Relativistic kinetics and hydrodynamics of hot collisional plasmas

In the paper, relativistic equations of local hydrodynamics for the laboratory fusion plasmas are obtained. Relativistic effects in the physics of electron transport appear primarily because of macroscopic features of relativistic thermodynamic equilibrium given by the Maxwell-Jüttner distribution f...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2022
Автори: Marushchenko, I., Azarenkov, N.A.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2022
Назва видання:Problems of Atomic Science and Technology
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/195884
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Relativistic kinetics and hydrodynamics of hot collisional plasmas / I. Marushchenko, N.A. Azarenkov // Problems of Atomic Science and Technology. — 2022. — № 6. — С. 44-48. — Бібліогр.: 25 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-195884
record_format dspace
spelling irk-123456789-1958842023-12-08T12:30:22Z Relativistic kinetics and hydrodynamics of hot collisional plasmas Marushchenko, I. Azarenkov, N.A. Basic plasma physics In the paper, relativistic equations of local hydrodynamics for the laboratory fusion plasmas are obtained. Relativistic effects in the physics of electron transport appear primarily because of macroscopic features of relativistic thermodynamic equilibrium given by the Maxwell-Jüttner distribution function, and the characteristic velocity of plasma flow is significantly small: V << νₜₑ < c. We propose an approach in which the plasma electrons are treated as fully relativistic and the hydrodynamic flow is treated in the weakly relativistic approximation. For convenience, the obtained relativistic effects are divided between “quasi-relativistic” terms, which in the nonrelativistic limit coincide with well-known expressions, and fully relativistic terms, which disappear at c → ∞. The considered mixed approach can be useful for construction of transport models for numerical studies of both astrophysical objects and hot fusion plasma. Отримано релятивістські рівняння локальної гідродинаміки для плазми лабораторного термоядерного синтезу. Релятивістські ефекти у фізиці транспорту електронів проявляються насамперед через макроскопічні особливості релятивістської термодинамічної рівноваги, яка задається функцією розподілу Максвелла-Ютнера, а характерна швидкість течії плазми є суттєво малою: V << νₜₑ < c. Запропоновано підхід, у якому електрони плазми вважаються повністю релятивістськими, а гідродинамічна течія розглядається у слабкорелятивістському наближенні. Для зручності отримані релятивістські ефекти розділено між “квазірелятивістськими” членами, які в нерелятивістській межі збігаються з відомими виразами, та повністю релятивістськими членами, які зникають при c → ∞. Розглянутий змішаний підхід може бути корисним при побудові транспортних моделей для чисельних досліджень як астрофізичних об’єктів, так і плазми гарячого термоядерного синтезу. 2022 Article Relativistic kinetics and hydrodynamics of hot collisional plasmas / I. Marushchenko, N.A. Azarenkov // Problems of Atomic Science and Technology. — 2022. — № 6. — С. 44-48. — Бібліогр.: 25 назв. — англ. 1562-6016 PACS: 52.55.Dy, 52.25.Fi, 52.27.Ny DOI: https://doi.org/10.46813/2022-142-044 http://dspace.nbuv.gov.ua/handle/123456789/195884 en Problems of Atomic Science and Technology Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Basic plasma physics
Basic plasma physics
spellingShingle Basic plasma physics
Basic plasma physics
Marushchenko, I.
Azarenkov, N.A.
Relativistic kinetics and hydrodynamics of hot collisional plasmas
Problems of Atomic Science and Technology
description In the paper, relativistic equations of local hydrodynamics for the laboratory fusion plasmas are obtained. Relativistic effects in the physics of electron transport appear primarily because of macroscopic features of relativistic thermodynamic equilibrium given by the Maxwell-Jüttner distribution function, and the characteristic velocity of plasma flow is significantly small: V << νₜₑ < c. We propose an approach in which the plasma electrons are treated as fully relativistic and the hydrodynamic flow is treated in the weakly relativistic approximation. For convenience, the obtained relativistic effects are divided between “quasi-relativistic” terms, which in the nonrelativistic limit coincide with well-known expressions, and fully relativistic terms, which disappear at c → ∞. The considered mixed approach can be useful for construction of transport models for numerical studies of both astrophysical objects and hot fusion plasma.
format Article
author Marushchenko, I.
Azarenkov, N.A.
author_facet Marushchenko, I.
Azarenkov, N.A.
author_sort Marushchenko, I.
title Relativistic kinetics and hydrodynamics of hot collisional plasmas
title_short Relativistic kinetics and hydrodynamics of hot collisional plasmas
title_full Relativistic kinetics and hydrodynamics of hot collisional plasmas
title_fullStr Relativistic kinetics and hydrodynamics of hot collisional plasmas
title_full_unstemmed Relativistic kinetics and hydrodynamics of hot collisional plasmas
title_sort relativistic kinetics and hydrodynamics of hot collisional plasmas
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2022
topic_facet Basic plasma physics
url http://dspace.nbuv.gov.ua/handle/123456789/195884
citation_txt Relativistic kinetics and hydrodynamics of hot collisional plasmas / I. Marushchenko, N.A. Azarenkov // Problems of Atomic Science and Technology. — 2022. — № 6. — С. 44-48. — Бібліогр.: 25 назв. — англ.
series Problems of Atomic Science and Technology
work_keys_str_mv AT marushchenkoi relativistickineticsandhydrodynamicsofhotcollisionalplasmas
AT azarenkovna relativistickineticsandhydrodynamicsofhotcollisionalplasmas
first_indexed 2025-07-17T00:09:05Z
last_indexed 2025-07-17T00:09:05Z
_version_ 1837850633180282880
fulltext 44 ISSN 1562-6016. Problems of Atomic Science and Technology. 2022. №6(142). Series: Plasma Physics (28), p. 44-48. https://doi.org/10.46813/2022-142-044 RELATIVISTIC KINETICS AND HYDRODYNAMICS OF HOT COLLISIONAL PLASMAS I. Marushchenko1, N.A. Azarenkov1,2 1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine; 1National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine In the paper, relativistic equations of local hydrodynamics for the laboratory fusion plasmas are obtained. Relativistic effects in the physics of electron transport appear primarily because of macroscopic features of relativistic thermodynamic equilibrium given by the Maxwell-Jüttner distribution function, and the characteristic velocity of plasma flow is significantly small: 𝑉 ≪ 𝑣𝑡𝑒 < 𝑐. We propose an approach in which the plasma electrons are treated as fully relativistic and the hydrodynamic flow is treated in the weakly relativistic approximation. For convenience, the obtained relativistic effects are divided between “quasi-relativistic” terms, which in the nonrelativistic limit coincide with well-known expressions, and fully relativistic terms, which disappear at𝑐 → ∞. The considered mixed approach can be useful for construction of transport models for numerical studies of both astrophysical objects and hot fusion plasma. PACS: 52.55.Dy, 52.25.Fi, 52.27.Ny INTRODUCTION Relativistic effects in astrophysical objects and fusion plasmas do not necessarily require extremely high temperatures and energies. They appear to be non- negligible even for electronic temperatures 𝑇𝑒 of the order of tens keV, i.e. when 𝑇𝑒 ≪ 𝑚𝑒𝑐2. Relativistic effects in kinetics, hydrodynamics and transport physics in collisional plasmas appear due to a macroscopic features of relativistic thermodynamic equilibrium given by the Maxwell-Jüttner distribution function (or relativistic Maxwellian) [1]. In fusion devices such as ITER [2, 3] and DEMO [4], where electron temperatures must reach several tens of keV, relativistic effects for electron transport become noticeable. The same is true for aneutronic fusion reactors, where the expected electron temperature should be about 50...70 keV and above [5-9]. It has recently been shown [10, 11] that relativistic effects can modify electron transport, making the fluxes noticeably different from those calculated in the nonrelativistic limit for both tokamaks and stellarators. At the same time, virtually all transport codes developed to date for modeling fusion reactor scenarios are based on a nonrelativistic approach. Usually, in the literature devoted to relativistic kinetics and MHD of plasmas the covariant formalism with the 4-vectors is applied [12, 13]. This is the most general and straightforward way to obtain the transport and MHD equations with conservation of Lorentz invariance [14, 15]. Usually, this formalism is applied to describe astrophysical objects. However, for the problems, where the Lorentz invariance is of low importance, the kinetics is considered in the same way as in the non-relativistic limit [10, 11, 16-20]. The present work is focused on description of transport processes in a hot collisional plasmas with relativistic electrons and macroscopic flows with characteristic velocities 𝑉 ≪ 𝑣𝑡𝑒. The main goal is to derive the equations of local hydrodynamics in the weakly relativistic approach with respect to the mean flow, i.e. neglecting the terms of the order 𝑉3/(𝑐2𝑢𝑡𝑒), 𝑉4/(𝑐2𝑢𝑡𝑒 2 ) and above, while the thermal effects involving plasma electrons are described as fully relativistic. The final equations are mathematically similar to the non-relativistic ones and have a transparent physical interpretation. FIRST MOMENTS IN THE REST FRAME First, it is convenient to write a relativistic kinetic equation for the electron distribution function𝑓𝑒 in divergent form and without 4-vectors, 𝜕𝑓𝑒 𝜕𝑡 + 𝜕 𝜕𝑥𝑘 (𝑣𝑘𝑓𝑒) + 𝜕 𝜕𝑢𝑘 (�̇�𝑘𝑓𝑒) = 𝐶𝑒(𝑓𝑒) , (1) where 𝑥�̇� = 𝑣𝑘 is the velocity with 𝑘 = 1,2,3, 𝑢𝑘 = 𝑣𝑘𝛾 is the momentum per unit mass with 𝛾 = √1 + 𝑢2/𝑐2 as the relativistic factor, and 𝑚�̇�𝑘 = 𝑒𝐸𝑘 + 𝑒 𝑐 [𝒗 × 𝑩]𝑘 is the force with electric field 𝑬 and magnetic field 𝑩, respectively. Here and below, the standard rule of summation over the repetitive indexes is supposed. The operator 𝐶𝑒(𝑓𝑒) describes the collisions of electrons with themselves and ions, i.e. 𝐶𝑒(𝑓𝑒) = 𝐶𝑒𝑒(𝑓𝑒) + 𝐶𝑒𝑖(𝑓𝑒), where ions are considered non-relativistic. In order to derive the equations for such values as the mean flow velocity, density and temperature of plasma electrons, it is natural to assume that plasma is very close to the thermodynamical equilibrium given by the “drifting” Maxwell-Jüttner distribution function, 𝑓𝑒0 = 𝐶𝑀𝐽 𝑛𝑒 𝜋3/2𝑢𝑡𝑒 3 exp (−𝜇𝛾0 [𝛾 − 1 𝛾0 − 𝑉𝑘𝑢𝑘 𝑐2 ]), (2) where 𝑛𝑒 is the density of electrons measured in the rest frame which moves with mean flow velocity 𝑽, 𝛾0 = 1/√1 − 𝑉2/𝑐2 is the relativistic dilation factor, 𝑢𝑡𝑒 ≡ 𝑝𝑡𝑒/𝑚𝑒 = √2𝑇𝑒/𝑚𝑒 is the thermal momentum per unit ISSN 1562-6016. Problems of Atomic Science and Technology. 2022. №6(142) 45 mass (formally, 𝑢𝑡𝑒 coincides with the thermal velocity in non-relativistic limit, but is not limited by speed of light), 𝑇𝑒 is the electron temperature and 𝜇 = 𝑚𝑒𝑐2 𝑇𝑒 > 1 (typically, μ > 10 for fusion plasmas). The normalizing coefficient equals 𝐶𝑀𝐽 = √ 𝜋 2𝜇 𝑒−𝜇 𝐾2(𝜇) = 1 − 15 8𝜇 + 345 128𝜇2 +, (3) with 𝐾𝑛(𝜇) as the modified Bessel function of second kind of the n-th order. While 𝑇𝑒 is assumed here to be arbitrary high (with only natural limitation 𝑇𝑒 < 𝑚𝑒𝑐2, just to exclude a generation of the electron-positrons pairs), the mean velocity satisfies the conditions 𝑉/𝑢𝑡𝑒 ≪ 1 and 𝑉2/𝑐2 ≪ 1. The last condition makes possible to apply the weakly relativistic approach with respect to flow, 𝛾0 = 1/√1 − 𝑉2/𝑐2 ≃ 1 + 𝑉2/2𝑐2, (4) and reduce 𝑓𝑒0 to 𝑓𝑒0 ≃ 𝐶𝑀𝐽 𝑛𝑒 𝜋 3 2𝑢𝑡𝑒 3 exp [−𝜇 (𝛾 − 1 − 𝑉𝑘𝑢𝑘 𝑐2 ) − 𝑚𝑒𝑉2 2𝑇𝑒 ]. (5) The form of representations of 𝑓𝑒0 in Eqs. (2) and (5) with coefficient given by Eq. (3) is chosen in such a way that the limit of 𝑓𝑒0 (which is the classical drifting Maxwellian) when 𝑐 → ∞would be the most obvious. Now we will adapt to our notations the definitions given by other authors; see [12, 13, 16]. In order to obtain the equations for density, momentum and energy, one needs to integrate kinetic equation Eq. (1) with the corresponding weight functions: 1, 𝑚𝑒𝑢𝑘 and 𝑚𝑒𝑐2(𝛾 − 1), respectively. For that, following to the algorithm of Braginskii [21], the Lorentz transformation from the local coordinate system to the rest frame is required, where𝑽 = 0 and 𝛾0 = 1. The variables that correspond to the rest frame are labeled by prime. For compactness, let us introduce the notations: 〈𝐹〉 = (1/𝑛𝑒) ∫ 𝐹𝑓𝑒𝑑3 𝑢 and 〈𝐹′〉 = (1/𝑛𝑒) ∫ 𝐹′𝑓𝑒 ′𝑑3 𝑢′. Evidently, that in the rest frame 〈1〉 = 1and〈𝑣𝑘 ′ 〉 = 0. For Maxwell-Jüttner distribution function, the relation between the total relativistic energy and temperature is well known [12], ℇ𝑡𝑜𝑡𝑎𝑙 = 𝑛𝑒𝑚𝑒𝑐2〈𝛾′〉 = 𝑛𝑒 (𝑚𝑒𝑐2 𝐾3(𝜇) 𝐾2(𝜇) − 𝑇𝑒). (6) Alternatively, the internal thermal energy Eq. (6) can be represented in different form [10], 𝑊 ≡ 𝑛𝑒𝑚𝑒𝑐2〈𝛾′ − 1〉 = ( 3 2 + ℛ) 𝑛𝑒𝑇𝑒 , (7) which reminds the classical expression, where ℛ is the relativistic correction term, ℛ = 𝜇 ( 𝐾3(𝜇) 𝐾2(𝜇) − 1) − 5 2 = 15 8𝜇 − 15 8𝜇2 + 135 128𝜇3 + (8) Here, Eqs. (7) and (8) give a quasi-classical form for energy. Similarly, also the heat flux can be defined, which, however, is equal in the rest frame to the energy flux, 𝑞𝑘 = 𝑛𝑒𝑚𝑒𝑐2〈(𝛾′ − 1)𝑣𝑘 ′ 〉, (9) which is also related to the averaged momentum as follows, 𝑛𝑒𝑚𝑒〈𝑢𝑘 ′ 〉 = 1 𝑐2 𝑞𝑘. (10) It is useful to mention that the moment in Eq. (10) represents a purely relativistic effect and is equal to zero in the classical limit, while the heat flux Eq. (9) is “quasi- classical” in the above sense. Indeed, for 𝑐 → ∞𝑚𝑒𝑐2(𝛾 − 1) → 𝑣2/𝑣𝑡𝑒 2 , and the values 𝑢𝑘 ′ and 𝑣𝑘 ′ become indistinguishable, while 〈𝑣𝑘 ′ 〉 =0. The next required moment is the momentum flux, 𝑛𝑒𝑚𝑒〈𝑣𝑘 ′ 𝑢𝑗 ′〉 = 𝑝𝑒𝛿𝑘𝑗 + 𝜋𝑘𝑗 , (11) which, similarly to the non-relativistic representation, decomposes into hydrostatic scalar pressure𝑝𝑒, 𝑝𝑒 = 1 3 𝑛𝑒𝑚𝑒 〈 𝑢′2 𝛾′ 〉 = 𝑛𝑒𝑇𝑒 , (12) and (traceless) viscous stress tensor𝜋𝑘𝑗, 𝜋𝑘𝑗 = 𝑛𝑒𝑚𝑒〈𝑣𝑘 ′ 𝑢𝑗 ′〉 − 𝑝𝑒𝛿𝑘𝑗 . (13) The moments related to the collisional operator are also required. Since the conservation laws of momentum and energy in Coulomb collisions of electrons with themselves are satisfied automatically, only the contribution from electron-ion collisions survives in integration. Then, by definition, electron-ion collisional friction force is the following: 𝑅𝑘 𝑒𝑖 = ∫ 𝑚𝑒𝑢𝑘 ′ 𝐶𝑒𝑖(𝑓𝑒 ′) 𝑑3𝑢′ (14) Similarly, the stress tensor generated by the electron-ion collisions can be defined as 𝐹𝑘𝑗 𝑒𝑖 = ∫ 𝑚𝑒𝑣𝑘 ′ 𝑢𝑗 ′𝐶𝑒𝑖(𝑓𝑒 ′)𝑑3𝑢′. (15) The collisional rate of the heat-flux generation is, respectively, 𝐺𝑘 𝑒𝑖 = ∫ 𝑚𝑒𝑐2(𝛾′ − 1)𝑣𝑘 ′ 𝐶𝑒𝑖(𝑓𝑒 ′)𝑑3𝑢′. (16) The rate of collisional energy exchange between relativistic electrons and classical ions is: 𝑃𝑒𝑖 = ∫ 𝑚𝑒𝑐2(𝛾′ − 1)𝐶𝑒𝑖(𝑓𝑒 ′)𝑑3𝑢′. (17) In this case, only the dominant part of the energy exchange is taken into account for the calculation, i.e. in Eq. (17) both electrons and ions distribution functions are assumed to be equilibrium (Maxwellian for ions and Maxwell-Jüttner for electrons, but with their own 46 ISSN 1562-6016. Problems of Atomic Science and Technology. 2022. №6(142) temperatures). Then, the result of integration can be presented as follows [22], 𝑃𝑒𝑖 = 𝑃(𝑐𝑙) 𝑒𝑖 𝐶𝑀𝐽 (1 + 2 𝜇 + 2 𝜇2), (18) where 𝑃(𝑐𝑙) 𝑒𝑖 is the classical (non-relativistic) electron-ion energy exchange rate [23], 𝑃(𝑐𝑙) 𝑒𝑖 = − 4 √𝜋 𝜈𝑒0 𝑚𝑒 𝑚𝑖 𝑛𝑖𝑍𝑖 2(𝑇𝑒 − 𝑇𝑖) ∝ − 𝑇𝑒−𝑇𝑖 𝑇𝑒 3 2 . (19) In somewhat different form Eq. (18) was obtained also in [14, 16]. HYDRODYNAMIC EQUATIONS IN LABORATORY FRAME For integration in the local coordinate system, a Lorentz invariance of 4-momentum volume has to be taken into account, that can be written in our notations as 𝑑3𝑢/𝛾 = 𝑑3𝑢′/𝛾′. The Lorentz transformation of the momentum and energy from the local coordinate system into the rest frame [24] can be reformulated in our notations as following, 𝑢𝑘 = 𝛾0𝛾′𝑉𝑘 + 𝑢𝑘 ′ + (𝛾0 − 1) 𝑉𝑘𝑉𝑗 𝑉2 𝑢𝑗 ′, 𝛾 = 𝛾0 (𝛾′ + 𝑉𝑗𝑢𝑗 ′ 𝑐2 ). (20) Relations in Eq. (20) are precise. However, below we will apply a weakly relativistic approach with respect to 𝑉; see Eq. (4). In the local frame, where𝑉 ≠ 0, the moments get an additional contributions related to the mean flow, which are accounted in the weakly relativistic approach, neglecting the terms of order 𝑉3/(𝑐2𝑢𝑡𝑒), 𝑉4/(𝑐2𝑢𝑡𝑒 2 ) and above. It is convenient to represent all moments as a sum of two parts: “quasi-classical” contribution and the term of purely relativistic correction that completely disappear in a non-relativistic limit 𝑐 → ∞. Thus, it was found more appropriate to group the relativistic correction terms with the formal factor 1/𝜇. Direct integration of Eq. (1) requires two lowest moments for the local coordinate system, 𝑛𝑒〈1〉 = 𝛾0𝑛𝑒 and 𝑛𝑒〈𝑣𝑘〉 = 𝛾0𝑛𝑒V𝑘 ≡ 𝛾0Γ𝑘, which correspond to density and particles flux, respectively. Here we accounted that 〈𝑣𝑘 ′ 〉 = 0. From that, the continuity equation can be obtained, 𝜕 𝜕𝑡 (𝛾0𝑛𝑒) + 𝜕 𝜕𝑥𝑘 (𝛾0Γ𝑘) = 0. (21) Note that formally this equation has exactly the same form as in a fully relativistic approach. The weakly relativistic expansion Eq. (4) is supposed, but not applied directly here for compactness. The next equation is the momentum balance that has to be obtained integrating Eq. (1) weighed by 𝑚𝑒𝑢𝑘. Here, both the momentum and the momentum flux are required. It can be shown that the momentum Eq. (10) in the rest frame can be represented as 𝑛𝑒𝑚𝑒〈𝑢𝑘〉 = 𝑛𝑒𝑚𝑒(𝑉𝑘 + 𝛿𝑈𝑘 (𝑟) ), (22) where the additional term, which has the meaning of relativistic correction for momentum per particle of unit mass, is 𝛿𝑈𝑘 (𝑟) = 1 𝜇 [( 5 2 + ℛ) 𝑉𝑘 + 1 𝑝𝑒 (𝜋𝑘𝑗𝑉𝑗 + 𝑞𝑘)]. (23) Here, the hydrostatic pressure 𝑝𝑒 and viscous stress tensor 𝜋𝑖𝑗 are given by Eqs. (12) and (13), and the terms of order 𝑉3/(𝑐2𝑢𝑡𝑒) and above are neglected. Similarly, the flux of momentum Eq. (11) in the rest frame can be represented as 𝑛𝑒𝑚𝑒〈𝑣𝑘𝑢𝑗〉 = Π𝑘𝑗 + 𝛿Π𝑘𝑗 (𝑟) , (24) with the lowest “quasi-classical” term formally coinciding with the non-relativistic definition [23], Π𝑘𝑗 = 𝑝𝑒𝛿𝑘𝑗 + 𝜋𝑘𝑗 + 𝑛𝑒𝑚𝑒𝑉𝑘𝑉𝑗 , (25) while and the correction term is 𝛿Π𝑘𝑗 (𝑟) = 1 𝑐2 [𝑞𝑘𝑉𝑗 + 𝑞𝑗𝑉𝑘 + ( 5 2 + ℛ) 𝑝𝑒𝑉𝑘𝑉𝑗 + 1 2 (𝜋𝑘𝑙𝑉𝑗 + 𝜋𝑗𝑙𝑉𝑘)𝑉𝑙]. (26) Using Eq. (23), it may be convenient to rewrite the relativistic correction term Eq. (26) as following, 𝛿Π𝑘𝑗 (𝑟) = 1 𝑐2 [𝑝𝑒𝛿𝑈𝑘 (𝑟) 𝑉𝑗 + 𝑞𝑗𝑉𝑘 + 1 2 (𝜋𝑘𝑙𝑉𝑗 + 𝜋𝑗𝑙𝑉𝑘)𝑉𝑙]. (27) The collisional friction that required for momentum balance can also be represented in the similar form: ∫ 𝑚𝑒𝑢𝑘𝐶𝑒𝑖(𝑓𝑒) 𝑑3𝑢 = 𝑅𝑘 𝑒𝑖 + 𝛿𝑅𝑘 𝑒𝑖(𝑟) , (28) with zero-order term equal to that defined in Eq. (14), while the relativistic correction is 𝛿𝑅𝑘 𝑒𝑖(𝑟) = 3𝑉2 2𝑐2 ( 𝑉𝑘𝑉𝑗 𝑉2 + 1 3 𝛿𝑘𝑗) 𝑅𝑗 𝑒𝑖 + 1 𝑐2 (𝑉𝑘𝑃𝑒𝑖 + 𝐹𝑘𝑗 𝑒𝑖). (29) Taking into account the terms, given by Eqs. (22-29), the momentum balance equation can be written as follows, 𝜕 𝜕𝑡 [𝑛𝑒𝑚𝑒(𝑉𝑘 + 𝛿𝑈𝑘 (𝑟) )] + 𝜕 𝜕𝑥𝑗 (Π𝑘𝑗 + 𝛿Π𝑘𝑗 (𝑟) ) = = 𝑒𝑛𝑒𝐸𝑘 + 1 𝑐 [𝑱 × 𝑩]𝑘 + 𝑅𝑘 𝑒𝑖 + 𝛿𝑅𝑘 𝑒𝑖(𝑟) . (30) Here, 𝑱 = 𝑒𝑛𝑒𝑽 = 𝑒𝑛𝑒(𝑽𝑒 − 𝑽𝑖) is the electron electric current that corresponds to the mean flow. The lastshould be the energy balance equation, which should be obtained by integrating kinetic equation weighted by kinetic energy 𝑚𝑒𝑐2(𝛾 − 1). Processing as above and taking into account Eq. (7), we obtain 𝑛𝑒𝑚𝑒𝑐2〈𝛾 − 1〉 = ( 3 2 + ℛ) 𝑝𝑒 + 𝑛𝑒 𝑚𝑒𝑉2 2 + 𝛿ℰ(𝑟), (31) ISSN 1562-6016. Problems of Atomic Science and Technology. 2022. №6(142) 47 with, respectively, 𝛿ℰ(𝑟) = 𝑉2 𝑐2 ( 5 2 + ℛ) 𝑝𝑒 + 1 𝑐2 (𝜋𝑘𝑗𝑉𝑗 + 𝑞𝑘)𝑉𝑘. (32) Additionally, comparing Eq. (32) and Eq. (23), one can find a useful relation, 𝛿ℰ(𝑟) = 1 𝑐2 𝑝𝑒𝛿𝑈𝑘 (𝑟) 𝑉𝑘 . (33) Here, the standard rule of summation over the repetitive indexes is supposed. In the same way, the energy flux can be obtained, 𝑛𝑒𝑚𝑒𝑐2〈(𝛾 − 1)𝑣𝑘〉 = 𝑄𝑘 + 𝛿𝑄𝑘 (𝑟) , where “quasi-classical” part formally coincides with the classical definition, 𝑄𝑘 = 𝑞𝑘 + ( 5 2 + ℛ) 𝑝𝑒𝑉𝑘 + 𝜋𝑘𝑗𝑉𝑗 + 𝑛𝑒 𝑚𝑒𝑉2 2 𝑉𝑘, (34) while the term of pure relativistic correction is 𝛿𝑄𝑘 (𝑟) = 2𝑉2 𝑐2 [( 5 2 + ℛ) 𝑝𝑒𝑉𝑘 + 1 2 ( 𝑉𝑘𝑉𝑗 𝑉2 + 𝛿𝑘𝑗) 𝜋𝑗𝑙𝑉𝑙 + 3 2 ( 𝑉𝑘𝑉𝑗 𝑉2 + 1 3 𝛿𝑘𝑗) 𝑞𝑗]. (35) Note that the terms proportional to 𝑚𝑒𝑉2/2 in Eq. (31) and Eq. (34), which are related to the mean flow kinetic energy, can be excluded from the energy balance by simple manipulation and using the continuity equation Eq. (21). After that, the energy balance equation would describe only the balance of internal thermal energy. The last term to be considered is the collisional energy exchange, which can also be written as follows, ∫ 𝑚𝑒𝑐2(𝛾 − 1)𝐶𝑒𝑖(𝑓𝑒) 𝑑3𝑢 = 𝑃𝑒𝑖 + 𝑅𝑘 𝑒𝑖𝑉𝑘 + 𝛿𝑃𝑒𝑖(𝑟), (36) where𝑃𝑒𝑖 is given by Eq. (18) with classical part given by Eq. (19), 𝑅𝑘 𝑒𝑖is given by Eq. (14), and the correction- term to relativistic flow is 𝛿𝑃𝑒𝑖(𝑟) = 2𝑉2 𝑐2 [𝑃𝑒𝑖 + 𝑅𝑘 𝑒𝑖𝑉𝑘 + 𝐺𝑘 𝑒𝑖𝑉𝑘 + 𝑉𝑘𝑉𝑗 𝑉2 𝐹𝑘𝑗 𝑒𝑖]. (37) Here, 𝐺𝑘 𝑒𝑖 and 𝐹𝑘𝑗 𝑒𝑖 are given by Eqs. (15) and (16), correspondingly. Finally, taking into account the terms, given by Eqs. (31)-(37), the equation for the balance of thermal energy can be written in the following form: 𝜕 𝜕𝑡 [( 3 2 + ℛ) 𝑝𝑒 + 𝛿ℰ(𝑟)] + 𝜕 𝜕𝑥𝑗 (Q𝑘 + 𝛿Q𝑘 (𝑟) ) = = 𝐽𝑘𝐸𝑘 + 𝑃𝑒𝑖 + 𝑅𝑘 𝑒𝑖𝑉𝑘 + 𝛿𝑃𝑒𝑖(𝑟). (38) The equations Eqs. (21), (30), and (38) describe the collisional relativistic hydrodynamics, derived in the mixed approach, fully relativistic for the thermal electrons and weakly relativistic for the mean flow. FURTHER STEPS Since the final transport equations require, as in the classical treatment, a knowledge of only the few first moments and only in the rest frame, it is necessary to make a closure of the model. Here we will draw only the preliminary sketch of such closure, which itself is beyond the scope of the present paper. The first step is to formulate and solve a linearized kinetic equation with thermodynamic forces on the right- hand side (gradients of plasma parameters and electric field). As it was shown in [25], where the relativistic effects in radial neoclassical fluxes for the toroidal systems were considered, the most adequate method for solving the linearized relativistic kinetic equation is to represent the solution in the form of a series of the generalized Laguerre polynomials of order 𝛼 = 3/2 + ℛ. For the low temperature limit, 𝑇𝑒/𝑚𝑐2 → 0, this representation comes to the classical form with the Sonine polynomials. As a final step, we need to calculate the necessary moments of the distribution function using the obtained solution. To make the results most transparent, the obtained moments can be expanded into a 1/𝜇 series, retaining only the first relativistic correction term. CONCLUSIONS In this paper, the relativistic hydrodynamics of collisional hot plasmas is considered. Equations for first moments are obtained, which allow us to create a numerical transport model for the study of astrophysical and fusion hot plasmas. The main point of the model is the use of “mixed” approach, when plasma electrons are described in fully relativistic approach and mean plasma flow is considered in weakly relativistic approach. The equations obtained in the paper have been written in a form convenient enough for implementation of the relativistic approach into the transport codes which so far are based only on the classical approach. Such modification is necessary for the development and predictive investigation of the fusion reactor scenarios with hot plasmas and relativistic electrons. REFERENCES 1. J.L. Synge. The Relativistic Gas. Amsterdam: « North- Holland», 1957. 2. E.J. Doyle et al. ITER, Chapter 2: Plasma confinement and transport // Nucl. Fusion. 2007, v. 47, № 6, p. S18. 3. C. Gormezano et al. ITER, Chapter 6: Steady state operation // Nucl. Fusion.2007, v. 47, № 6, p. S285. 4. D.J. Ward. The physics of DEMO // Plasma Phys. Control. Fusion. 2010, v. 52, p. 124033. 5. W.M. Nevins. A Review of Confinement Requirements for Advanced Fuels // J. of Fusion Energy. 1998, v. 17, p. 25-32. 6. P.E. Stott. The feasibility of using D-3He and D-D fusion fuels // Plasma Phys. Control. Fusion. 2005, v. 47, p. 1305. 48 ISSN 1562-6016. Problems of Atomic Science and Technology. 2022. №6(142) 7. W.M. Nevins, R. Swain. The thermonuclear fusion rate coefficient for p-11B reactions // Nucl. Fusion. 2000, v. 40, № 6, p. 865. 8. J. Bahmani, A. Gharaati. Effect of Relativistic Corrections on the Ignition Requirements for p-11B Fuel // J. of Fusion Energy. 2016, v. 35, p. 352-356. 9. S.V. Putvinski, D.D. Ryutov, P.N. Yushmanov. Fusion reactivity of the p-B11 plasma revisited // Nucl. Fusion. 2019, v.59, № 6, p. 076018. 10. I. Marushchenko, N.A. Azarenkov, N.B. Maru- shchenko. Relativistic neoclassical radial fluxes in the 1/ν regime // Plasma Phys. Control. Fusion. 2013, v. 55, p. 085005. 11. G. Kapper, S.V. Kasilov, W. Kernbichler, M. Aradi. Evaluation of relativistic transport coefficients and the generalized Spitzer function in devices with 3D geometry and finite collisionality // Phys. Plasmas. 2018, v. 25, p. 122509. 12. S.R. de Groot, W.A. van Leewen, Ch. G. van Weert. Relativistic Kinetic Theory. Amsterdam: «North-Holland Publishing Company», 1980. 13. C. Cercignani, G.M. Kremer. The Relativistic Boltzmann Equation: Theory and Applications. Basel: «Springer», 2002. 14. T. Mettens, R. Balescu // Phys. Fluids. 1990, v. 2, p. 2076. 15. R.D. Hazeltine, S.M. Mahajan. Fluid description of relativistic magnetized plasma // The Astrophysical J. 2002, v. 567, p. 1262. 16. D.I. Dzhavakhishvili, N.L. Tsintsadze. Transfer phenomena in a completely ionized ultrarelativistic plasma // JETP. 1973, v. 37, № 4, p. 666-671. 17. B.J. Braams, C.F.F. Karney. Conductivity of a relativistic plasma // Phys. Fluids B. 1989, v. 1, p. 1355. 18. M. Honda. Relativistic heat conduction and thermoelectric properties of nonuniform plasmas // Phys. Plasmas. 2003, v. 10, p. 4177. 19. I. Marushchenko, N.A. Azarenkov, N.B. Maru- shchenko. Relativistic neoclassical fluxes in hot plasmas // Problems of Atomic Science and Technology. Series “Plasma Physics” (83). 2013, № 1, p.67-69. 20. I. Marushchenko, N.A. Azarenkov. Relativistic effects in electron neoclassical transport // Problems of Atomic Science and Technology. Series “Plasma Physics” (86). 2013, № 4, p. 112-114. 21. S.I. Braginskii. Transport Processes in a Plasma // Rev. of Plasma Phys. 1965, v. 1, p. 205. 22. I. Marushchenko, N.A. Azarenkov, N.B. Maru- shchenko. On stability of collisional coupling between relativistic electrons and ions in hot plasmas // Phys. Plasmas. 2012, v. 19, p. 112109. 23. P. Helander, D.J. Sigmar. Collisional Transport in Magnetized Plasmas. Cambridge: «University Press», 2002. 24. L.D. Landau, E.M. Lifshitz. The Classical Theory of Fields. Oxford: “Pergamon Press”, 1971. 25. I. Marushchenko, N.A. Azarenkov. Relativistic effects in electron neoclassical transport // Problems of Atomic Science and Technology. Series “Plasma Physics” (95). 2015, № 1, p. 37-40. Article received 17.10.2022 РЕЛЯТИВІСТСЬКІ РІВНЯННЯ ЛОКАЛЬНОЇ ГІДРОДИНАМІКИ З ПОВІЛЬНИМИ ПОТОКАМИ І. Марущенко, М.О. Азарєнков Отримано релятивістські рівняння локальної гідродинаміки для плазми лабораторного термоядерного синтезу. Релятивістські ефекти у фізиці транспорту електронів проявляються насамперед через макроскопічні особливості релятивістської термодинамічної рівноваги, яка задається функцією розподілу Максвелла- Ютнера, а характерна швидкість течії плазми є суттєво малою: 𝑉 ≪ 𝑣𝑡𝑒 < 𝑐. Запропоновано підхід, у якому електрони плазми вважаються повністю релятивістськими, а гідродинамічна течія розглядається у слабкорелятивістському наближенні. Для зручності отримані релятивістські ефекти розділено між «квазірелятивістськими» членами, які в нерелятивістській межі збігаються з відомими виразами, та повністю релятивістськими членами, які зникають при 𝑐 → ∞. Розглянутий змішаний підхід може бути корисним при побудові транспортних моделей для чисельних досліджень як астрофізичних об'єктів, так і плазми гарячого термоядерного синтезу.