Increasing the radiation safety of nuclear power plants using the method of controlling the tightness of fuel elements

The problem of monitoring the tightness of fuel elements at the stage of their manufacture to improve the radiation safety of nuclear power plants is considered. A vibration method is proposed for non-destructive testing of the tightness of cylindrical fuel rods. The method makes it possible to perf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2022
Hauptverfasser: Mamontov, О., Nevliudov, I., Stytsenko, T., Belikov, A., Tokarieva, О.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2022
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/195952
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Increasing the radiation safety of nuclear power plants using the method of controlling the tightness of fuel elements / О. Mamontov, I. Nevliudov, T. Stytsenko, A. Belikov, О. Tokarieva // Problems of Atomic Science and Technology. — 2022. — № 2. — С. 68-72. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-195952
record_format dspace
spelling irk-123456789-1959522023-12-08T16:16:31Z Increasing the radiation safety of nuclear power plants using the method of controlling the tightness of fuel elements Mamontov, О. Nevliudov, I. Stytsenko, T. Belikov, A. Tokarieva, О. Thermal and fast reactor materials The problem of monitoring the tightness of fuel elements at the stage of their manufacture to improve the radiation safety of nuclear power plants is considered. A vibration method is proposed for non-destructive testing of the tightness of cylindrical fuel rods. The method makes it possible to perform accelerated testing of a batch of fuel rods and remove samples with gross leakage under conditions of mass production. A description of the method is given, a mathematical model of free vibrations of a fuel element is developed. The time dependences of the pressure and the period of free oscillations of the fuel element were obtained by calculation. The assessment of the influence of the inhomogeneity of the fuel element structure on the test result is carried out. Inhomogeneity causes an error in measuring the oscillation period up to 1%, which can lead to a false result. Three-dimensional plots were constructed, reflecting the main form of free vibrations of a homogeneous and inhomogeneous section of a fuel element. On the basis of the performed assessment, recommendations were given for conducting fuel rod tightness control, excluding a false result. Розглянуто проблему контролю герметичності твелів на етапі їх виготовлення для підвищення радіаційної безпеки АЕС. Запропоновано вібраційний метод неруйнівного контролю герметичності твелів циліндричної форми. Метод дозволяє виконати прискорений контроль партії твелів і видалити зразки з грубими порушеннями герметичності в умовах серійного виробництва. Наведено опис методу, розроблена математична модель вільних коливань твела. Розрахунковим шляхом отримані залежності тиску і періоду вільних коливань твела від часу. Виконано оцінку впливу неоднорідності конструкції твела на результат контролю. Неоднорідність викликає похибку вимірювання періоду коливань до 1%, що може привести до помилкового результату. Побудовано тривимірні графіки, що відображають основну форму вільних коливань однорідної і неоднорідної ділянок твела. На підставі виконаної оцінки дані рекомендації з проведення контролю герметичності твелів, які виключають помилковий результат. Рассмотрена проблема контроля герметичности твэлов на этапе их изготовления для повышения радиационной безопасности АЭС. Предложен вибрационный метод неразрушающего контроля герметичности твэлов цилиндрической формы. Метод позволяет выполнить ускоренный контроль партии твэлов и удалить образцы с грубыми нарушениями герметичности в условиях серийного производства. Представлено описание метода, разработана математическая модель свободных колебаний твэла. Расчетным путем получены зависимости давления и периода свободных колебаний от времени. Выполнена оценка влияния неоднородности конструкции твэла на результат контроля. Неоднородность вызывает погрешность измерения периода колебаний до 1%, что может привести к ошибочному результату. Построены трехмерные графики, отражающие основную форму свободных колебаний однородного и неоднородного участков твэла. На основании выполненной оценки даны рекомендации по проведению контроля герметичности твэлов, исключающих ложный результат. 2022 Article Increasing the radiation safety of nuclear power plants using the method of controlling the tightness of fuel elements / О. Mamontov, I. Nevliudov, T. Stytsenko, A. Belikov, О. Tokarieva // Problems of Atomic Science and Technology. — 2022. — № 2. — С. 68-72. — Бібліогр.: 14 назв. — англ. 1562-6016 DOI: https://doi.org/10.46813/2022-138-068 http://dspace.nbuv.gov.ua/handle/123456789/195952 621.039.546.3 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Thermal and fast reactor materials
Thermal and fast reactor materials
spellingShingle Thermal and fast reactor materials
Thermal and fast reactor materials
Mamontov, О.
Nevliudov, I.
Stytsenko, T.
Belikov, A.
Tokarieva, О.
Increasing the radiation safety of nuclear power plants using the method of controlling the tightness of fuel elements
Вопросы атомной науки и техники
description The problem of monitoring the tightness of fuel elements at the stage of their manufacture to improve the radiation safety of nuclear power plants is considered. A vibration method is proposed for non-destructive testing of the tightness of cylindrical fuel rods. The method makes it possible to perform accelerated testing of a batch of fuel rods and remove samples with gross leakage under conditions of mass production. A description of the method is given, a mathematical model of free vibrations of a fuel element is developed. The time dependences of the pressure and the period of free oscillations of the fuel element were obtained by calculation. The assessment of the influence of the inhomogeneity of the fuel element structure on the test result is carried out. Inhomogeneity causes an error in measuring the oscillation period up to 1%, which can lead to a false result. Three-dimensional plots were constructed, reflecting the main form of free vibrations of a homogeneous and inhomogeneous section of a fuel element. On the basis of the performed assessment, recommendations were given for conducting fuel rod tightness control, excluding a false result.
format Article
author Mamontov, О.
Nevliudov, I.
Stytsenko, T.
Belikov, A.
Tokarieva, О.
author_facet Mamontov, О.
Nevliudov, I.
Stytsenko, T.
Belikov, A.
Tokarieva, О.
author_sort Mamontov, О.
title Increasing the radiation safety of nuclear power plants using the method of controlling the tightness of fuel elements
title_short Increasing the radiation safety of nuclear power plants using the method of controlling the tightness of fuel elements
title_full Increasing the radiation safety of nuclear power plants using the method of controlling the tightness of fuel elements
title_fullStr Increasing the radiation safety of nuclear power plants using the method of controlling the tightness of fuel elements
title_full_unstemmed Increasing the radiation safety of nuclear power plants using the method of controlling the tightness of fuel elements
title_sort increasing the radiation safety of nuclear power plants using the method of controlling the tightness of fuel elements
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2022
topic_facet Thermal and fast reactor materials
url http://dspace.nbuv.gov.ua/handle/123456789/195952
citation_txt Increasing the radiation safety of nuclear power plants using the method of controlling the tightness of fuel elements / О. Mamontov, I. Nevliudov, T. Stytsenko, A. Belikov, О. Tokarieva // Problems of Atomic Science and Technology. — 2022. — № 2. — С. 68-72. — Бібліогр.: 14 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT mamontovo increasingtheradiationsafetyofnuclearpowerplantsusingthemethodofcontrollingthetightnessoffuelelements
AT nevliudovi increasingtheradiationsafetyofnuclearpowerplantsusingthemethodofcontrollingthetightnessoffuelelements
AT stytsenkot increasingtheradiationsafetyofnuclearpowerplantsusingthemethodofcontrollingthetightnessoffuelelements
AT belikova increasingtheradiationsafetyofnuclearpowerplantsusingthemethodofcontrollingthetightnessoffuelelements
AT tokarievao increasingtheradiationsafetyofnuclearpowerplantsusingthemethodofcontrollingthetightnessoffuelelements
first_indexed 2025-07-17T00:17:38Z
last_indexed 2025-07-17T00:17:38Z
_version_ 1837851182333165568
fulltext ISSN 1562-6016. ВАНТ. 2022. №2(138) 68 https://doi.org/10.46813/2022-138-068 UDC 621.039.546.3 INCREASING THE RADIATION SAFETY OF NUCLEAR POWER PLANTS USING THE METHOD OF CONTROLLING THE TIGHTNESS OF FUEL ELEMENTS О. Mamontov, I. Nevliudov, T. Stytsenko, A. Belikov, О. Tokarieva 1Kharkiv National University of Radio Electronics, Kharkiv, Ukraine E-mail: olena.tokarieva@nure.ua; 2PSACEA “Prydniprovska State Academy of Civil Engineering and Architecture”, Dnipro, Ukraine The problem of monitoring the tightness of fuel elements at the stage of their manufacture to improve the radiation safety of nuclear power plants is considered. A vibration method is proposed for non-destructive testing of the tightness of cylindrical fuel rods. The method makes it possible to perform accelerated testing of a batch of fuel rods and remove samples with gross leakage under conditions of mass production. A description of the method is given, a mathematical model of free vibrations of a fuel element is developed. The time dependences of the pressure and the period of free oscillations of the fuel element were obtained by calculation. The assessment of the influence of the inhomogeneity of the fuel element structure on the test result is carried out. Inhomogeneity causes an error in measuring the oscillation period up to 1%, which can lead to a false result. Three-dimensional plots were constructed, reflecting the main form of free vibrations of a homogeneous and inhomogeneous section of a fuel element. On the basis of the performed assessment, recommendations were given for conducting fuel rod tightness control, excluding a false result. INTRODUCTION The issues of improving the safety and energy efficiency of nuclear power plants remain one of the highest priorities in the nuclear power industry. The increase in the energy efficiency of nuclear power plants is associated with an increase in the unit capacity of power units and the duration of fuel campaigns. This is possible due to a high level of fuel burnup, an increase in energy intensity, and a tightening of the operating conditions for fuel elements. These reasons intensify the leakage of radionuclides outside the cladding of the fuel elements, and tighten the technological requirements for their tightness. An increase in the content of radionuclides in the primary coolant is permissible up to the operational limit. The violation of this condition has serious medical, environmental and social consequences. Prevention of these problems is a complex organizational and technical task. Its solution leads to the objective need to improve the reliability of fuel cells at the stage of their manufacture. The relevance of this work is dictated by the need to improve the radiation safety of nuclear power plants. Safety is based on the control and removal of leaky fuel rods at the stage of their manufacture. LITERATURE ANALYSIS AND PROBLEM STATEMENT Non-destructive methods of tightness control are known to be used in the technological process of manufacturing fuel elements. These include radiation, ultrasonic, optical, electromagnetic, thermal and mass spectrometric methods. However, they all have drawbacks, as a result of which there is no single universal method. Radiation methods are based on the interaction of ionizing radiation with the fuel element cladding [1, 2]. Ionizing radiation negatively affects the working personnel as a harmful production factor. Radiation is absent in ultrasonic [3, 4] and optical methods [5–7] non-destructive testing. However, ultrasound is also a harmful production factor that adversely affects the human being. Optical methods are divided into visual measuring and electronic measuring. In the first type of optical methods, workers experience increased stress on the visual analyzer. Both varieties are characterized by a relatively low reliability of detecting defects, which is limited by the analysis of the outer surface of the shell. Information on the internal state of the shell material can be obtained by electromagnetic [2, 6] and thermal methods [8, 9]. Electromagnetic methods are based on the analysis of the interaction of an external electromagnetic field with the electromagnetic field of eddy currents excited by an electrically conductive shell. This study also becomes harmful to humans, especially in the microwave range. Thermal methods are based on the registration and analysis of temperature field inhomogeneity on the surface of a heated shell. The presence of a defect inside the shell material (delamination, cavity, foreign inclusions) is not a quantitative indicator of helium pressure, tightness or leakage. Thus, all considered methods provide limited information on the state of the fuel element cladding and characterize its state indirectly. Leaks can be found with time-consuming helium leak detectors [1]. In addition to the indicated disadvantages, the considered methods are associated with the processing of large amounts of information. This limits the speed of control, even with automation tools. Measurements of the helium pressure inside the fuel elements can be carried out by passing through ultrasound in the region of the compensation volume [1]. The intensity of ultrasonic vibrations that passed through 69 ISSN 1562-6016. ВАНТ. 2022. №2(138) the inner cavity of the fuel element is proportional to the square of the gas pressure. It is also possible to measure the pressure inside the fuel element using normalized local heating of the shell in the area of the compensation volume [9]. The internal gas pressure is determined from the temperature field on the shell surface. The speed of control operations is significantly limited by the performance of auxiliary actions. On the basis of the analysis, it should be noted that there is no method of accelerated control and detection of leaking fuel elements. This explains the expediency of developing a vibration method for non-destructive testing of fuel rod tightness, which has an increased response rate [10]. The introduction of this method will make it possible to reduce the process of inspection of a technological batch of fuel elements by accelerating the identification and removal of leaky samples. PURPOSE AND OBJECTIVES OF THE RESEARCH The aim of the study is to prove the possibility of using the vibration method to control the tightness of cylindrical fuel elements. To achieve the goal it is required to solve the following tasks: – provide a description of the proposed method for non-destructive testing of fuel elements; – to develop a mathematical model of fuel rod vibrations in case of gas leakage; – to determine the dependence of the holding time between measurements of the oscillation period on the permissible leak, taking into account the metrological accuracy of the frequency meter; – to evaluate the influence of fuel element inhomogeneity on the control result. DESCRIPTION OF THE VIBRATION METHOD OF NON-DESTRUCTIVE CONTROL OF TIGHTNESS OF FUEL ELEMENTS The method is based on the dependence of the free vibration period on the gas pressure inside the shell. The period of oscillation of the non-hermetic fuel element is reduced over time due to the decrease in the gas pressure and the reduction of the tension of the shell. The method is implemented as follows. The monitored fuel element 1, after helium injection and sealing, is installed on the supports of stand 2 and fixed with clamps 3, Fig. 1. The exhilaration of free damped vibrations similar to the vibrations of a string is activated. The free vibration period (main tone) is measured using sensor 4 and frequency meter 5. Fig. 1. Fuel element at the control and test stand Then the fuel element is removed from the stand, held for a given time Δt, and the period of free oscillations is re-measured. If there is a leak during this time, the gas will flow out from under the shell, the tension will decrease and the oscillation period will increase. The holding time Δt depends on the permissible leak rate. It should be sufficient for reliable registration of the change in the oscillation period taking into account the metrological accuracy of the frequency meter. The temperature of the fuel elements at which the periods of oscillations are measured before and after holding must be the same. Therefore, before measuring the periods of oscillations of the fuel elements, the specified temperature is adjusted. For sealed fuel elements, the oscillation periods do not differ. Thus, an express control method has been proposed which makes it possible to identify and remove leaking fuel elements. Exposure of fuel rods can be carried out in a group manner in storage facilities. It does not require additional material costs or the time spent. The speed of direct control in manual mode is not less than 150 pcs/h. This makes it possible to use this method in automated complexes for non-destructive testing of fuel elements. The rest of the fuel elements can be monitored by traditional methods [1–9]. This will significantly reduce the total time for testing the tightness of a technological batch of fuel elements. This method can be applied in the areas of final inspection of fuel rod manufacturers. It can also be used in the areas of incoming inspection of nuclear power plants. DEVELOPMENT OF A MATHEMATICAL MODEL OF FREE VIBRATIONS OF A FUEL ELEMENT WITH A GAS LEAK The mathematical model of cylindrical fuel rod vibrations is based on the one-dimensional wave equation of vibrations of a homogeneous string fixed at two points [11]: 𝜕2𝑌 𝜕𝑡2 = с2 𝜕2𝑌 𝜕𝑥2 = 𝐹 𝜌𝑥 ⋅ 𝜕2𝑌 𝜕𝑥2 , (1) where Y is the vertical displacement of a point on the fuel element surface relative to the equilibrium position (see Fig. 1); t – time; c – coefficient depending on tension and inertia; x – horizontal coordinate of a point on the 0x axis; F is the shell tension along the 0x axis; 𝜌𝑥 – linear density. Model (1) does not take into account vibration damping. This is due to the insignificant influence of this factor on the period of natural oscillations, and, consequently, on the control result. Natural fluctuations are possible with strictly defined periods: 𝜏𝑛 = 2𝐿 𝑛 ⋅ 𝑐 = 2𝐿 𝑛 √ 𝜌𝑥 𝐹 , (2) where L is the distance between the clamping points, m; n is an integer corresponding to the waveform. Equation (2) assumes fuel element uniformity (quasi- uniformity), in which the mass is evenly distributed along its length. Also, equation (2) does not take into account ISSN 1562-6016. ВАНТ. 2022. №2(138) 70 the damping of oscillations. This condition is quite acceptable for linear systems due to the insignificant influence of damping on the frequency (period) of scillations. Due to this, mathematical calculations are greatly simplified. The design of the fuel element used in WWER-1000 reactors [1, 12] was taken as a basis, subject to quasi- uniformity. The following data were taken as an example: the mass of the moving part of the fuel element was 1.4 kg, the distance between the fixation points was 2 m. The initial tension of the cladding under normal conditions before helium injection was 1120 N. After helium injection, the pressure inside the cladding was 25105 Pa. Helium inside the shell was considered as an ideal gas. Its volume was 610-5 m3. The decrease in the shell tension over time is explained by the drop in gas pressure, which is similar to transient processes in electrical circuits: 𝛥𝐹(𝑡) = 𝛥𝑃(𝑡) ⋅ 𝑆 = 𝛥𝑃(𝑡) ⋅ 𝜋 ⋅ 𝑑2 4 , (3) where t – the gas outflow time, s; 𝛥𝑃(t) – time dependence of pressure decrease, Pa; S and d – the area, m2, and diameter, m, of the cross section of the inner cavity of the fuel element, respectively. 𝛥𝑃(𝑡) = 𝛥𝑃0 ⋅ 𝑒 − 𝑡⋅𝑄 𝑉⋅𝛥𝑃0 , (4) where 𝛥𝑃0 – initial overpressure, Pa (Fig. 2); V – volume, m3; Q – leak, Pa ∙ m3 ∙ s−1. Fig. 2. Graph of the dependence of the excess pressure inside the fuel element on time The dependence of the period of the fundamental tone of natural vibrations of a fuel element on time (duration of exposure) is presented by formula (5) and is shown in Fig. 3: 𝜏(𝑡) = 2𝐿 ⋅ √ 𝜌𝑥 𝐹0 + 𝛥𝐹(𝑡) . (5) Fig. 3. Graph of the dependence of the period of natural oscillations of a fuel element on time Equations (1)–(5) represent a mathematical model of fuel rod vibrations during gas leakage. An important condition for this control is the required holding time 𝛥𝑡 of the fuel elements between the measurements of the vibration periods. The holding time depends on the amount of leak that is allowed for the given control method. This time should be sufficient to reliably record changes in the oscillation period, taking into account the metrological accuracy of measuring the oscillation period. The measurement accuracy of the oscillation period is limited by a number of destabilizing factors (temperature fluctuations, vibration damping, frequency meter error), and is ± 0.0001 s. Fig. 4 shows the dependence of the holding time 𝛥𝑡 (represented by a logarithmic scale) on the value of the permissible leak Q. Fig. 4. Dependence of the logarithm of the holding time on the magnitude of the permissible leak The dependence in Fig. 4 is necessary for making a decision on the use of the method in specific conditions. ESTIMATION OF THE INFLUENCE OF FUEL INHOMOGENEITY ON THE CONTROL RESULT The design of a cylindrical fuel element is shown in Fig. 5,a. The design is a heterogeneous structure in which the mass is unevenly distributed. Fig. 5. Inhomogeneity of the fuel element structure: 1 – shell; 2 – spring; 3 – fuel pellets Fig. 5,b shows a graph of the approximate dependence of the linear density of an inhomogeneous section of a fuel element on the x coordinate. This dependence is represented by the empirical formula (6): 𝜌𝑥 ∗ = 0.7( 𝑠𝑔𝑛( 𝑥 − 𝑙) 4 + 0.75), (6) where l is the length of the section with reduced density, m. To assess the effect of fuel element inhomogeneity on the oscillation period, it is required to solve the wave 71 ISSN 1562-6016. ВАНТ. 2022. №2(138) equation (1) taking into account dependence (7). An analytical solution is difficult. To solve this problem, the finite difference method was applied, in which the derivatives are represented by finite difference approximations [13, 14]. Dividing the region of integration into a finite number of steps, we rewrite equation (1) in finite-difference form: 𝑌𝑗,𝑖+1 − 2𝑌𝑗,𝑖 + 𝑌𝑗,𝑖−1 ℎ2 = 𝑐2 𝑌𝑗+1,𝑖 − 2𝑌𝑗,𝑖 + 𝑌𝑗−1,𝑖 𝑘2 = = 𝐹 𝜌𝑥 ∗ ⋅ 𝑌𝑗+1,𝑖 − 2𝑌𝑗,𝑖 + 𝑌𝑗−1,𝑖 𝑘2 , (7) where j and i are the numbers of steps (grid nodes) along the 0x and 0t axes, respectively; k and h are the lengths of steps along the 0x and 0t axes, respectively. We transform expression (7), reflecting the dependence of the wave function at the next time step i + 1 on the previous steps i and i - 1: 𝑌𝑗,𝑖+1 = 1 𝑎2 𝑌𝑗+1,𝑖 + 2𝑌𝑗,𝑖(1 − 1 𝑎2 ) − 𝑌𝑗,𝑖−1 + 1 𝑎2 𝑌𝑗−1,𝑖 , (8) 𝑎 = 𝑘 𝑐 ⋅ ℎ = √ 𝜌𝑥 𝐹 ⋅ 𝑘 ℎ . Fig. 6 shows 3-D plots using equation (8). They reflect free vibrations of a fuel element in the form of a standing wave with one antinode (fundamental tone). In Fig. 6,a – vibrations of a homogeneous section of a fuel element (l = 0) with a linear density ρx=0.7 kg/m and a length L = 2 m. In Fig. 6,b – vibrations of a non-uniform area. For the sake of clarity, the length of the lightweight part was conventionally taken equal to l = 1m. The linear density corresponded to the graph in Fig. 5,b. Both options were considered under the same (normal) conditions under which the tensile force did not change. a b Fig. 6. Basic form of free vibrations (Mathcad): a – a homogeneous section of a fuel element, b – heterogeneous area The comparison of the graphs shows that the inhomogeneity of the fuel element leads to a change in the period of free oscillations. Under the conditions considered, the oscillation period of the inhomogeneous section of the fuel element has noticeably decreased (by about 12%). This is due to a decrease in the mass of the vibrating element with a constant tension force. Taking into account the real length of the inhomogeneous section (l = 0.2 m), the oscillation period decreases by about 1% (0.001 s). This value exceeds the measurement error of the oscillation period. Obviously, when testing fuel elements, this factor will cause a false result (measurement error). To prevent it, when measuring the oscillation period before and after holding, it is required to fix the fuel element in the same places. Oscillations with more than one antinode were not considered due to significant damping caused by friction. CONCLUSIONS The article describes an express method and a test bench for identifying and removing leaking cylindrical fuel rods. The method is based on the dependence of the period of free oscillations of a fuel element on the gas pressure inside the cladding. The period of oscillation of a leaky fuel element decreases with time due to a decrease in gas pressure and a decrease in cladding tension. The detection of leaking fuel elements is carried out on the basis of registration of a decrease in the period of free oscillations during the holding time. On the basis of the studies carried out, a mathematical model has been developed that reflects the dependence of the period of free oscillations of a fuel element on time. The model is based on the one-dimensional wave equation of oscillations of a homogeneous string and the method of the analogy of transient processes in electrical circuits. The dependence of the holding time between the measurements of the oscillation period on the value of the permissible leak is obtained. This dependence is necessary for making a decision on the use of the method in specific conditions. Using the finite difference method, the influence of fuel element inhomogeneity on the test result was estimated. It has been established that heterogeneity can lead to a false result. To prevent it, when measuring the oscillation period before and after holding, it is required to fix the fuel element in the same places. As a result of the studies carried out, the possibility of monitoring the tightness of fuel rods using the proposed express method was confirmed. The introduction of this method in combination with the existing control methods will improve the radiation safety of nuclear power plants. REFERENCES 1. E. Lehmann, P. Vontobel, A. Hermann. Non- destructive analysis of nuclear fuel by means of thermal and hold neutrons // Nuclear instruments and Methods in Physics Research, Section A, Accelerators, Spectrometers, Derectors and Associated Equipment. 2003, v. 513 (3). ISSN 1562-6016. ВАНТ. 2022. №2(138) 72 2. G. Wei, S. Han, L. He, Y. Wang. Non-decnructive testing nuclear fuel rods by neutron radiography / He Jishu // Nuclear Techniques. 2013, v. 36 (7). 3. V.T. Pronyakin, N.K. Rybakov, Yu.N. Panchenko. Ultrasonic defectometry of thin-walled products // Defectoscopy. 2004, N 5, p. 18-22. 4. S.V. Pavlov. Nondestructive ultrasonic methods for studying irradiated fuel of nuclear reactors. Dmitrovgrad: JSC “SSC RIAR”, 2013, 256 p. 5. V.A. Beloglazova et al. Optoelectronic device for contactless control of geometric parameters of fuel elements // Avtometriya. 2004, v. 40, N 2, p. 82-90. 6. N.F. Nikitenko et al. Combined optical- electromagnetic flaw detector for detecting defects in the surface of fuel elements // VANT. Series “Radiation Engineering”. 1987, N 1(34), p. 35-40. 7. Yu.A. Zhukov et al. Creation and implementation of complexes for non-destructive testing of nuclear fuel for various reactors // VANT. Series “Technical Physics and Automation”. 2005, issue 59, part 2, p. 94-96. 8. V.V. Pastushin et al. Thermophysical means of non-destructive testing of gas tightness and gas parameters in fuel rods of reactors // Atomic Energy. 1996, N 80 (1), p. 20-26. 9. Yu.K. Karlov. Development and implementation of automated complexes for non-destructive testing of nuclear fuel: dis. doc. tech. National Research Tomsk Polytechnic University (TPU); Novosibirsk Chemical Concentrates Plant (NZHK). Tomsk, 2016, 281 p. 10. Pat. 145583, Ukraine, IPC G21С 17/07, Method for detecting leaking fuel / O.V. Mamontov, I.Sh. Nevliudov, T.E. Stytsenko, A.S. Belikov, B.O. Malyk, O.V. Tokarieva. Kharkiv National University of Radio Electronics / № u 2020 04027; declared 03.07.2020; published 18.12.2020, Bul. №24. 4 p. 11. L.D. Landau, E.M. Lifshits. Theoretical physics. T. VII. Elasticity theory. Chapter 3. M.: “Science”, 1987, 246 p. 12. G.N. Kolpakov. Designs of fuel rods, channels and cores of power reactors: a tutorial. Tomsk: “Publishing House of the Tomsk Polytechnic University”, 2009, 118 p. 13. V.P. Ilyin. Finite difference and finite volume methods for elliptic equations. Novosibirsk: “Publishing House of the Institute of Mathematics”, 2000, 345 p. 14. D. Gursky, E. Turbina. Calculations in MATHCAD 12. M.: “Peter”, 2006, 544 p. Article received 11.02.2022 ПІДВИЩЕННЯ РАДІАЦІЙНОЇ БЕЗПЕКИ АТОМНИХ ЕЛЕКТРОСТАНЦІЙ ЗА ДОПОМОГОЮ МЕТОДУ КОНТРОЛЮ ГЕРМЕТИЧНОСТІ ТВЕЛІВ О.В. Мамонтов, І.Ш. Невлюдов, Т.Є. Стиценко, А.С. Беліков, О.В. Токарєва Розглянуто проблему контролю герметичності твелів на етапі їх виготовлення для підвищення радіаційної безпеки АЕС. Запропоновано вібраційний метод неруйнівного контролю герметичності твелів циліндричної форми. Метод дозволяє виконати прискорений контроль партії твелів і видалити зразки з грубими порушеннями герметичності в умовах серійного виробництва. Наведено опис методу, розроблена математична модель вільних коливань твела. Розрахунковим шляхом отримані залежності тиску і періоду вільних коливань твела від часу. Виконано оцінку впливу неоднорідності конструкції твела на результат контролю. Неоднорідність викликає похибку вимірювання періоду коливань до 1%, що може привести до помилкового результату. Побудовано тривимірні графіки, що відображають основну форму вільних коливань однорідної і неоднорідної ділянок твела. На підставі виконаної оцінки дані рекомендації з проведення контролю герметичності твелів, які виключають помилковий результат. ПОВЫШЕНИЕ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ АТОМНЫХ ЭЛЕКТРОСТАНЦИЙ С ПОМОЩЬЮ МЕТОДА КОНТРОЛЯ ГЕРМЕТИЧНОСТИ ТВЭЛОВ О.В. Мамонтов, И.Ш. Невлюдов, Т.Е. Стиценко, А.С. Беликов, О.В. Токарева Рассмотрена проблема контроля герметичности твэлов на этапе их изготовления для повышения радиационной безопасности АЭС. Предложен вибрационный метод неразрушающего контроля герметичности твэлов цилиндрической формы. Метод позволяет выполнить ускоренный контроль партии твэлов и удалить образцы с грубыми нарушениями герметичности в условиях серийного производства. Представлено описание метода, разработана математическая модель свободных колебаний твэла. Расчетным путем получены зависимости давления и периода свободных колебаний от времени. Выполнена оценка влияния неоднородности конструкции твэла на результат контроля. Неоднородность вызывает погрешность измерения периода колебаний до 1%, что может привести к ошибочному результату. Построены трехмерные графики, отражающие основную форму свободных колебаний однородного и неоднородного участков твэла. На основании выполненной оценки даны рекомендации по проведению контроля герметичности твэлов, исключающих ложный результат.