Possibilites of isotopes production of ¹⁵³Sm, ¹⁷⁵Yb, ¹⁸⁶Re at the electronic accelerator

Photonuclear technology for producing osteotropic isotopes ¹⁵³Sm (Т₁/₂ = 1.9 days, Eᵦ = 0.8 MeV, Eᵧ = 103.2 keV), ¹⁷⁵Yb (Т₁/₂ = 4.2 days, Eᵦ = 0.5 MeV, Eᵧ = 396.3 keV) and ¹⁸⁶Re (T₁/₂ = 3.8 days, Eᵦ = 1.1 MeV, Eᵧ = 137.2 keV) with using nanoparticles (50…80 nm) of oxides of these elements and the Sz...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автори: Dikiy, N.P., Krasnoselskiy, N.V., Lyashko, Yu.V., Medvedeva, E.P., Medvedev, D.V., Uvarov, V.L.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2023
Назва видання:Problems of Atomic Science and Technology
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/196200
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Possibilites of isotopes production of ¹⁵³Sm, ¹⁷⁵Yb, ¹⁸⁶Re at the electronic accelerator / N.P. Dikiy, N.V. Krasnoselskiy, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev, V.L. Uvarov // Problems of Atomic Science and Technology. — 2023. — № 4. — С. 176-179. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-196200
record_format dspace
spelling irk-123456789-1962002023-12-11T14:40:32Z Possibilites of isotopes production of ¹⁵³Sm, ¹⁷⁵Yb, ¹⁸⁶Re at the electronic accelerator Dikiy, N.P. Krasnoselskiy, N.V. Lyashko, Yu.V. Medvedeva, E.P. Medvedev, D.V. Uvarov, V.L. Applications and technologies Photonuclear technology for producing osteotropic isotopes ¹⁵³Sm (Т₁/₂ = 1.9 days, Eᵦ = 0.8 MeV, Eᵧ = 103.2 keV), ¹⁷⁵Yb (Т₁/₂ = 4.2 days, Eᵦ = 0.5 MeV, Eᵧ = 396.3 keV) and ¹⁸⁶Re (T₁/₂ = 3.8 days, Eᵦ = 1.1 MeV, Eᵧ = 137.2 keV) with using nanoparticles (50…80 nm) of oxides of these elements and the Szilard-Chalmers reac-tion to increase specific activity have been developed at the NSC KIPT electron accelerator. Such medical isotopes are not produced in Ukraine. The overall electron accelerator isotope yield when bremsstrahlung irradiated these samples with a maximum energy of 40 MeV and a current of 250 μA for ¹⁸⁶Re and 13.5 MeV and a current of 500 μA for ¹⁵³Sm and ¹⁷⁵Yb has been shown to have the advantages of higher specific activity, negligible the content of impurities and does not require immobilization of radioactive waste in comparison with a reactor and a cyclotron. На електронному прискорювачі ННЦ ХФТІ розроблені фотоядерні технології одержання остеотропних ізотопів ¹⁵³Sm (Т₁/₂ = 1,9 доби, Eᵦ = 0,8 МеВ, Eᵧ = 103,2 кеВ), ¹⁷⁵Yb (Т₁/₂ = 4,2 доби, Eᵦ = 0,5 МеВ, Eᵧ = 396,3 кеВ) and ¹⁸⁶Re (T₁/₂ = 3,8 доби, Eᵦ = 1,1 МeВ, Eᵧ = 137,2 кеВ) з використанням наночастинок (50…80 нм) оксидів цих елементів та реакції Сциларда-Чалмерса для підвищення питомої активності. В Україні такі медичні ізотопи не виробляються. Показано, що загальний вихід ізотопів на прискорювачі електронів при опроміненні цих зразків гальмівним випромінюванням з максимальною енергією 40 МеВ і струмом 250 μА для ¹⁸⁶Re та 13,5 МеВ і струмом 500 μА для ¹⁵³Sm та ¹⁷⁵Yb має такі переваги, як більш високу питому активність, незначний вміст домішок і не потребує іммобілізації радіоактивних відходів у порівнянні з реактором та циклотроном. 2023 Article Possibilites of isotopes production of ¹⁵³Sm, ¹⁷⁵Yb, ¹⁸⁶Re at the electronic accelerator / N.P. Dikiy, N.V. Krasnoselskiy, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev, V.L. Uvarov // Problems of Atomic Science and Technology. — 2023. — № 4. — С. 176-179. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 87.23.-n; 92.40.Qk DOI: https://doi.org/10.46813/2023-146-176 http://dspace.nbuv.gov.ua/handle/123456789/196200 en Problems of Atomic Science and Technology Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Applications and technologies
Applications and technologies
spellingShingle Applications and technologies
Applications and technologies
Dikiy, N.P.
Krasnoselskiy, N.V.
Lyashko, Yu.V.
Medvedeva, E.P.
Medvedev, D.V.
Uvarov, V.L.
Possibilites of isotopes production of ¹⁵³Sm, ¹⁷⁵Yb, ¹⁸⁶Re at the electronic accelerator
Problems of Atomic Science and Technology
description Photonuclear technology for producing osteotropic isotopes ¹⁵³Sm (Т₁/₂ = 1.9 days, Eᵦ = 0.8 MeV, Eᵧ = 103.2 keV), ¹⁷⁵Yb (Т₁/₂ = 4.2 days, Eᵦ = 0.5 MeV, Eᵧ = 396.3 keV) and ¹⁸⁶Re (T₁/₂ = 3.8 days, Eᵦ = 1.1 MeV, Eᵧ = 137.2 keV) with using nanoparticles (50…80 nm) of oxides of these elements and the Szilard-Chalmers reac-tion to increase specific activity have been developed at the NSC KIPT electron accelerator. Such medical isotopes are not produced in Ukraine. The overall electron accelerator isotope yield when bremsstrahlung irradiated these samples with a maximum energy of 40 MeV and a current of 250 μA for ¹⁸⁶Re and 13.5 MeV and a current of 500 μA for ¹⁵³Sm and ¹⁷⁵Yb has been shown to have the advantages of higher specific activity, negligible the content of impurities and does not require immobilization of radioactive waste in comparison with a reactor and a cyclotron.
format Article
author Dikiy, N.P.
Krasnoselskiy, N.V.
Lyashko, Yu.V.
Medvedeva, E.P.
Medvedev, D.V.
Uvarov, V.L.
author_facet Dikiy, N.P.
Krasnoselskiy, N.V.
Lyashko, Yu.V.
Medvedeva, E.P.
Medvedev, D.V.
Uvarov, V.L.
author_sort Dikiy, N.P.
title Possibilites of isotopes production of ¹⁵³Sm, ¹⁷⁵Yb, ¹⁸⁶Re at the electronic accelerator
title_short Possibilites of isotopes production of ¹⁵³Sm, ¹⁷⁵Yb, ¹⁸⁶Re at the electronic accelerator
title_full Possibilites of isotopes production of ¹⁵³Sm, ¹⁷⁵Yb, ¹⁸⁶Re at the electronic accelerator
title_fullStr Possibilites of isotopes production of ¹⁵³Sm, ¹⁷⁵Yb, ¹⁸⁶Re at the electronic accelerator
title_full_unstemmed Possibilites of isotopes production of ¹⁵³Sm, ¹⁷⁵Yb, ¹⁸⁶Re at the electronic accelerator
title_sort possibilites of isotopes production of ¹⁵³sm, ¹⁷⁵yb, ¹⁸⁶re at the electronic accelerator
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2023
topic_facet Applications and technologies
url http://dspace.nbuv.gov.ua/handle/123456789/196200
citation_txt Possibilites of isotopes production of ¹⁵³Sm, ¹⁷⁵Yb, ¹⁸⁶Re at the electronic accelerator / N.P. Dikiy, N.V. Krasnoselskiy, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev, V.L. Uvarov // Problems of Atomic Science and Technology. — 2023. — № 4. — С. 176-179. — Бібліогр.: 11 назв. — англ.
series Problems of Atomic Science and Technology
work_keys_str_mv AT dikiynp possibilitesofisotopesproductionof153sm175yb186reattheelectronicaccelerator
AT krasnoselskiynv possibilitesofisotopesproductionof153sm175yb186reattheelectronicaccelerator
AT lyashkoyuv possibilitesofisotopesproductionof153sm175yb186reattheelectronicaccelerator
AT medvedevaep possibilitesofisotopesproductionof153sm175yb186reattheelectronicaccelerator
AT medvedevdv possibilitesofisotopesproductionof153sm175yb186reattheelectronicaccelerator
AT uvarovvl possibilitesofisotopesproductionof153sm175yb186reattheelectronicaccelerator
first_indexed 2025-07-17T00:42:31Z
last_indexed 2025-07-17T00:42:31Z
_version_ 1837852735927484416
fulltext 176 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146) https://doi.org/10.46813/2023-146-176 POSSIBILITES OF ISOTOPES PRODUCTION OF 153 Sm, 175 Yb, 186 Re AT THE ELECTRONIC ACCELERATOR N.P. Dikiy 1 , N.V. Krasnoselskiy 2 , Yu.V. Lyashko 1 , E.P. Medvedeva 1 , D.V. Medvedev 1 , V.L. Uvarov 1 1 National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine; 2 S.P. Grigoriev Institute for Medical Radiology, Kharkiv, Ukraine E-mail: ndikiy@kipt.kharkov.ua Photonuclear technology for producing osteotropic isotopes 153 Sm (Т1/2 = 1.9 days, Eβ = 0.8 MeV, Eγ = 103.2 keV), 175 Yb (Т1/2 = 4.2 days, Eβ = 0.5 MeV, Eγ = 396.3 keV) and 186 Re (T1/2 = 3.8 days, Eβ = 1.1 MeV, Eγ = 137.2 keV) with using nanoparticles (50…80 nm) of oxides of these elements and the Szilard-Chalmers reac- tion to increase specific activity have been developed at the NSC KIPT electron accelerator. Such medical isotopes are not produced in Ukraine. The overall electron accelerator isotope yield when bremsstrahlung irradiated these samples with a maximum energy of 40 MeV and a current of 250 µA for 186 Re and 13.5 MeV and a current of 500 µA for 153 Sm and 175 Yb has been shown to have the advantages of higher specific activity, negligible the content of impurities and does not require immobilization of radioactive waste in comparison with a reactor and a cyclotron. PACS: 87.23.-n; 92.40.Qk INTRODUCTION Bone metastases are a frequent complication in vari- ous tumors such as prostate, breast, lung often causing progressive pain [1]. Bone metastases in the skeleton occur in many patients with solid malignant tumors. For the treatment of patients with bone metastases, various methods of treatment are used: surgical treat- ment, chemotherapy, external beam radiation therapy and radionuclide therapy [2, 3]. Recently, in various countries, in the treatment of pa- tients with multiple metastases, radionuclide therapy has been actively used. The method is based on the ability of β-emitting drugs to accumulate in bone metastases. In world practice, for the palliative therapy of bone metasta- ses, radiopharmaceuticals based on 153 Sm, 175 Yb, 89 Sr, 186,188 Re, 177 Lu, 90 Y, 32,33 P are now used. These radionu- clides are delivered to pathological localization by vari- ous transport compounds based on bisphosphonate. In bisphosphonate the groups attached to central carbon atom determine their potency as anti-resorption drugs. There is a relationship between bisphosphonate`s molecu- lar structure and hydroxyapatite  Ca10(PO4)6(OH)2  the main bone mineral component. These compounds are fixed in the bone matrix instead of calcium. The main optimal properties of radiopharmaceuticals for radionuclide therapy in bone metastases are as fol- lows: 1 – high selective accumulation in metastases; 2 – rapid elimination from healthy tissue; 3 – maximum energy of β-radiation from 0.5 to 2.0 MeV; 4 – path length of β-particles in tissues – up to 1 cm; 5 – the pos- sibility of outpatient use; 6 – easy of production; 7 – convenience and stability of delivery. A positive feature of radiopharmaceuticals with 153 Sm, 175 Yb, 186 Re isotopes is the presence of γ-radiation in their spectrum. The presence of γ-radiation makes it possible to obtain a scintigraphic image on a gamma camera and accurately determine the accumulation of the drug in metastases after the admin- istration of the drug. The physical characteristic of the isotopes 153 Sm, 175 Yb, 186 Re are as follows: 153 Sm (T1/2 = 1.9 days, Eβ = 0.8 MeV, Eγ = 103.2 keV), 175 Yb (Т1/2 = 4.2 days, Eβ = 0.5 MeV, Eγ = 396.3 keV) and 186 Re (Т1/2 = 3.8 days, Eβ = 1.1 MeV, Eγ = 137.2 keV). These iso- topes decay with the release of Auger electrons. The most intense internal conversion electrons are due to L-Auger electrons. There are L-Auger electrons with energy and intensity for 153 Sm E = 4.69 keV  53.2%, 175 Yb E = 6.02 keV  6.34%, and 186 Re E = 6.88 keV  6.48%. In other words, a synergistic effect of the action of Auger electrons and γ-radiation is possible. 1. NUCLEAR REACTIONS Samarium is being used of natural isotopic distribu- tion. Prevalence of isotopes 147 Sm, 152 Sm, 154 Sm is 15.0, 26.7, 22.7%, respectively. The reaction 152 Sm(γ,n) caus- es the production of 151 Sm (T1/2 = 90 years) with low radiation. The reaction 147 Sm(γ,n) leads to producing 146 Sm isotope with a half-life of 1.03∙10 8 years through α-decay. Reaction 144 Sm(γ,n) 143 Sm (T1/2 = 8.83 min) > 143 Pm (T1/2 = 265 days) results by isotopes with low levels of radiation due to their T1/2. Only 153 Sm from reaction 154 Sm(γ,n) will significantly reduce the side effect of cancer therapy. Along with 175 Yb the γ-activation of natural Yb pro- duces other radionuclides (Table). In (γ,p) reactions 173 Tm with quickly decay, and 172 Tm with weak low- energy gamma radiation form. Radionuclide 167 Tm which is formed from 168 Yb(0.13%) is very not much. Noticeable 169 Yb can be suppressed using a 176 Yb en- riched target. The medium activity 175 Yb isotope can be produced using thermal neutrons that bombard a natural target by the reaction 174 Yb(n,γ) or charged particles d ore 3 He from reactions 174 Yb(d,p), 176 Yb(d,t), and 176 Yb( 3 He,). It was also found that 175 Yb (31 Ci/g) or (1145 GBq) can be produced with 95% radionuclide purity (with a content of 3%) by irradiating a Yb2O3 target with ther- mal neutrons 3∙10 13 n/cm 2 /s during 5 days [4]. Also, 175 Yb can be obtained on the basis of photonuclear reac- tions when an ytterbium target is irradiated during 1 h with a bremsstrahlung gamma radiation at an electron mailto:ndikiy@kipt.kharkov.ua ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146) 177 accelerator with an energy of 20 MeV [5]. In this case, the radiation of gamma photons 175 Yb is low-energy and has a low distribution. The rather long lifetime of 175 Yb makes it possible to carry out transportation, labeling, and purification with- out a possible loss of isotope activity. β-emitter 175 Yb is able to selectively accumulate in the localization of me- tastases with increased mineralization and increased bone tissue metabolism. Natural rhenium consists of two isotopes 185 Re(37.4%) and 187 Re(62.6%). The production of 186 Re is carried out at an electron accelerator using nuclear reaction 187 Re(γ,n) 186 Re. At the same time, the 184 Re radionuclide, which has significant activity, in the reaction 185 Re(γ,n) is also produced. The use of a target highly enriched in 187 Re is required to prevent 184 Re. It is also possible to use the neutron generator which would lead to the production of not only 186 Re, but also 188 Re. Isotope 188 Re gamma radiation has the most intense transition – 155.0 keV with a quantum yield of 14.9%. The most important future of preparation 188 Re based on them is the possibility by their generation production. The 188 W/ 188 Re generator has the advantage that the 188 Re isotope can be generated over a fairly long period due to T1/2 = 69.4 days isotope 188 W. For the production of the generator isotope 188 W the reactors on the base of double neutron capture with a neutron density of ~ 3∙10 15 cm -2 ·c -1 , and 186 W target with enrichment of up to 99.95% is used. As a result, for example, commercial generator ORNL (USA) 188 W/ 188 Re uses ~ 25 g tungsten and this causes difficul- ty to receivering 188 Re from chromatography columns. The specific activity 188 W in such a generator is 100…200 MBq/mg of tungsten. To do this, a silver-based cation/anion column is introduced into the generator, to reduce the volume of the mobile phase to 10…15 ml. The problems of using low concentrations of the specific ac- tivity tungsten, lead to the need to create new 188 W/ 188 Re generators, whish simplify the design of the generator and its operation. A feature of the production of the 188 W/ 188 Re generator at electron accelerators is that the production of 188 W from reaction 192 Os(γ,α) with a high specific activity can reach a theoretical specific activity of ~ 36.9 GBq/mg of tungsten [6]. The radiation of 186 Re β-particles is the most effec- tive for targeted radiotherapy. Low-energy photons make it possible to simultaneously perform scintigraphy and dosimetric studies without the introduction of other isotopes, such as 99m Tc. To date, the production of isotopes of samarium, yt- terbium and rhenium has not been established in Ukraine, despite the fact that each of these isotopes has proven itself in clinical practice as effective and safe. These isotopes have certain physiological properties, and specific biochemical and pharmacological ad- vantages, which are of considerable interest for radionu- clide diagnostics and therapy. The purpose of that study was to evaluate the feasi- bility of producing the isotopes 153 Sm, 175 Yb, and 186 Re with high specific activity on an electron accelerator. 2. MATERIALS AND METHODS Nanoparticles (50…80 nm) of Sm2O3, Yb2O3, and ReO2 oxides were used as targets. Activation by brems- strahlung radiation with energy of 13.5 MeV and cur- rent of 500 µА on liner electron accelerator was carried out for Sm2O3 and Yb2O3 nanoparticles. ReO2 nanopar- ticles were activated at energy of 40 MeV and current 250 µА. After each exposure the targets were cooled for 24 h to get rid of the activity of short-lived impurities. A classic method for increasing the specific radioac- tivity of accelerator-produced isotopes is the Szilard- Chalmers reactions [7]. Nanoparticles Sm2O, Yb2O3, ReO2 and nanoparticles clinoptilolite used as donor and acceptor, respectively. The activity of isotopes obtained in reactions 154 Sm(γ,n) 153 Sm, 176 Yb((γ,n) 175 Yb, and 187 Re(γ,n) 186 Re in nanoparticles clinoptilolite measured by Ge(Li)- detector with volume 50 cm 3 and with energy resolution 3.2 keV in the area of 1332 [8]. To reduce the influence of the background, the de- tector is equipped with three-layer Pb-Cu-Al protection. Standard amplitude spectrum processing programs pro- cessed the spectra obtained from the samples. The de- tection limit of the elements was 10 -4 …10 -7 % of the mass. Prior to analysis, the samples were prepared ac- cording to International Atomic Energy Agency (IAEA) Instruction [9]. 3. RESULTS AND DISCUSSION The spectrums of targets Sm, Yb, and Re are shown in the following figures. The lines registered on the spectrums are in table. The lines of gamma radiation of 153 Sm are observed in the spectrum (Fig. 1). 50 200 350 500 650 800 energy (keV) 1 10 100 1000 10000 c o u n ts ju v l Sm 153 Sm 153 143 Sm Pm K 153  Fig. 1. The spectrum of Sm after irradiated bremsstrahlung with Emax = 13.5 MeV On the accelerator of electrons with energy 13.5 MeV and a current 500 µА isotope 153 Sm can be produced ~ 1 Ci during the day by using a samarium ~ 40 g with a natural isotopic composition. In the target of similar mass, but enriched in 154 Sm the daily yield can attain 5 Ci for 153 Sm. In the presents of the same parameters, the isotopes 175 Yb can be produced ~ 1.2 Ci during the day by using ytterbium ~ 30 g with a natural isotopic composition (Figs. 2, 3). 178 ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146) Table Lines registered on the spectrums Radionuclide T1/2 Basic reactions -lines keV (ni %) Sm (Z=62) Stable A(%) 144(3.1), 147(15.0), 148(11.3), 149(13.8), 150(7.4), 152(26.7), 154(22.7) 143 Pm 265D 144 Sm(,n)- 143 Sm(8.83M)-> 144 Sm(,p) 742.(38.5) 153 Sm 46.27H 154 Sm(,n) 69.7(4.85), 75.4(0.35), 83.4(0.20), 89.5(0.18), 97.4(0.85), 103.2(31.43), 172.9(0.08), 531.4(0.07), 533.3(0.04), 609.2(0.01) Yb (Z=70) Stable A(%): 168(0.13), 170(3.05), 171(14.3), 172(21.9), 173(16.1), 174(31.8), 176(12.7) 167 Tm 9.25 D 168 Yb(,n)- 167 Yb(17.5M)-> 168 Yb(,p) 57.1(4.69), 207.8(41.02) 169 Yb 32.026 D 170 Yb(,n) 63.1(44.21), 93.6(2.61), 109.8(17.47), 118.2(1.87), 130.5(11.31), 177.2(22.16), 198.0(35.8), 261.1(1.72), 307.7(10.06) 172 Tm 63.6 H 173 Yb(,p) 78.8(6.54) 173 Tm 8.24 H 174 Yb(,p) 398.9(87.9), 461.4(6.86) 175 Yb 4.185 D 176 Yb(,n) 113.8(3.87), 137.7(0.235), 144.9(0.672), 251.5(0.17), 282.5(6.13), 396.3(13.2) Clinoptilolite  (NaK)4CaАl6Si30O72•24Н2О 24 Na 14.96H 27 Al(100%)(n,) 23 Na(100%)(n,) 1369.(100.), 2754.(99.9) – 1022.->1732. 43 K 22.3H 44 Ca(2.086%)(,p) 372.8(86.8), 617.5(79.2) 47 Sc 3.345D 48 Ca(0.185%)(,n)- 47 Ca(4.546D)-> 159.4(67.9) 56 Mn 2.58H 55 Mn(100%)(n,) 57 Fe(2.2%)(,p) 846.8(98.9) 87m Sr 2.803H 87 Sr(7.0%)(,’) 88 Sr(82.58%)(,n) 388.5(82.1) Re (Z=75) Stable A(%): 185(37.4), 187(62.6) 183 Re 70.0D 185 Re(,2n) 162.3(23.3) 184 Re 38.0D 185 Re(,n) 111.2(17.14), 252.8(3.02), 641.9(1.94), 769.8(0.67), 792.1(37.5), 894.8(15.6) 903.3(37.9), 1023.(0.52), 1275.(0.12) 186 Re 90.64H 187 Re(,n) 122.6(0.56), 137.2(8.22) 188 Re 16.98H 187 Re(n,) 155.0(14.95) Al cover foil and others 24 Na 14.96H 27 Al(100%)(n,) 1369.(100.) 511 e + + e  -> 511. 40 K 1.28E+9Y 40 K -> 40 Ar+ + 1461.(10.7) 300 600 900 1200 1500 1800 energy (keV) 1 10 100 1000 10000 c o u n ts ju v l Na24Yb 173175 Yb + Tm Na' K 175  511 Tm173 2456 Mn43K Fig. 2. The spectrum of Yb after irradiated bremsstrahlung with Emax = 13.5 MeV In the target of similar mass, but enriched in 176 Yb the daily yield can attain 8 Ci for 175 Yb. 100 200 300 400 energy (keV) 3 5 2 3 5 2 3 5 100 1000 c o u n ts ju v l Tm 173 Yb 175 169Yb Yb K 169 43 175 Yb17587mSrYb 169Yb 175Yb167Tm169Yb 47Sc Fig. 3. The fragment of the low-energy of the same Yb spectrum On a linear accelerator, it is possible to produce up to 30…40 Ci/day 186 Re with high specific activity at energy 40 MeV and current 250 µА (Figs. 4, 5). Note that recoil nuclei are stopped in the acceptor- clinoptilolite from all these reactions 154 Sm(γ,n) 153 Sm, 176 Yb((γ,n) 175 Yb and 187 Re(γ,n) 186 Re. With an electron accelerator, it is possible to achieve a yield of isotopes 153 Sm, 175 Yb, and 186 Re higher activi- ty and without impurities than with reactors and cyclo- trons. For example, the total yield of the production 186 Re at the electron accelerator is 60 µCi/µA year to the ISSN 1562-6016. Problems of Atomic Science and Technology. 2023. № 4(146) 179 reactor  7.5 µCi/µA year [10] and the cyclotron  20 µCi/µA year [11]. 300 600 900 1200 1500 energy (keV) 1 10 100 1000 10000 100000 c o u n ts ju v l Re 186 Re 184 24 Re Na K 184  511 K40 Fig. 4. The spectrum of Re after irradiated bremsstrahlung with Emax = 40 MeV 100 150 200 250 energy (keV) 5 2 3 5 2 3 5 1000 10000 c o u n ts ju v l Re 186 Re 183 184 Re Re 184 188 Re Fig. 5. The fragment of the same spectrum in the region 186 Re lines CONCLUSIONS The possibilities of the photonuclear production of isotopes 153 Sm, 175 Yb, and 186 Re as medical radioiso- topes produced by the reactions 154 Sm(γ,n) 153 Sm, 176 Yb((γ,n) 175 Yb, and 187 Re(γ,n) 186 Re with using Szilard- Chalmers reaction was investigated. The nanoparticles Sm2O3, Yb2O3, ReO2 and clinoptilolite nanoparticles were used the output of isotopes 153 Sm, 175 Yb, and 186 Re. In NSC KIPT on the linear accelerator of electrons, the product of isotopes 153 Sm, 175 Yb, and 186 Re proper- ties suggest for efficient use for pain palliation. These isotopes have been used for more than a decade around the world. REFERENCES 1. A.N. Serafini. Therapy of metastatic bone pain // J. Nucl. Med. 2001, № 42(6), p. 895-906. 2. J.H. Turner. Treatment of painful skeletal metastases // Alasbimn J. Special Issue: 8-th World Congress of Nuclear Medicine. 2002, № 17, sept. 3. J.C. Harbert, W.C. Eckelman, R.D. Neuman. Nucle- ar Medicine. Diagnosis and therapy // Thieme Medi- cal Publishers, Inc New York. 1996. 4. F. Rosch, E. Forssell-Aronsson. Radio-lanthanides in nuclear medicine // Metal Ions and Their Com- plexes. New-York, NY: Marcel Dekker, Inc. 2004, p. 185-190. 5. M.U. Khandaker, H. Haba, N. Otuka, A.R. Usman. Investigation of (d,x) nuclear reaction on natural yt- terbium up to 24 MeV // Nucl. Instr. Meth. Phys. Res. 2014, v. B335, p. 8-18. 6. H. Matsuoka, K. Hashimoto, Y. Hishinuma. Appli- cation of PZC to 188 W/ 188 Re Generators // J. Nucl. Radiochem. Sci. 2005, v. 6, № 3, p. 189-191. 7. S.K. Zeisler, K. Weber. Szilard-Chalmers effect in holmium complexes // J. of Radioanalytical Chemis- try. 1998, v. 227, № 1-2, p. 105-109. 8. N.P. Dikiy, A.N. Dovbnya, Yu.V. Lyashko, et al. Radioactive stability and sorption ability of clinop- tilolite nanoparticles // Problems of Atomic Science and Technology. Series “Nuclear Physics Investiga- tions”. 2015, № 3(64), p. 76-78. 9. International coordinated program on activation analysis of trace elements // Praeger Publisher. New York, 1980, p. 3-34. 10. Manual for Reactor Produced Radioisotopes // IAEA-NECDOC-1340. 2003. 11. E. Rersico, M.L. Bonardi, F. Goppi, et al. Excita- tion-functions and yields for Re-186 production by proton cyclotron irradiation // Proc. of 18 Int. Conf. Cyclotrons and their Application. 2007, p. 248-250. Article received 17.05.2023 МОЖЛИВОСТІ ВИРОБНИЦТВА ІЗОТОПІВ 153 Sm, 175 Yb, 186 Re НА ЕЛЕКТРОННОМУ ПРИСКОРЮВАЧІ М.П. Дикий, М.В. Красносельський, Ю.В. Ляшко, О.П. Медведєва, Д.В. Медведєв, В.Л. Уваров На електронному прискорювачі ННЦ ХФТІ розроблені фотоядерні технології одержання остеотропних ізотопів 153 Sm (Т1/2 = 1,9 доби, Еβ = 0,8 МеВ, Еγ = 103,2 кеВ), 175 Yb (Т1/2 = 4,2 доби, Еβ = 0,5 МеВ, Еγ = 396,3 кеВ) та 186 Re (Т1/2 = 3,8 доби, Еβ = 1,1 МеВ, Еγ = 137,2 кеВ) з використанням наночастинок (50…80 нм) оксидів цих елементів та реакції Сциларда-Чалмерса для підвищення питомої активності. В Україні такі медичні ізотопи не виробляються. Показано, що загальний вихід ізотопів на прискорювачі елек- тронів при опроміненні цих зразків гальмівним випромінюванням з максимальною енергією 40 МеВ і стру- мом 250 µА для 186 Re та 13,5 МеВ і струмом 500 µА для 153 Sm та 175 Yb має такі переваги, як більш високу питому активність, незначний вміст домішок і не потребує іммобілізації радіоактивних відходів у порівнян- ні з реактором та циклотроном.