss from borehole 160, with a depth of 149.8-154.5 m, was selected for the geochronological studies. It is a light gray, fi ne- grained, and light-banded rock. Th e mineral composition (%): plagioclase — 45-60; quartz — 30-35; biotite — 10-12; muscovite — 7; opaque minerals, zircon, and apatite occur in accessory amounts. Th is rock has high silica and a low alumina content (SiO2 — 78.62 %; TiO2 — 0.38  %; Al2O3 — 8.84 %; Fe2O3 — 0.71 %; FeO — 2.88 %; MnO — 0.09 %; MgO — 1.94 %; CaO — 2.24 %; Na2O — 1.66 %; K2O — 1.40 %; Stotal — 0.10 %; P2O5 — 0.12 %; H2O — 0.15 %; LOI — 0.96 %; Total — 100.09 %). In the FAK diagram [5], muscovite-biotite gneiss plots within the fi eld of clastic alumino- silicate sedimentary rocks such as subgraywackes and arkoses. It partially overlaps with the fi eld of felsic igneous rocks of similar composition (Fig. 3). Th e Al2O3 — (K2O+Na2O) diagram [6] was used to diff erentiate subgraywacke from metamorphosed felsic and intermediate igneous rocks. In this diagram, muscovite-biotite gneiss plots within the fi eld of subgraywackes (Fig. 4). Another diagram used to distinguish metaarkose and metarhyolite is the (Fe2O3+FeO+MgO)/ SiO2 — (Na2O+K2O) diagram [6], where muscovite-biotite gneiss plots within the fi eld of me- tagraywacke (Fig. 5). Zircon characterization. Th e zircon fraction from muscovite-biotite gneiss (sample 89- 227) consists of several varieties of zircon. Th e predominant form is elongated prismatic crys- tals with smooth pyramid facets (60 % of the fraction). Th e crystals have a length along the L4 axis ranging from 0.2 to 0.35 mm, with an elongation coeffi cient of 2.0-3.0. Th ey exhibit a pink color and a matte luster. Some grains contain dark cores. Approximately 30 % of the fraction is K I, II ARK ARKKA G G Feldspar and sericite quartzites and arkoses C CD D B B A ABC HC HC KC VC Vermiculite clay SGW SGW GW GW 10/227 10/227 III III II I Quartzites F A+ n · 102 + n · 102– n · 102 – n · 102+ n · 101 + n · 101– n · 101 – n · 101 n · 1 0–1 n n · 1 0–2 n · 1 0–3 n · 1 0–4 + n + n– n – n Bauxite clays Hydromicaceous clay Kaolinite clay Tuffites with acid and andesite material Tuffites with basic and ultrabasic material Arkoses Subgraywackes Greywacke Melanowacke Fig. 3. Th e FAK diagram [5] is used for the reconstruction of the primary composition of metamorphosed alu- minosilicate igneous and sedimentary rocks. Fields of sedimentary, volcanogenic-sedimentary and mixed rocks: I — sedimentary and mixed rocks; II — pelites; III — chemogenic silicites. A — ultrabasites; B — basites; C — sy- enites, alkaline syenites and their eff usive analogues; D — diorites, plagioclase granites and their eff usive analogues; G — granites and their eff usive analogues. F = (FeO+MgO+Fe2O3)/SiO2; A = Al2O3 – (CaO*+K2O+Na2O), where CaO* = CaO + CO2; K = K2O – Na2O (in molar amounts) [5] 53ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2023. № 3 Th e age of detrite zircon from metasedimentary rocks of the Ternuvate strata (West Azov block of the Ukrainian Shield) composed of pink zircon, which is more transparent and fractured, with a glassy luster and dark cores. A small portion (10 %) of zircon grains is either equant or elongated, with a length along the L4 axis ranging from 0.15 to 0.35 mm and an elongation coeffi cient of 1.0-2.5. Th ese crystals also exhibit a pink color, a glassy luster, and transparency. Th e internal structure of the zircon grains is homogeneous. Th e results of geochronological studies of zircon. Th e LA-ICP-MS method yielded the U-Pb ages for zircon from the muscovite-biotite gneiss in the upper formation of the Ternuvate strata. A total of 38 crystals were dated, with 51 age determinations performed (Table, Figs 6, 7, 8). Among them, 16 dates were highly discordant and were excluded from further consideration. Th e zircons with discordant ages exhibited elevated levels of uranium, thorium, and lead. Th e majority of zir- con dates (24 crystals) fall within the age range of 3.3-2.95 Ga, while the second most abundant population (9 crystals) is dated at the age of 3.65-3.45 Ga. (F e 2O 3 + F eO + M gO )/ Si O 2 0.12 0.08 0.04 108 (Na2O + K2O), % 6420 Quartzites Metaarkoses Metagraywackes 89-227 Metarhyolites Fig. 5. Diagram (Fe2O3+FeO+MgO)/SiO2 – (Na2O+K2O) for discrimination of metaarkose and metarhyolite [6] Fig. 6. CL-images of the studied zircon crystals from muscovite-biotite gneiss of the Ternuvate strata (sample 89-227, borehole 160, depth 149.8-154.5 m), with indicated U-Pb analysis numbers (see Table) and 207Pb/206Pb isotope age, Ma A l 2O 3 170 150 130 110 14012010080 (K2O + Na2O), mol 604020 90 70 Andesite Dacite Quartz Alkaline Granite Arkose Subgreywacke 89-227 Diorite Rhyodacite Rhyolite Fig. 4. Diagram Al2O3 – (K2O + Na2O) (molar amounts) for discrimination of subgraywacke from intermedi- ate and felsic igneous rocks [6]. Th e trend in the dia- gram indicates the change of the composition of or- dinary sub-graywackes and arkoses with a decreasing amount of quartz 54 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2023. No 3 G.V. Artemenko, L.V. Shumlyanskyy, L.S. Dovbysh Re su lts o f U -P b da tin g of zi rc on fr om m us co vi te -b io tit e g ne iss (s am pl e 8 9- 22 7) # an al ys is C on ce nt ra tio n, p pm Is ot op e r at io Is ot op ic ag e, M a U Pb Th Th /U 20 7 Pb /23 5 U 2σ 20 6 Pb /23 8 U 2σ Rh o 20 7 Pb /20 6 Pb 2σ 20 7 Pb /23 5 U 2σ 20 6 Pb /23 8 U 2σ 20 7 Pb /20 6 Pb 2σ 1 29 5 20 5 29 5 2, 24 19 ,5 40 0 0, 37 00 0, 60 75 0, 00 7 0, 37 0, 23 62 0, 00 7 30 95 27 30 59 29 30 68 19 2* 60 9 30 9 60 9 2, 90 26 ,0 00 0 1, 20 00 0, 59 20 0, 02 1 0, 94 0, 32 11 0, 02 1 35 78 21 29 83 87 33 31 46 3 33 4 21 7 33 4 2, 34 20 ,7 70 0 0, 64 00 0, 61 20 0, 01 4 0, 75 0, 25 20 0, 01 4 31 95 26 30 72 56 31 33 31 4 61 95 61 1, 20 34 ,7 00 0 1, 10 00 0, 76 10 0, 01 7 0, 42 0, 33 80 0, 01 7 36 48 47 36 43 60 36 31 30 5 67 65 67 1, 70 21 ,7 50 0 0, 93 00 0, 65 50 0, 01 7 0, 32 0, 24 20 0, 01 7 31 26 70 32 50 68 31 60 41 6 84 10 0 84 1, 46 20 ,5 80 0 0, 72 00 0, 60 80 0, 01 3 0, 41 0, 24 91 0, 01 3 31 72 50 30 58 50 31 19 34 7 31 1 70 31 1 7, 85 32 ,9 80 0 0, 74 00 0, 74 57 0, 00 9 0, 47 0, 32 13 0, 00 9 35 77 24 35 90 33 35 78 22 8 19 5 97 19 5 3, 86 32 ,0 50 0 0, 65 00 0, 75 00 0, 01 2 0, 45 0, 31 24 0, 01 2 35 29 30 36 09 44 35 48 20 9 42 49 42 1, 44 22 ,0 00 0 1, 00 00 0, 67 30 0, 01 7 0, 18 0, 24 40 0, 01 7 31 36 77 33 19 68 31 78 46 10 17 9 83 17 9 3, 04 20 ,5 10 0 0, 54 00 0, 61 70 0, 01 1 0, 18 0, 24 64 0, 01 1 31 66 42 30 94 44 31 09 25 11 16 8 18 0 16 8 1, 55 21 ,7 70 0 0, 53 00 0, 65 31 0, 00 9 0, 20 0, 24 73 0, 00 9 31 66 40 32 39 33 31 71 24 12 16 6 96 16 6 3, 18 33 ,2 00 0 1, 10 00 0, 73 50 0, 01 1 0, 44 0, 32 97 0, 01 1 36 24 36 35 53 42 35 90 31 13 11 1 5 11 1 10 2,0 0 18 ,9 40 0 0, 73 00 0, 57 80 0, 01 3 0, 59 0, 24 57 0, 01 3 31 47 47 29 36 52 30 30 38 14 15 8 16 0 15 8 1, 59 20 ,5 10 0 0, 53 00 0, 62 42 0, 00 9 0, 43 0, 23 94 0, 00 9 31 09 37 31 30 36 31 15 25 15 * 38 6 17 5 38 6 2, 82 14 ,7 00 0 0, 51 00 0, 44 20 0, 01 3 0, 74 0, 24 78 0, 01 3 31 63 31 23 56 58 27 97 34 16 10 2 53 10 2 2, 97 22 ,2 20 0 0, 62 00 0, 64 30 0, 01 4 0, 27 0, 25 22 0, 01 4 32 11 46 31 96 55 31 93 27 17 * 52 6 73 52 6 11 ,4 5 9, 25 00 0, 39 00 0, 37 60 0, 01 5 0, 89 0, 18 60 0, 01 5 27 01 36 20 58 72 23 82 43 18 30 9 27 3 30 9 2, 12 30 ,5 80 0 0, 58 00 0, 71 50 0, 00 9 0, 45 0, 31 15 0, 00 9 35 24 24 34 80 34 35 04 18 19 21 5 20 9 21 5 1, 93 32 ,5 70 0 0, 90 00 0, 72 50 0, 01 3 0, 73 0, 31 70 0, 01 3 35 63 34 35 18 50 35 64 29 20 64 28 64 3, 37 20 ,5 60 0 0, 73 00 0, 60 00 0, 01 4 0, 20 0, 25 36 0, 01 4 32 18 53 30 26 57 31 18 35 21 * 37 6 16 4 37 6 2, 12 11 ,1 60 0 0, 31 00 0, 36 85 0, 00 8 0, 58 0, 22 39 0, 00 8 30 03 37 20 20 38 25 33 26 22 70 92 70 1, 22 23 ,1 60 0 0, 83 00 0, 64 10 0, 01 5 0, 22 0, 26 30 0, 01 5 32 58 63 31 88 60 32 43 33 23 * 21 9 17 7 21 9 1, 71 18 ,2 70 0 0, 44 00 0, 53 90 0, 01 2 0, 34 0, 25 00 0, 01 2 31 88 39 27 75 51 30 05 23 24 26 3 82 26 3 5, 68 28 ,8 20 0 0, 56 00 0, 70 88 0, 01 0 0, 49 0, 29 86 0, 01 0 34 60 27 34 52 37 34 46 19 25 * 19 2 16 19 2 22 ,3 0 16 ,6 20 0 0, 59 00 0, 50 70 0, 01 3 0, 59 0, 23 93 0, 01 3 30 97 49 26 37 57 29 06 34 26 81 58 81 2, 82 19 ,4 00 0 1, 00 00 0, 56 80 0, 01 5 0, 46 0, 25 50 0, 01 5 32 40 74 29 02 64 30 68 51 55ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2023. № 3 Th e age of detrite zircon from metasedimentary rocks of the Ternuvate strata (West Azov block of the Ukrainian Shield) # an al ys is C on ce nt ra tio n, p pm Is ot op e r at io Is ot op ic ag e, M a U Pb Th Th /U 20 7 Pb /23 5 U 2σ 20 6 Pb /23 8 U 2σ Rh o 20 7 Pb /20 6 Pb 2σ 20 7 Pb /23 5 U 2σ 20 6 Pb /23 8 U 2σ 20 7 Pb /20 6 Pb 2σ 27 26 5 33 4 26 5 1, 35 23 ,3 70 0 0, 59 00 0, 66 27 0, 00 9 0, 69 0, 25 79 0, 00 9 32 31 27 32 76 35 32 42 24 28 * 24 8 94 24 8 4, 04 17 ,8 90 0 0, 34 00 0, 58 13 0, 00 7 0, 05 0, 22 69 0, 00 7 30 27 31 29 53 28 29 87 19 29 * 25 4 62 25 4 5, 36 8, 94 00 0, 35 00 0, 29 70 0, 01 2 0, 78 0, 22 26 0, 01 2 29 93 38 16 76 58 23 31 35 30 20 4 33 3 20 4 1, 04 24 ,2 90 0 0, 65 00 0, 66 66 0, 00 9 0, 40 0, 26 53 0, 00 9 32 72 36 32 91 33 32 73 26 31 96 19 6 96 0, 81 23 ,3 40 0 0, 69 00 0, 67 40 0, 01 3 0, 12 0, 25 31 0, 01 3 32 11 52 33 18 50 32 36 29 32 38 25 38 3, 14 36 ,2 00 0 1, 80 00 0, 76 10 0, 02 2 0, 65 0, 34 80 0, 02 2 36 94 54 36 39 81 36 64 46 33 34 18 34 3, 01 20 ,4 00 0 1, 10 00 0, 61 30 0, 02 1 0, 30 0, 24 70 0, 02 1 31 35 89 30 81 84 31 23 52 34 54 9 46 0 54 9 2, 37 31 ,1 50 0 0, 74 00 0, 73 10 0, 01 3 0, 87 0, 31 60 0, 01 3 35 46 22 35 34 49 35 25 23 35 11 7 85 11 7 2, 26 18 ,6 80 0 0, 65 00 0, 58 80 0, 01 2 0, 42 0, 23 45 0, 01 2 30 88 48 29 84 48 30 17 34 36 68 10 5 68 1, 07 24 ,1 10 0 0, 84 00 0, 65 40 0, 01 6 0, 24 0, 27 40 0, 01 6 33 05 64 32 45 61 32 66 35 1N 32 7 13 1 32 7 4, 38 24 ,0 16 2 0, 67 16 0, 65 01 0, 01 2 0, 39 0, 25 92 0, 01 2 32 63 27 32 26 48 32 32 41 2N 49 37 49 2, 10 21 ,1 01 7 1, 39 15 0, 60 45 0, 02 6 0, 18 0, 25 03 0, 02 6 31 25 63 30 35 10 2 31 18 11 1 3N * 89 79 89 1, 91 19 ,6 08 3 0, 98 06 0, 53 67 0, 01 6 0, 29 0, 25 83 0, 01 6 30 75 48 27 64 68 32 18 72 4N * 54 3 58 54 3 6, 27 7, 52 02 0, 28 43 0, 33 82 0, 00 9 0, 16 0, 15 60 0, 00 9 21 74 32 18 76 44 23 87 69 5N 15 9 14 1 15 9 2, 01 20 ,1 20 0 0, 87 42 0, 60 40 0, 01 9 0, 42 0, 23 12 0, 01 9 30 83 43 30 54 81 30 50 66 6N 17 2 14 1 17 2 2, 08 20 ,0 09 2 0, 82 34 0, 58 46 0, 01 2 0, 36 0, 24 32 0, 01 2 30 86 44 29 64 51 31 22 58 7N * 11 3 36 11 3 4, 96 18 ,8 64 5 1, 44 53 0, 60 68 0, 01 8 0, 37 0, 22 00 0, 01 8 30 05 78 30 51 72 29 13 11 3 8N * 30 8 11 5 30 8 2, 37 14 ,7 58 3 0, 54 40 0, 40 94 0, 01 5 0, 55 0, 25 74 0, 01 5 27 97 39 22 07 68 32 13 54 9N 11 2 12 0 11 2 1, 52 23 ,2 30 7 0, 92 70 0, 66 58 0, 01 6 0, 18 0, 24 40 0, 01 6 32 25 39 32 86 59 31 39 61 10 N * 23 9 19 7 23 9 2, 34 33 ,1 56 9 1, 17 84 0, 73 86 0, 01 5 0, 35 0, 31 70 0, 01 5 35 76 34 35 62 55 35 45 41 11 N * 12 7 13 3 12 7 1, 82 34 ,1 97 2 1, 28 07 0, 75 42 0, 02 3 0, 42 0, 32 14 0, 02 3 36 05 37 36 15 82 35 59 56 12 N 50 43 50 1, 79 21 ,4 05 1 1, 38 11 0, 64 28 0, 02 7 0, 39 0, 23 71 0, 02 7 31 37 66 32 07 11 3 30 63 10 5 13 N * 83 13 9 83 1, 07 25 ,7 51 4 1, 42 02 0, 63 65 0, 01 9 0, 44 0, 28 81 0, 01 9 33 24 58 31 69 74 33 83 86 14 N * 84 12 5 84 1, 21 25 ,5 76 4 1, 36 16 0, 67 91 0, 02 2 0, 48 0, 26 67 0, 02 2 33 10 52 33 33 83 32 73 67 15 N 25 8 24 8 25 8 1, 62 18 ,9 33 5 0, 67 25 0, 59 74 0, 01 2 0, 21 0, 22 62 0, 01 2 30 37 32 30 17 47 30 13 46 No te . A ste ris k (* ) i nd ic at es d isc or da nt an al ys es th at w er e o m itt ed fr om F ig . 7 an d 8. 56 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2023. No 3 G.V. Artemenko, L.V. Shumlyanskyy, L.S. Dovbysh Discussion and conclusions. Th is geochronological study of the muscovite-biotite gneiss from the upper formation of the Ternuvate strata in the Haichur structure represents the fi rst of its kind. Based on its chemical characteristics, this gneiss is identifi ed as metamorphosed graywacke. Th rough the application of the LA-ICP-MS method, 38 zircon crystals were dated, resulting in 51 U-Pb age determinations. Th ese zircon populations exhibit ages corresponding to signifi cant stages in the formation of the Archean crust in the West Azov domain. Specifi cally, the ages range from 3.65-3.45 Ga and 3.3-2.95 Ga, which correspond to the formation of the oldest basement [12—16] and the granite-greenstone complexes of Paleoarchean and Mesoarchean ages, respec- tively [12, 17]. Similar populations of detrital zircon have been identifi ed in early Precambrian metaterrigenous rocks of the Krutobalka formation in the Soroky greenstone structure [18, 19]. Comparisons between the rock associations of the Ukrainian Shield and the Kursk Magnetic Anomaly provide evidence of a correspondence between the Paleoarchean crust (3.65-3.45 Ga) in the West Azov block and the Kursk-Besedynsk granulite-gneissic area [20, 21]. Th e Mesoarchean complexes (3.3-2.9 Ga) correspond to the Mykhailivka and Orel-Tim granite-greenstone area of the Kursk Magnetic Anomaly [22, 23]. Th e Archean complexes in the Sarmatia region exhibit the same ages as similar formations found in the Kaapvaal craton in South Africa [24], Bastar craton in India [25, 26], North China Craton [27], and Slave craton in Canada [28, 29]. Th ese cratons have formed since the Eoarchean period. 20 6 Pb /23 8 U 207 Pb/235U 0.8 0.7 0.6 30 3100 3300 3500 3700 38 42342622 2900 14 18 0.5 Data-point error ellipses are 2σ N um be r Re la tiv e p ro ba bi lit y 9 8 7 6 5 4 3 2 1 0 2900 3100 3300 3500 207Pb/206Pb age, Ma 3700 3900 Fig. 7. U-Pb concordia diagram for zircon from musco- vite-biotite gneiss of the Ternuvate strata (sample 89-227). Discordant results are omitted Fig. 8. Th e 207Pb/206Pb age distribution curve for detri- tal zircon from muscovite-biotite gneiss of the Ternuvate strata (sample 89-227). Only concordant results are plotted 57ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2023. № 3 Th e age of detrite zircon from metasedimentary rocks of the Ternuvate strata (West Azov block of the Ukrainian Shield) REFERENCES 1. Kinshakov, V. N. (1990). Deep geological mapping at a scale 1  : 50000, carried out in 1986-1990. Sheets L- 37-1-B, L-37-1-G. Kyiv (in Russian). 2. Isipchuk, K. Yu., Bobrov, O. B., Stepanyuk, L. M. et. al. (2004). Correlative chronostratigraphic chart of the Early Precambrian of the Ukrainian shield (chart and explanatory note). Kyiv: UkrDGRI (in Ukrainian). 3. Artemenko, G. V., Samborska, I. A., Shvaika, I. A., Gogolev, K. I. & Dovbush, T. I. (2018). The stages of Early Proterozoic collision granitoid magmatism and metamorphism on the Azov and Middle-Dnieper megablocks of the Ukrainian Shield. Mineralogical journal, 40, No. 2, pp. 45-62 (in Russian). https://doi.org/10.15407/ mineraljournal.40.02.045 4. Pereverzev, S. I. (1989). New data on the age and stratigraphic position of the Osypenkovo Formation (Azov Block). Geologìčnij žurnal, No. 4, pp. 56-64 (in Russian). 5. Predovsky, A. A. (1970). Geochemical reconstruction of the primary composition of metamorphosed volcano- genic-sedimentary formations of the Precambrian. Apatity (in Russian). 6. Predovsky, A. A. (1980). Reconstruction of the conditions of sedimentogenesis and volcanism of the early Pre- cambrian. Leningrad: Nauka (in Russian). 7. Kiktenko, V. F. (1982). Deep geological mapping at a scale smaller than 1 : 200000 within sheets M-37-XXXI, / -37-I, VII (Western Azov region — sheets M-37-133; M-37-134-B; / - 37-1 ; / - 37-2; / -37-13; / - 37-14; / - 37- 25-A, B; / - 37-26-A, B). Kyiv (in Russian). 8. Stern, R. A., Bodorkos, S., Kamo, S. L., Hickman, A. H., Corfu, F. (2009). Measurement of SIMS instrumental mass fractionation of Pb isotopes during zircon dating. Geostand. Geoanal. Res., 33, pp. 145-168. https://doi. org/10.1111/j.1751-908X.2009.00023.x 9. Jackson, S. E., Pearson, N. J., Griffin, W. L., Belousova, E. A. (2004). The application of laser ablation-inductive- ly coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol., 211, pp.  47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017 10. Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerde, A., Hanchar, J. M., Horstwood, M. S., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett M. N. & Whitehouse, M.  J. (2008). Plešovice zircon – a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol., 249, pp. 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005 11. Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. (2011). Iolite: freeware for the visualisation and pro- cessing of mass spectrometric data. J. Anal. At. Spectrom., 26, pp.  2508-2518. https://doi.org/10.1039/ C1JA10172B 12. Artemenko, G. V. & Shumlyanskyy, L. V. (2021). The Paleoarchean (3,3 Ga) and Mesoarchean (3,0 Ga) tonalite- trondhjemite-granodiorite rocks of the West Azov Area (the Ukrainian Shield). Geologìčnij žurnal, No.  3, pp. 35-47. https://doi.org/10.30836/igs.1025-6814.2021.3.228873 13. Artemenko, G. V., Shumlyanskyy, L. V. & Shvaika, I. A. (2014). The late Paleoarchean tonalite gneisses of West- Azov block (Azov megablock of Ukrainian shield). Geologičnij žurnal, No. 4, pp. 91-102 (in Russian). https:// doi.org/10.30836/igs.1025-6814.2014.4.139191 14. Artemenko, G. V., Shumlyanskyy, L. V., Wilde, S. A., Whitehouse, M. J. & Bekker, A. Yu. (2021). The U-Pb age and Lu-Hf isotope systematics of zircon from the Huliaipole metavolcanics, the Azov domain of the Ukrainian shield: evidence for the Paleoarchean-Hadean crust. Geologičnij žurnal, No. 1, pp. 3-16. https://doi.org/10.30836/ igs.1025-6814.2021.1.216989 15. Bibikova, E. V. & Williams, I. S. (1990). Ion microprobe U-Th-Pb isotopic studies of zircons from three early Precambrian areas in the U.S.S.R. Precambrian Res., 48, pp. 203-221. https://doi.org/10.1016/0301- 9268(90)90009-F 16. Lobach-Zhuchenko, S. B., Bibikova, E. V., Balagansky, V. A., Sergeev, S. A., Artemenko, G. V., Arestova, N. A., Shcherbak, N. P., Presnyakov, S. L. (2010). Paleoarchean tonalites in the Paleoproterozoic Orekhiv-Pavlohrad collision zone of the Ukrainian Shield. Doklady AN, 433, No. 2, P. 212-218 (in Russian). 17. Shcherbak, N. P., Artemenko, G. V. Lesnaya, I. M. & Ponomarenko, A. N. (2005). Geochronology of the Early Precambrian of the Ukrainian Shield (Archaean). Kyiv: Naukova Dumka (in Russian). 18. Bibikova, E. V., Claesson, S., Fedotova, A. A., Artemenko, G. V. & Ilyinsky, L. (2010). Terrigenous zircon of the Archean greenstone belts — a source of information about the early crust of the Earth: Azov and Dnieper re- gions, Ukrainian Shield. Geokhimiya, No. 9, pp. 899-916 (in Russian). 58 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2023. No 3 G.V. Artemenko, L.V. Shumlyanskyy, L.S. Dovbysh 19. Bibikova, E., Fedotova, A., Claesson, S., Anosova, M. & Shumlyanskyy, L. (2013). The time of the continental crust origin in the early history of the Earth: isotopic and geochemical (U-Th-Pb, Lu-Hf, REE) study of terrig- enous zircons of Archean metasedimentary rocks Sarmatia. In Problems of the Origin and Evolution of the Biosphere (pp. 147-167). Moscow: Krasand (in Russian). 20. Savko, K. A., Samsonov, A. V., Chervyakovskaya, M. V., Korish, E. Kh., Larionov, A. N. & Bazikov, N. S. (2020). Age and Lu-Hf isotope systematics of zircon from metapelite granulites of the Kursk-Besedino Domain: evi- dence of the Paleoarchean crust within the Kursk Block of Sarmatia. Vestnik VGU, Ser. Geologia, 2020, No. 3, pp. 30-44 (in Russian). https://doi.org/10.17308/geology.2020.3/3007 21. Savko, K. A., Samsonov, A. V., Larionov, A. N., Chervyakovskaya, M. V., Korish, E. H., Larionova, Y. O., Bazik- ov, N. S. & Tsybulyaev, S. V. (2021). A buried Paleoarchean core of the Eastern Sarmatia, Kursk block: U-Pb, Lu-Hf and Sm-Nd isotope mapping and paleotectonic application. Precambrian Res., 353, 106021. https://doi. org/10.1016/j.precamres.2020.106021 22. Artemenko, G. V., Shumlyanskyy, L. V., Bekker, A. Yu. & Hoffmann, A. (2022). Zircon age of metarhyodacite of the Aleksandrovsk suite of the Mykhailivka series (megablock KMA). Geochemistry and ore formation, Iss. 43, pp. 3-11 (in Ukrainian). https://doi.org/10.15407/gof.2022.43.003 23. Savko, K. A., Samsonov, A. V., Larionov, A. N., Korish, E. H., Chervyakovskaya, M. V. & Bazikov, N. S. (2019). Episodes of growth of the continental crust in the Early Precambrian of Sarmatia. In Fundamental problems of tectonics and geodynamics (Vol. 2), Materials of the LI Tectonic Meeting (pp. 270-273). Moscow: GEOS (in Russian). 24. Kröner, A. (2007). Chapter 5.2. The ancient gneiss complex of Swaziland and environs: record of early Archean crustal evolution in Southern Africa. In Earth’s Oldest Rocks. Developments in Precambrian Geology (Vol. 15) (pp. 465-480). Elsevier. https://doi.org/10.1016/S0166-2635(07)15052-0 25. Ghosh, J. G. (2004). 3.56 Ga tonalite in the central part of the Bastar Craton, India: oldest Indian date. J. Asian Earth Sci., 23, pp. 359-364. https://doi.org/10.1016/S1367-9120(03)00136-6 26. Rajesh, H. M., Mukhopadhyay, J., Beukes, N. J., Belyanini, G. A. & Armstrong, R. A. (2009). Evidence for an early Archaean granite from Bastar Craton, India. J. Geol. Soc., 166, pp. 193-196. https://doi.org/10.1144/0016- 76492008-089 27. Wan, Y.-S., Liu, D.-Y., Dong, C.-Y., Xie, H.-Q., Kröner, A., Ma, M.-Z., Liu, S.-J., Xie, S.-W. & Ren, P. (2015). Formation and Evolution of Archean Continental Crust of the North China Craton. In Precambrian Geology of China (pp. 59-136). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-47885-1_2 28. Iizuka, T., Komiya, T., Ueno, Y., Katayama, I., Uehara, Y., Maruyama, S., Hirata, T., Johnson, S. P. & Dunk- ley, D. J. (2007). Geology and zircon geochronology of the Acasta Gneiss Complex, northwestern Canada: new constraints on its tectonothermal history. Precambrian Res., 153, pp. 179-208. https://doi.org/10.1016/j. precamres.2006.11.017 29. Iizuka, T., Komiya, T., Johnson, S. P., Kon, Y., Maruyama, S. & Hirata, T. (2009). Reworking of Hadean crust in the Acasta gneisses, northwestern Canada: evidence from in-situ Lu–Hf isotope analysis of zircon. Chem. Geol., 259, pp. 230-239. https://doi.org/10.1016/j.chemgeo.2008.11.007 Received 01.05.2023 59ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2023. № 3 Th e age of detrite zircon from metasedimentary rocks of the Ternuvate strata (West Azov block of the Ukrainian Shield) Г.В.Артеменко1, https://orcid.org/0000-0002-4528-6853 Л.В. Шумлянський1,2, https://orcid.org/0000-0002-6775-4419 Л.С. Довбиш1 1 Інститут геохімії, мінералогії та рудоутворення ім. М.П. Семененка НАН України, Київ 2 Кертінський університет, Школа наук про Землю та планети, Перт, Австралія E-mail: regulgeo@gmail.com, leonid.shumlyanskyy@curtin.edu.au ВІК ДЕТРИТОВОГО ЦИРКОНУ З МЕТАОСАДОВИХ ПОРІД ТЕРНУВАТСЬКОЇ ТОВЩІ (ЗАХІДНОПРИАЗОВСЬКИЙ БЛОК УЩ) Тернуватська товща метаморфічних порід складає Гайчурську структуру дугоподібної форми завдовжки близько 72 км. Її західна частина знаходиться в зоні Андріївського розлому, який розділяє Вовчанський та Гуляйпільський блоки, а східна — у зоні Тернуватського розлому на Ремівському блоці. Породи, що фор- мують Гайчурську структуру, характеризуються строкатим та мінливим по латералі складом та змінною потужністю, в них спостерігаються динамоструктури — розлінзування та розсланцювання. Верхня світа тернуватської товщі складена переважно метаосадовими породами — гнейсами та сланцями біотитовими, гранат-біотитовими, глиноземистими, магнетит-амфіболовими та польовошпатовими кварцитами. Ниж- ня світа представлена вулканогенними породами — амфіболітами, метаультрабазитами та гнейсами біо- тит-амфіболовими. Методом LA-ICP-MS було продатовано 38 кристалів циркону з мусковіт-біотитових гнейсів верхньої світи тернуватської товщі, які за петрохімічними даними відповідають метаморфізова- ним граувакам. Серед них виявлено три популяції циркону — 3,65—3,45; 3,3 і 3,2—2,95 млрд років, які від- повідають трьом етапам формування архейської кори Західноприазовського домену: утворенню найдавні- шого фундаменту та граніт-зеленокам’яних комплексів палеоархейського і мезоархейського віку. Згідно з результатами зіставлення породних асоціацій Українського щита та Курської магнітної аномалії, очевидна відповідність палеоархейської кори (3,45—3,65 млрд років) Західноприазовського блока і Курсько-Бесе- динської грануліт-гнейсової області, а палеоархей-мезоархейські комплекси (2,9—3,3 млрд років) відпові- дають Михайлівській і Орловсько-Тимській структурам граніт-зеленокам’яної області Курської магнітної аномалії. Архейські комплекси Сарматського континенту є одновіковими з подібними утвореннями кра- тону Каапвааль у Південній Африці, Бастар в Індії, Північно-Китайського кратону, кратону Слейв у Канаді та інших, що формувалися починаючи з еоархею. Ключові слова: Гайчурська структура, тернуватська товща, мусковіт-біотитовий гнейс, Гуляйпільський блок, Вовчанський блок, Ремівський блок, циркон, U-Pb вік, метаосадові породи.