Theory of integral acoustoelasticity for 3-D stress-strained state
Starting with the model of small elastic disturbance in a non-uniformly strained body and taking into account the weakness of the body’s acoustical inhomogeneity and anisotropy induced by strain, a theory for integral acoustoelasticity has been developed in the paper. The theory establishes mathemat...
Gespeichert in:
Datum: | 2010 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Центр математичного моделювання Інституту прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України
2010
|
Schriftenreihe: | Фізико-математичне моделювання та інформаційні технології |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/22469 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Theory of integral acoustoelasticity for 3-D stress-strained state / V. Chekurin // Фіз.-мат. моделювання та інформ. технології. — 2010. — Вип. 12. — С. 179-188. — Бібліогр.: 7 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | Starting with the model of small elastic disturbance in a non-uniformly strained body and taking into account the weakness of the body’s acoustical inhomogeneity and anisotropy induced by strain, a theory for integral acoustoelasticity has been developed in the paper. The theory establishes mathematical models for interaction of narrow longitudinally and transversally polarized ultrasonic beams with 3-D strain field in the body. Ray integrals of acoustoelasticity have been established with the use of the model. These relationships connect measured phase parameters of longitudinally and transversally polarized ultrasonic beams, crossing the body in any direction, with integrals of initial strain distribution along this direction. They can be used to formulate problems for tomography of the body’s stress-strained state. |
---|