Рівномірне наближення сумою многочлена й експоненти з точним відтворенням значення функції та її похідної у крайніх точках відрізка

Досліджено властивості рівномірного (чебишовського, мінімаксного) наближення функції сумою многочлена й експоненти з найменшою абсолютною похибкою та точним відтворенням значення функції та її похідної в крайніх точках відрізка. Встановлено достатні умови існування такого рівномірного наближення та...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2008
1. Verfasser: Малачівський, П.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Центр математичного моделювання Інституту прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України 2008
Schriftenreihe:Фізико-математичне моделювання та інформаційні технології
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/21881
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Рівномірне наближення сумою многочлена й експоненти з точним відтворенням значення функції та її похідної у крайніх точках відрізка / П. Малачівський // Фіз.-мат. моделювання та інформ. технології. — 2008. — Вип. 7. — С. 112-124. — Бібліогр.: 8 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Досліджено властивості рівномірного (чебишовського, мінімаксного) наближення функції сумою многочлена й експоненти з найменшою абсолютною похибкою та точним відтворенням значення функції та її похідної в крайніх точках відрізка. Встановлено достатні умови існування такого рівномірного наближення та запропоновано алгоритм для визначення його параметрів за схемою Ремеза.