Ефективний метод виявлення структур залежностей в статистичних даних

Розглянуто проблеми індуктивного виводу (відтворення) структур моделей ймовірнісних залежностей в класі ациклічних орієнтованих графів та в підкласі монопотокових моделей (де кожний цикл має два або більше колайдерів). Досліджено властивості монопотокових моделей. Розроблено метод “Proliferator-C”...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2004
1. Verfasser: Балабанов, О.С.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Інститут програмних систем НАН України 2004
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/2079
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Ефективний метод виявлення структур залежностей в статистичних даних / О.С. Балабанов // Проблеми програмування. — 2004. — N 2,3. — С. 312-319. — Бібліогр.: 18 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Розглянуто проблеми індуктивного виводу (відтворення) структур моделей ймовірнісних залежностей в класі ациклічних орієнтованих графів та в підкласі монопотокових моделей (де кожний цикл має два або більше колайдерів). Досліджено властивості монопотокових моделей. Розроблено метод “Proliferator-C” (узагальнений і вдосконалений варіант метода Chow&Liu), який відтворює структуру монопотокової моделі, спираючись на знання колайдерних змінних та тести умовної незалежності першого порядку, та алгоритм ‘Collifinder’, який ідентифікує всі колайдерні змінні. Порівняно з відомими методами “Proliferator-C” є менш критичним до розміру відборки даних, а за складністю – близький до відомих алгоритмів для лісів (дерев) залежностей.