Possibilites of isotopes production of ¹⁵³Sm, ¹⁷⁵Yb, ¹⁸⁶Re at the electronic accelerator
Photonuclear technology for producing osteotropic isotopes ¹⁵³Sm (Т₁/₂ = 1.9 days, Eᵦ = 0.8 MeV, Eᵧ = 103.2 keV), ¹⁷⁵Yb (Т₁/₂ = 4.2 days, Eᵦ = 0.5 MeV, Eᵧ = 396.3 keV) and ¹⁸⁶Re (T₁/₂ = 3.8 days, Eᵦ = 1.1 MeV, Eᵧ = 137.2 keV) with using nanoparticles (50…80 nm) of oxides of these elements and the Sz...
Збережено в:
Дата: | 2023 |
---|---|
Автори: | , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2023
|
Назва видання: | Problems of Atomic Science and Technology |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/196200 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Possibilites of isotopes production of ¹⁵³Sm, ¹⁷⁵Yb, ¹⁸⁶Re at the electronic accelerator / N.P. Dikiy, N.V. Krasnoselskiy, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev, V.L. Uvarov // Problems of Atomic Science and Technology. — 2023. — № 4. — С. 176-179. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-196200 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1962002023-12-11T14:40:32Z Possibilites of isotopes production of ¹⁵³Sm, ¹⁷⁵Yb, ¹⁸⁶Re at the electronic accelerator Dikiy, N.P. Krasnoselskiy, N.V. Lyashko, Yu.V. Medvedeva, E.P. Medvedev, D.V. Uvarov, V.L. Applications and technologies Photonuclear technology for producing osteotropic isotopes ¹⁵³Sm (Т₁/₂ = 1.9 days, Eᵦ = 0.8 MeV, Eᵧ = 103.2 keV), ¹⁷⁵Yb (Т₁/₂ = 4.2 days, Eᵦ = 0.5 MeV, Eᵧ = 396.3 keV) and ¹⁸⁶Re (T₁/₂ = 3.8 days, Eᵦ = 1.1 MeV, Eᵧ = 137.2 keV) with using nanoparticles (50…80 nm) of oxides of these elements and the Szilard-Chalmers reac-tion to increase specific activity have been developed at the NSC KIPT electron accelerator. Such medical isotopes are not produced in Ukraine. The overall electron accelerator isotope yield when bremsstrahlung irradiated these samples with a maximum energy of 40 MeV and a current of 250 μA for ¹⁸⁶Re and 13.5 MeV and a current of 500 μA for ¹⁵³Sm and ¹⁷⁵Yb has been shown to have the advantages of higher specific activity, negligible the content of impurities and does not require immobilization of radioactive waste in comparison with a reactor and a cyclotron. На електронному прискорювачі ННЦ ХФТІ розроблені фотоядерні технології одержання остеотропних ізотопів ¹⁵³Sm (Т₁/₂ = 1,9 доби, Eᵦ = 0,8 МеВ, Eᵧ = 103,2 кеВ), ¹⁷⁵Yb (Т₁/₂ = 4,2 доби, Eᵦ = 0,5 МеВ, Eᵧ = 396,3 кеВ) and ¹⁸⁶Re (T₁/₂ = 3,8 доби, Eᵦ = 1,1 МeВ, Eᵧ = 137,2 кеВ) з використанням наночастинок (50…80 нм) оксидів цих елементів та реакції Сциларда-Чалмерса для підвищення питомої активності. В Україні такі медичні ізотопи не виробляються. Показано, що загальний вихід ізотопів на прискорювачі електронів при опроміненні цих зразків гальмівним випромінюванням з максимальною енергією 40 МеВ і струмом 250 μА для ¹⁸⁶Re та 13,5 МеВ і струмом 500 μА для ¹⁵³Sm та ¹⁷⁵Yb має такі переваги, як більш високу питому активність, незначний вміст домішок і не потребує іммобілізації радіоактивних відходів у порівнянні з реактором та циклотроном. 2023 Article Possibilites of isotopes production of ¹⁵³Sm, ¹⁷⁵Yb, ¹⁸⁶Re at the electronic accelerator / N.P. Dikiy, N.V. Krasnoselskiy, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev, V.L. Uvarov // Problems of Atomic Science and Technology. — 2023. — № 4. — С. 176-179. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 87.23.-n; 92.40.Qk DOI: https://doi.org/10.46813/2023-146-176 http://dspace.nbuv.gov.ua/handle/123456789/196200 en Problems of Atomic Science and Technology Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Applications and technologies Applications and technologies |
spellingShingle |
Applications and technologies Applications and technologies Dikiy, N.P. Krasnoselskiy, N.V. Lyashko, Yu.V. Medvedeva, E.P. Medvedev, D.V. Uvarov, V.L. Possibilites of isotopes production of ¹⁵³Sm, ¹⁷⁵Yb, ¹⁸⁶Re at the electronic accelerator Problems of Atomic Science and Technology |
description |
Photonuclear technology for producing osteotropic isotopes ¹⁵³Sm (Т₁/₂ = 1.9 days, Eᵦ = 0.8 MeV, Eᵧ = 103.2 keV), ¹⁷⁵Yb (Т₁/₂ = 4.2 days, Eᵦ = 0.5 MeV, Eᵧ = 396.3 keV) and ¹⁸⁶Re (T₁/₂ = 3.8 days, Eᵦ = 1.1 MeV, Eᵧ = 137.2 keV) with using nanoparticles (50…80 nm) of oxides of these elements and the Szilard-Chalmers reac-tion to increase specific activity have been developed at the NSC KIPT electron accelerator. Such medical isotopes are not produced in Ukraine. The overall electron accelerator isotope yield when bremsstrahlung irradiated these samples with a maximum energy of 40 MeV and a current of 250 μA for ¹⁸⁶Re and 13.5 MeV and a current of 500 μA for ¹⁵³Sm and ¹⁷⁵Yb has been shown to have the advantages of higher specific activity, negligible the content of impurities and does not require immobilization of radioactive waste in comparison with a reactor and a cyclotron. |
format |
Article |
author |
Dikiy, N.P. Krasnoselskiy, N.V. Lyashko, Yu.V. Medvedeva, E.P. Medvedev, D.V. Uvarov, V.L. |
author_facet |
Dikiy, N.P. Krasnoselskiy, N.V. Lyashko, Yu.V. Medvedeva, E.P. Medvedev, D.V. Uvarov, V.L. |
author_sort |
Dikiy, N.P. |
title |
Possibilites of isotopes production of ¹⁵³Sm, ¹⁷⁵Yb, ¹⁸⁶Re at the electronic accelerator |
title_short |
Possibilites of isotopes production of ¹⁵³Sm, ¹⁷⁵Yb, ¹⁸⁶Re at the electronic accelerator |
title_full |
Possibilites of isotopes production of ¹⁵³Sm, ¹⁷⁵Yb, ¹⁸⁶Re at the electronic accelerator |
title_fullStr |
Possibilites of isotopes production of ¹⁵³Sm, ¹⁷⁵Yb, ¹⁸⁶Re at the electronic accelerator |
title_full_unstemmed |
Possibilites of isotopes production of ¹⁵³Sm, ¹⁷⁵Yb, ¹⁸⁶Re at the electronic accelerator |
title_sort |
possibilites of isotopes production of ¹⁵³sm, ¹⁷⁵yb, ¹⁸⁶re at the electronic accelerator |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2023 |
topic_facet |
Applications and technologies |
url |
http://dspace.nbuv.gov.ua/handle/123456789/196200 |
citation_txt |
Possibilites of isotopes production of ¹⁵³Sm, ¹⁷⁵Yb, ¹⁸⁶Re at the electronic accelerator / N.P. Dikiy, N.V. Krasnoselskiy, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev, V.L. Uvarov // Problems of Atomic Science and Technology. — 2023. — № 4. — С. 176-179. — Бібліогр.: 11 назв. — англ. |
series |
Problems of Atomic Science and Technology |
work_keys_str_mv |
AT dikiynp possibilitesofisotopesproductionof153sm175yb186reattheelectronicaccelerator AT krasnoselskiynv possibilitesofisotopesproductionof153sm175yb186reattheelectronicaccelerator AT lyashkoyuv possibilitesofisotopesproductionof153sm175yb186reattheelectronicaccelerator AT medvedevaep possibilitesofisotopesproductionof153sm175yb186reattheelectronicaccelerator AT medvedevdv possibilitesofisotopesproductionof153sm175yb186reattheelectronicaccelerator AT uvarovvl possibilitesofisotopesproductionof153sm175yb186reattheelectronicaccelerator |
first_indexed |
2025-07-17T00:42:31Z |
last_indexed |
2025-07-17T00:42:31Z |
_version_ |
1837852735927484416 |
fulltext |
176 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146)
https://doi.org/10.46813/2023-146-176
POSSIBILITES OF ISOTOPES PRODUCTION OF
153
Sm,
175
Yb,
186
Re
AT THE ELECTRONIC ACCELERATOR
N.P. Dikiy
1
, N.V. Krasnoselskiy
2
, Yu.V. Lyashko
1
, E.P. Medvedeva
1
,
D.V. Medvedev
1
, V.L. Uvarov
1
1
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine;
2
S.P. Grigoriev Institute for Medical Radiology, Kharkiv, Ukraine
E-mail: ndikiy@kipt.kharkov.ua
Photonuclear technology for producing osteotropic isotopes
153
Sm (Т1/2 = 1.9 days, Eβ = 0.8 MeV,
Eγ = 103.2 keV),
175
Yb (Т1/2 = 4.2 days, Eβ = 0.5 MeV, Eγ = 396.3 keV) and
186
Re (T1/2 = 3.8 days, Eβ = 1.1 MeV,
Eγ = 137.2 keV) with using nanoparticles (50…80 nm) of oxides of these elements and the Szilard-Chalmers reac-
tion to increase specific activity have been developed at the NSC KIPT electron accelerator. Such medical isotopes
are not produced in Ukraine. The overall electron accelerator isotope yield when bremsstrahlung irradiated these
samples with a maximum energy of 40 MeV and a current of 250 µA for
186
Re and 13.5 MeV and a current of
500 µA for
153
Sm and
175
Yb has been shown to have the advantages of higher specific activity, negligible the content
of impurities and does not require immobilization of radioactive waste in comparison with a reactor and a cyclotron.
PACS: 87.23.-n; 92.40.Qk
INTRODUCTION
Bone metastases are a frequent complication in vari-
ous tumors such as prostate, breast, lung often causing
progressive pain [1]. Bone metastases in the skeleton
occur in many patients with solid malignant tumors.
For the treatment of patients with bone metastases,
various methods of treatment are used: surgical treat-
ment, chemotherapy, external beam radiation therapy
and radionuclide therapy [2, 3].
Recently, in various countries, in the treatment of pa-
tients with multiple metastases, radionuclide therapy has
been actively used. The method is based on the ability of
β-emitting drugs to accumulate in bone metastases. In
world practice, for the palliative therapy of bone metasta-
ses, radiopharmaceuticals based on
153
Sm,
175
Yb,
89
Sr,
186,188
Re,
177
Lu,
90
Y,
32,33
P are now used. These radionu-
clides are delivered to pathological localization by vari-
ous transport compounds based on bisphosphonate. In
bisphosphonate the groups attached to central carbon
atom determine their potency as anti-resorption drugs.
There is a relationship between bisphosphonate`s molecu-
lar structure and hydroxyapatite Ca10(PO4)6(OH)2 the
main bone mineral component. These compounds are
fixed in the bone matrix instead of calcium.
The main optimal properties of radiopharmaceuticals
for radionuclide therapy in bone metastases are as fol-
lows: 1 – high selective accumulation in metastases;
2 – rapid elimination from healthy tissue; 3 – maximum
energy of β-radiation from 0.5 to 2.0 MeV; 4 – path
length of β-particles in tissues – up to 1 cm; 5 – the pos-
sibility of outpatient use; 6 – easy of production;
7 – convenience and stability of delivery.
A positive feature of radiopharmaceuticals with
153
Sm,
175
Yb,
186
Re isotopes is the presence of
γ-radiation in their spectrum. The presence of
γ-radiation makes it possible to obtain a scintigraphic
image on a gamma camera and accurately determine the
accumulation of the drug in metastases after the admin-
istration of the drug.
The physical characteristic of the isotopes
153
Sm,
175
Yb,
186
Re are as follows:
153
Sm (T1/2 = 1.9 days,
Eβ = 0.8 MeV, Eγ = 103.2 keV),
175
Yb (Т1/2 = 4.2 days,
Eβ = 0.5 MeV, Eγ = 396.3 keV) and
186
Re (Т1/2 =
3.8 days, Eβ = 1.1 MeV, Eγ = 137.2 keV). These iso-
topes decay with the release of Auger electrons. The
most intense internal conversion electrons are due to
L-Auger electrons. There are L-Auger electrons with
energy and intensity for
153
Sm E = 4.69 keV 53.2%,
175
Yb E = 6.02 keV 6.34%, and
186
Re E = 6.88 keV
6.48%. In other words, a synergistic effect of the action
of Auger electrons and γ-radiation is possible.
1. NUCLEAR REACTIONS
Samarium is being used of natural isotopic distribu-
tion. Prevalence of isotopes
147
Sm,
152
Sm,
154
Sm is 15.0,
26.7, 22.7%, respectively. The reaction
152
Sm(γ,n) caus-
es the production of
151
Sm (T1/2 = 90 years) with low
radiation. The reaction
147
Sm(γ,n) leads to producing
146
Sm isotope with a half-life of 1.03∙10
8
years through
α-decay. Reaction
144
Sm(γ,n)
143
Sm
(T1/2 = 8.83 min) >
143
Pm (T1/2 = 265 days) results by
isotopes with low levels of radiation due to their T1/2.
Only
153
Sm from reaction
154
Sm(γ,n) will significantly
reduce the side effect of cancer therapy.
Along with
175
Yb the γ-activation of natural Yb pro-
duces other radionuclides (Table). In (γ,p) reactions
173
Tm with quickly decay, and
172
Tm with weak low-
energy gamma radiation form. Radionuclide
167
Tm
which is formed from
168
Yb(0.13%) is very not much.
Noticeable
169
Yb can be suppressed using a
176
Yb en-
riched target.
The medium activity
175
Yb isotope can be produced
using thermal neutrons that bombard a natural target by
the reaction
174
Yb(n,γ) or charged particles d ore
3
He
from reactions
174
Yb(d,p),
176
Yb(d,t), and
176
Yb(
3
He,).
It was also found that
175
Yb (31 Ci/g) or (1145 GBq)
can be produced with 95% radionuclide purity (with a
content of 3%) by irradiating a Yb2O3 target with ther-
mal neutrons 3∙10
13
n/cm
2
/s during 5 days [4]. Also,
175
Yb can be obtained on the basis of photonuclear reac-
tions when an ytterbium target is irradiated during 1 h
with a bremsstrahlung gamma radiation at an electron
mailto:ndikiy@kipt.kharkov.ua
ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146) 177
accelerator with an energy of 20 MeV [5]. In this case,
the radiation of gamma photons
175
Yb is low-energy and
has a low distribution.
The rather long lifetime of
175
Yb makes it possible to
carry out transportation, labeling, and purification with-
out a possible loss of isotope activity. β-emitter
175
Yb is
able to selectively accumulate in the localization of me-
tastases with increased mineralization and increased
bone tissue metabolism.
Natural rhenium consists of two isotopes
185
Re(37.4%) and
187
Re(62.6%). The production of
186
Re
is carried out at an electron accelerator using nuclear
reaction
187
Re(γ,n)
186
Re.
At the same time, the
184
Re radionuclide, which has
significant activity, in the reaction
185
Re(γ,n) is also
produced. The use of a target highly enriched in
187
Re is
required to prevent
184
Re. It is also possible to use the
neutron generator which would lead to the production of
not only
186
Re, but also
188
Re.
Isotope
188
Re gamma radiation has the most intense
transition – 155.0 keV with a quantum yield of 14.9%.
The most important future of preparation
188
Re based on
them is the possibility by their generation production.
The
188
W/
188
Re generator has the advantage that the
188
Re isotope can be generated over a fairly long period
due to T1/2 = 69.4 days isotope
188
W.
For the production of the generator isotope
188
W the
reactors on the base of double neutron capture with a
neutron density of ~ 3∙10
15
cm
-2
·c
-1
, and
186
W target
with enrichment of up to 99.95% is used. As a result, for
example, commercial generator ORNL (USA)
188
W/
188
Re uses ~ 25 g tungsten and this causes difficul-
ty to receivering
188
Re from chromatography columns.
The specific activity
188
W in such a generator is
100…200 MBq/mg of tungsten. To do this, a silver-based
cation/anion column is introduced into the generator, to
reduce the volume of the mobile phase to 10…15 ml. The
problems of using low concentrations of the specific ac-
tivity tungsten, lead to the need to create new
188
W/
188
Re
generators, whish simplify the design of the generator and
its operation. A feature of the production of the
188
W/
188
Re generator at electron accelerators is that the
production of
188
W from reaction
192
Os(γ,α) with a high
specific activity can reach a theoretical specific activity of
~ 36.9 GBq/mg of tungsten [6].
The radiation of
186
Re β-particles is the most effec-
tive for targeted radiotherapy. Low-energy photons
make it possible to simultaneously perform scintigraphy
and dosimetric studies without the introduction of other
isotopes, such as
99m
Tc.
To date, the production of isotopes of samarium, yt-
terbium and rhenium has not been established in
Ukraine, despite the fact that each of these isotopes has
proven itself in clinical practice as effective and safe.
These isotopes have certain physiological properties,
and specific biochemical and pharmacological ad-
vantages, which are of considerable interest for radionu-
clide diagnostics and therapy.
The purpose of that study was to evaluate the feasi-
bility of producing the isotopes
153
Sm,
175
Yb, and
186
Re
with high specific activity on an electron accelerator.
2. MATERIALS AND METHODS
Nanoparticles (50…80 nm) of Sm2O3, Yb2O3, and
ReO2 oxides were used as targets. Activation by brems-
strahlung radiation with energy of 13.5 MeV and cur-
rent of 500 µА on liner electron accelerator was carried
out for Sm2O3 and Yb2O3 nanoparticles. ReO2 nanopar-
ticles were activated at energy of 40 MeV and current
250 µА. After each exposure the targets were cooled for
24 h to get rid of the activity of short-lived impurities.
A classic method for increasing the specific radioac-
tivity of accelerator-produced isotopes is the Szilard-
Chalmers reactions [7]. Nanoparticles Sm2O, Yb2O3,
ReO2 and nanoparticles clinoptilolite used as donor and
acceptor, respectively.
The activity of isotopes obtained in reactions
154
Sm(γ,n)
153
Sm,
176
Yb((γ,n)
175
Yb, and
187
Re(γ,n)
186
Re
in nanoparticles clinoptilolite measured by Ge(Li)-
detector with volume 50 cm
3
and with energy resolution
3.2 keV in the area of 1332 [8].
To reduce the influence of the background, the de-
tector is equipped with three-layer Pb-Cu-Al protection.
Standard amplitude spectrum processing programs pro-
cessed the spectra obtained from the samples. The de-
tection limit of the elements was 10
-4
…10
-7
% of the
mass. Prior to analysis, the samples were prepared ac-
cording to International Atomic Energy Agency (IAEA)
Instruction [9].
3. RESULTS AND DISCUSSION
The spectrums of targets Sm, Yb, and Re are shown
in the following figures. The lines registered on the
spectrums are in table. The lines of gamma radiation of
153
Sm are observed in the spectrum (Fig. 1).
50 200 350 500 650 800
energy (keV)
1
10
100
1000
10000
c
o
u
n
ts
ju
v
l
Sm
153
Sm
153
143
Sm
Pm
K
153
Fig. 1. The spectrum of Sm after irradiated
bremsstrahlung with Emax = 13.5 MeV
On the accelerator of electrons with energy
13.5 MeV and a current 500 µА isotope
153
Sm can be
produced ~ 1 Ci during the day by using a samarium
~ 40 g with a natural isotopic composition. In the target
of similar mass, but enriched in
154
Sm the daily yield
can attain 5 Ci for
153
Sm.
In the presents of the same parameters, the isotopes
175
Yb can be produced ~ 1.2 Ci during the day by using
ytterbium ~ 30 g with a natural isotopic composition
(Figs. 2, 3).
178 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146)
Table Lines registered on the spectrums
Radionuclide
T1/2
Basic reactions -lines keV
(ni %)
Sm (Z=62) Stable A(%) 144(3.1), 147(15.0),
148(11.3), 149(13.8),
150(7.4), 152(26.7), 154(22.7)
143
Pm
265D
144
Sm(,n)-
143
Sm(8.83M)->
144
Sm(,p)
742.(38.5)
153
Sm
46.27H
154
Sm(,n) 69.7(4.85),
75.4(0.35),
83.4(0.20),
89.5(0.18),
97.4(0.85),
103.2(31.43),
172.9(0.08),
531.4(0.07),
533.3(0.04),
609.2(0.01)
Yb (Z=70) Stable A(%): 168(0.13), 170(3.05),
171(14.3), 172(21.9),
173(16.1), 174(31.8), 176(12.7)
167
Tm
9.25 D
168
Yb(,n)-
167
Yb(17.5M)->
168
Yb(,p)
57.1(4.69),
207.8(41.02)
169
Yb
32.026 D
170
Yb(,n) 63.1(44.21),
93.6(2.61),
109.8(17.47),
118.2(1.87),
130.5(11.31),
177.2(22.16),
198.0(35.8),
261.1(1.72),
307.7(10.06)
172
Tm
63.6 H
173
Yb(,p) 78.8(6.54)
173
Tm
8.24 H
174
Yb(,p) 398.9(87.9),
461.4(6.86)
175
Yb
4.185 D
176
Yb(,n) 113.8(3.87),
137.7(0.235),
144.9(0.672),
251.5(0.17),
282.5(6.13),
396.3(13.2)
Clinoptilolite (NaK)4CaАl6Si30O72•24Н2О
24
Na
14.96H
27
Al(100%)(n,)
23
Na(100%)(n,)
1369.(100.),
2754.(99.9) –
1022.->1732.
43
K
22.3H
44
Ca(2.086%)(,p)
372.8(86.8),
617.5(79.2)
47
Sc
3.345D
48
Ca(0.185%)(,n)-
47
Ca(4.546D)->
159.4(67.9)
56
Mn
2.58H
55
Mn(100%)(n,)
57
Fe(2.2%)(,p)
846.8(98.9)
87m
Sr
2.803H
87
Sr(7.0%)(,’)
88
Sr(82.58%)(,n)
388.5(82.1)
Re (Z=75) Stable A(%): 185(37.4), 187(62.6)
183
Re
70.0D
185
Re(,2n) 162.3(23.3)
184
Re
38.0D
185
Re(,n) 111.2(17.14),
252.8(3.02),
641.9(1.94),
769.8(0.67),
792.1(37.5),
894.8(15.6)
903.3(37.9),
1023.(0.52),
1275.(0.12)
186
Re
90.64H
187
Re(,n) 122.6(0.56),
137.2(8.22)
188
Re
16.98H
187
Re(n,) 155.0(14.95)
Al cover foil and others
24
Na
14.96H
27
Al(100%)(n,)
1369.(100.)
511 e
+
+ e
-> 511.
40
K
1.28E+9Y
40
K ->
40
Ar+
+
1461.(10.7)
300 600 900 1200 1500 1800
energy (keV)
1
10
100
1000
10000
c
o
u
n
ts
ju
v
l
Na24Yb 173175
Yb + Tm Na'
K
175
511
Tm173
2456
Mn43K
Fig. 2. The spectrum of Yb after irradiated
bremsstrahlung with Emax = 13.5 MeV
In the target of similar mass, but enriched in
176
Yb
the daily yield can attain 8 Ci for
175
Yb.
100 200 300 400
energy (keV)
3
5
2
3
5
2
3
5
100
1000
c
o
u
n
ts
ju
v
l
Tm
173
Yb 175 169Yb Yb
K
169
43
175 Yb17587mSrYb
169Yb
175Yb167Tm169Yb 47Sc
Fig. 3. The fragment of the low-energy
of the same Yb spectrum
On a linear accelerator, it is possible to produce up
to 30…40 Ci/day
186
Re with high specific activity at
energy 40 MeV and current 250 µА (Figs. 4, 5).
Note that recoil nuclei are stopped in the acceptor-
clinoptilolite from all these reactions
154
Sm(γ,n)
153
Sm,
176
Yb((γ,n)
175
Yb and
187
Re(γ,n)
186
Re.
With an electron accelerator, it is possible to achieve
a yield of isotopes
153
Sm,
175
Yb, and
186
Re higher activi-
ty and without impurities than with reactors and cyclo-
trons. For example, the total yield of the production
186
Re at the electron accelerator is 60 µCi/µA year to the
ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146) 179
reactor 7.5 µCi/µA year [10] and the cyclotron
20 µCi/µA year [11].
300 600 900 1200 1500
energy (keV)
1
10
100
1000
10000
100000
c
o
u
n
ts
ju
v
l
Re
186
Re 184
24
Re
Na
K
184
511
K40
Fig. 4. The spectrum of
Re after irradiated
bremsstrahlung with Emax = 40 MeV
100 150 200 250
energy (keV)
5
2
3
5
2
3
5
1000
10000
c
o
u
n
ts
ju
v
l
Re
186
Re
183 184
Re Re
184 188
Re
Fig. 5. The fragment of the same spectrum
in the region
186
Re lines
CONCLUSIONS
The possibilities of the photonuclear production of
isotopes
153
Sm,
175
Yb, and
186
Re as medical radioiso-
topes produced by the reactions
154
Sm(γ,n)
153
Sm,
176
Yb((γ,n)
175
Yb, and
187
Re(γ,n)
186
Re with using Szilard-
Chalmers reaction was investigated. The nanoparticles
Sm2O3, Yb2O3, ReO2 and clinoptilolite nanoparticles
were used the output of isotopes
153
Sm,
175
Yb, and
186
Re.
In NSC KIPT on the linear accelerator of electrons,
the product of isotopes
153
Sm,
175
Yb, and
186
Re proper-
ties suggest for efficient use for pain palliation. These
isotopes have been used for more than a decade around
the world.
REFERENCES
1. A.N. Serafini. Therapy of metastatic bone pain // J.
Nucl. Med. 2001, № 42(6), p. 895-906.
2. J.H. Turner. Treatment of painful skeletal metastases
// Alasbimn J. Special Issue: 8-th World Congress of
Nuclear Medicine. 2002, № 17, sept.
3. J.C. Harbert, W.C. Eckelman, R.D. Neuman. Nucle-
ar Medicine. Diagnosis and therapy // Thieme Medi-
cal Publishers, Inc New York. 1996.
4. F. Rosch, E. Forssell-Aronsson. Radio-lanthanides
in nuclear medicine // Metal Ions and Their Com-
plexes. New-York, NY: Marcel Dekker, Inc. 2004,
p. 185-190.
5. M.U. Khandaker, H. Haba, N. Otuka, A.R. Usman.
Investigation of (d,x) nuclear reaction on natural yt-
terbium up to 24 MeV // Nucl. Instr. Meth. Phys.
Res. 2014, v. B335, p. 8-18.
6. H. Matsuoka, K. Hashimoto, Y. Hishinuma. Appli-
cation of PZC to
188
W/
188
Re Generators // J. Nucl.
Radiochem. Sci. 2005, v. 6, № 3, p. 189-191.
7. S.K. Zeisler, K. Weber. Szilard-Chalmers effect in
holmium complexes // J. of Radioanalytical Chemis-
try. 1998, v. 227, № 1-2, p. 105-109.
8. N.P. Dikiy, A.N. Dovbnya, Yu.V. Lyashko, et al.
Radioactive stability and sorption ability of clinop-
tilolite nanoparticles // Problems of Atomic Science
and Technology. Series “Nuclear Physics Investiga-
tions”. 2015, № 3(64), p. 76-78.
9. International coordinated program on activation
analysis of trace elements // Praeger Publisher. New
York, 1980, p. 3-34.
10. Manual for Reactor Produced Radioisotopes //
IAEA-NECDOC-1340. 2003.
11. E. Rersico, M.L. Bonardi, F. Goppi, et al. Excita-
tion-functions and yields for Re-186 production by
proton cyclotron irradiation // Proc. of 18 Int. Conf.
Cyclotrons and their Application. 2007, p. 248-250.
Article received 17.05.2023
МОЖЛИВОСТІ ВИРОБНИЦТВА ІЗОТОПІВ
153
Sm,
175
Yb,
186
Re
НА ЕЛЕКТРОННОМУ ПРИСКОРЮВАЧІ
М.П. Дикий, М.В. Красносельський, Ю.В. Ляшко, О.П. Медведєва, Д.В. Медведєв, В.Л. Уваров
На електронному прискорювачі ННЦ ХФТІ розроблені фотоядерні технології одержання остеотропних
ізотопів
153
Sm (Т1/2 = 1,9 доби, Еβ = 0,8 МеВ, Еγ = 103,2 кеВ),
175
Yb (Т1/2 = 4,2 доби, Еβ = 0,5 МеВ,
Еγ = 396,3 кеВ) та
186
Re (Т1/2 = 3,8 доби, Еβ = 1,1 МеВ, Еγ = 137,2 кеВ) з використанням наночастинок
(50…80 нм) оксидів цих елементів та реакції Сциларда-Чалмерса для підвищення питомої активності. В
Україні такі медичні ізотопи не виробляються. Показано, що загальний вихід ізотопів на прискорювачі елек-
тронів при опроміненні цих зразків гальмівним випромінюванням з максимальною енергією 40 МеВ і стру-
мом 250 µА для
186
Re та 13,5 МеВ і струмом 500 µА для
153
Sm та
175
Yb має такі переваги, як більш високу
питому активність, незначний вміст домішок і не потребує іммобілізації радіоактивних відходів у порівнян-
ні з реактором та циклотроном.
|