Environmental impact of utilizing coal mining waste forroad construction

Польша и Украина являются крупнейшими мировыми производителями каменного угля. В среднем на каждую тонну добытого угля образуется приблизительно 0,35 т отходов. Хотя отходы каменноугольной промышленности не принадлежат к опасным отходам, они способны долгое время загрязнять окружающую среду вследств...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Stefaniak, S., Twardowska, I.
Формат: Стаття
Мова:English
Опубліковано: Фізико-хімічний інститут ім. О.В. Богатського НАН України 2006
Назва видання:Актуальні проблеми транспортної медицини
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/22769
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Environmental impact of utilizing coal mining waste forroad construction / S. Stefaniak, I. Twardowska // Актуальні проблеми транспортної медицини. — 2006. — № 1. — С. 78-84. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-22769
record_format dspace
spelling irk-123456789-227692011-06-30T12:21:11Z Environmental impact of utilizing coal mining waste forroad construction Stefaniak, S. Twardowska, I. Экогигиена Польша и Украина являются крупнейшими мировыми производителями каменного угля. В среднем на каждую тонну добытого угля образуется приблизительно 0,35 т отходов. Хотя отходы каменноугольной промышленности не принадлежат к опасным отходам, они способны долгое время загрязнять окружающую среду вследствие высокого содержания сульфидов и хлоридов; в то же самое время, они — ценный строительный материал, широко используемый в гражданском строительстве. Из 35,8 Мт отходов, образующихся в Польше ежегодно, примерно 35 Мт, то есть 98 %, использовались как материал в строительных и дорожных работах. В то же время, широкое использование отходов каменноугольной промышленности приводит к загрязнению значительных территорий, а также воды и атмосферного воздуха. Статья посвящена рассмотрению взаимосвязи использования отходов каменноугольной промышленности в дорожном строительстве и качества природных вод, а также профилактическим мероприятиям, направленным на исправление складывающейся экологической ситуации. Польща і Україна є найбільшими світовими виробниками кам'яного вугілля. В середньому на кожну тонну здобутого вугілля утворюється приблизно 0,35 т відходів. Хоча відходи кам'яновугільної промисловості не належать до небезпечних відходів, вони здатні довгий час забруднювати оточуюче середовище внаслідок високого вмісту сульфідів і хлоридів; в той же самий час, вони — цінний будівельний матеріал, що широко використовується в громадському будівництві. З 35,8 Мт відходів, що утворюються в Польщіі щорічно, приблизно 35 Мт, тобто 98 %, використовувалися як матеріал в будівельних і дорожніх роботах. В той же час, широке використання відходів кам'яновугільної промисловості приводить до забруднення значних територій, а також води і атмосферного повітря. Стаття присвячена розгляду взаємозв'язку використовування відходів кам'яновугільної промисловості в дорожньому будівництві і якості природних вод, а також профілактичним заходам, спрямованим на виправлення екологічної ситуації. 2006 Article Environmental impact of utilizing coal mining waste forroad construction / S. Stefaniak, I. Twardowska // Актуальні проблеми транспортної медицини. — 2006. — № 1. — С. 78-84. — Бібліогр.: 13 назв. — англ. 1818-9385 http://dspace.nbuv.gov.ua/handle/123456789/22769 502.57:622.2:625.7/.8 en Актуальні проблеми транспортної медицини Фізико-хімічний інститут ім. О.В. Богатського НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Экогигиена
Экогигиена
spellingShingle Экогигиена
Экогигиена
Stefaniak, S.
Twardowska, I.
Environmental impact of utilizing coal mining waste forroad construction
Актуальні проблеми транспортної медицини
description Польша и Украина являются крупнейшими мировыми производителями каменного угля. В среднем на каждую тонну добытого угля образуется приблизительно 0,35 т отходов. Хотя отходы каменноугольной промышленности не принадлежат к опасным отходам, они способны долгое время загрязнять окружающую среду вследствие высокого содержания сульфидов и хлоридов; в то же самое время, они — ценный строительный материал, широко используемый в гражданском строительстве. Из 35,8 Мт отходов, образующихся в Польше ежегодно, примерно 35 Мт, то есть 98 %, использовались как материал в строительных и дорожных работах. В то же время, широкое использование отходов каменноугольной промышленности приводит к загрязнению значительных территорий, а также воды и атмосферного воздуха. Статья посвящена рассмотрению взаимосвязи использования отходов каменноугольной промышленности в дорожном строительстве и качества природных вод, а также профилактическим мероприятиям, направленным на исправление складывающейся экологической ситуации.
format Article
author Stefaniak, S.
Twardowska, I.
author_facet Stefaniak, S.
Twardowska, I.
author_sort Stefaniak, S.
title Environmental impact of utilizing coal mining waste forroad construction
title_short Environmental impact of utilizing coal mining waste forroad construction
title_full Environmental impact of utilizing coal mining waste forroad construction
title_fullStr Environmental impact of utilizing coal mining waste forroad construction
title_full_unstemmed Environmental impact of utilizing coal mining waste forroad construction
title_sort environmental impact of utilizing coal mining waste forroad construction
publisher Фізико-хімічний інститут ім. О.В. Богатського НАН України
publishDate 2006
topic_facet Экогигиена
url http://dspace.nbuv.gov.ua/handle/123456789/22769
citation_txt Environmental impact of utilizing coal mining waste forroad construction / S. Stefaniak, I. Twardowska // Актуальні проблеми транспортної медицини. — 2006. — № 1. — С. 78-84. — Бібліогр.: 13 назв. — англ.
series Актуальні проблеми транспортної медицини
work_keys_str_mv AT stefaniaks environmentalimpactofutilizingcoalminingwasteforroadconstruction
AT twardowskai environmentalimpactofutilizingcoalminingwasteforroadconstruction
first_indexed 2025-07-03T01:02:16Z
last_indexed 2025-07-03T01:02:16Z
_version_ 1836585622560571392
fulltext АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ № 1 (3), 2006 г. 7878787878 ACTUAL PROBLEMS OF TRANSPORT MEDICINE # 1 (3), 2006 логия» (ЭКВАТЭК&2004) & М.: Сибико Инт. & 2004.& с.467. РезюмеРезюмеРезюмеРезюмеРезюме МОНІТОРИНГ ЯКОСТІ ВОДИ В ЛОКАЛЬНИХ ВОДООЧИСНИХ УСТАНОВКАХ Петренко Н.Ф., Винницька О.Л., Лагода О.В., Андрейцова Н.И., Дмитрієва Т.Н. У роботі представлені результати по& рівняльної ефективності очищення води централізованого господарсько&питного водопостачання м. Одеси в 8 пунктах екс& плуатації ВОУ за період 2004 р. & перший квартал 2005 р. Показано, що вживання ВОУ колек& тивного користування, технологія очищен& ня яких включає механічну фільтрацію, ад& сорбцію на АУ, ін., для додаткового очищен& ня води централізованого господарсько& питного водопостачання дозволяє видаля& ти з неї залишковий хлор, хлорфеноли і ін. хлорорганічні сполуки (зниження значення ПО), катіони заліза; одержувати питну воду із сприятливими органолептичними власти& востями. SummarySummarySummarySummarySummary MONITORING OF QUALITY OF WATER IN LOCAL WATER&PURIFYING INSTALLATIONS. Petrenko N.F., Vinnitskaya E.L., Lagoda O.V., Andrejtsova N.I., Dmitrieva T.N. In the work they present the results of comparative study of the efficiency of water treating of the centralized economic & drinking water supply of Odessa in 8 points ВОУ operation in 2004 & the first quarter 2005. Application of ВОУ for common use which technology of clearing includes a mechanical filtration, adsorption on АУ, etc. for additional water treating of the centralized economic & drinking water supply allows. To delete from it residual chlorine, chlorphenoles, and other chlororganic substances (decrease of ПО value), iron cations. To receive potable water with favorable organoleptic properties. Экогигиена Ecohygiene IntrIntrIntrIntrIntroductionoductionoductionoductionoduction Coal mining waste generation and use Poland and Ukraine belong to the world’s major producers of hard coal, holding in 2004 8th position with 100.4 Mt/ yr and 10th position with 56.8 Mt/yr , respectively (WCI, 2004). For every ton of coal output, about 0.35 t waste has been generated (mean value). In these countries, coal mining waste rock comprise thus one of the biggest groups of waste (in Poland, 35.8 Mt of coal mining waste, i.e. 30% of total was generated in 2004) (GUS, 2004). In the EU, waste from the extractive industries amounts to about 29% of total waste generated in the EU each year, with an annual volume over 400 million tons (EEA, 1993&2005). In the EU member states, coal mining waste is considered a valuable construction material widely util ized in civil engineering as fi l l and earthworks material, also in transport engineering structures: as a road base and sub&base, for highway and railway embankments, leveling of parking lots, harbor constructions etc. Also in Poland, roughly 35 Mt, i.e. 98%, has been utilized for these purposes in 2004 (GUS, 2004). Legislation on environmental protection aspects of waste management In the EU Member States, use of industrial waste in civil engineering is standardized and normalized with respect to technical parameters (e.g. British Standards BS882, 1992; BS3797, 1990; BS 1047, 1983; BS6543, 1985; BS 5328, 1991, BS УДК 502.57:622.2:625.7/.8 ENVIRONMENTENVIRONMENTENVIRONMENTENVIRONMENTENVIRONMENTAL IMPAL IMPAL IMPAL IMPAL IMPACT OF UTILIZING COAL MINING WACT OF UTILIZING COAL MINING WACT OF UTILIZING COAL MINING WACT OF UTILIZING COAL MINING WACT OF UTILIZING COAL MINING WASTE FORASTE FORASTE FORASTE FORASTE FOR ROAD CONSTRUCTIONROAD CONSTRUCTIONROAD CONSTRUCTIONROAD CONSTRUCTIONROAD CONSTRUCTION Sebastian Stefaniak and IrSebastian Stefaniak and IrSebastian Stefaniak and IrSebastian Stefaniak and IrSebastian Stefaniak and Irena Tena Tena Tena Tena Twarwarwarwarwardowskadowskadowskadowskadowska Polish Academy of Sciences, Institute of Environmental Engineering, 34 M. Sklodowska&Curie St., 41&819 Zabrze, Poland ACTUAL PROBLEMS OF TRANSPORT MEDICINE # 1 (3), 2006 АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ № 1 (3), 2006 г. 7979797979 3892, 1982; BS12, 1991; BS146, 1991; BS4246, 1991; German BAST&E9,1971; FGSV 616/2, 1984; Dutch WKE&N& 78163,1965; WKE&R&78156, 1982, SVC Normen en Proefvoorschriften 1992, Bouwstoffenbesluit, Staatscourant 1991). Adaptation of the EU legislation on the environmental aspects of waste management by the European countries, both by member states and candidates, has greatly contributed to harmonization of national legislation and integration of environment&related waste management policy. The framework EU waste legislation in force is based on three major documents with amendments: (1) Directive 75/442/EEC on waste, as amended by Directives 91/ 156/EEC, 91/692/EEC and Commission Decision 96/350/EC; (2) Directive 91/689/ EEC on hazardous waste, as amended; (3) Decision 2000/532/EC establishing a list of waste, as amended, the latest amendment by Council Decision 2001/573/EEC. In addition to these documents, the EU policies on waste comprise numerous regulations concerning specific waste streams, both in force and in preparation. The EU legislation in preparation includes the proposal for a Directive on the management of waste from the extractive industries, in this of coal mining wastes (COM, 2003). Following this proposal, the European Standardization Committee, Technical Committee 292 “Characterization of Waste” has undertaken works on developing standards on environment impact&related testing waste from the extractive industry and established a working group on Mining waste in CEN/TC 292 (2005). The EU legislation on waste was adopted also by Polish environmental regulations, (e.g. Polish Act on waste, 2001, and other legislative documents), which cover also relevant regulations concerning water protection (Directives of Minister of Environment, 2002, 2004a,b). Environmental impacts associated with coal mining wastes According to the EU list of waste (2000), coal mining wastes do not belong to hazardous waste. Though, they are also not environmentally neutral, the major issues being related to water pollution due the formation of leachates, in particular of acid rock drainage (ARD) that occurs as a result of sulfide&rich mining waste material exposure to atmospheric oxygen and water. An extent of adverse environmental impact on the water quality depends upon the content of soluble substances, sulfides, their reactivity, buffering capacity of a rock material, as well as waste granulation that influence the conditions of water percolation and air penetration into waste rock layer. In the case of mining waste reuse, the major problem consists in the difficulty of a reliable environmental impact assessment (EIA) related to long&term pollutants release from wastes and evaluation of a risk exerted by these wastes in specific constructions such e.g. as railway or highway embankments and other engineering constructions used for transport&related purposes. Long&term EIA became thus the major criterion of coal mining waste management. The aim of the presented study is to illustrate the temporal transformations occurring in the coal mining waste layer as a result of technological processes of re& extraction, transport and deposition of waste at the place of destination according to the reuse purpose (railway or highway embankment, road sub&base, ground leveling etc), exemplified in coal mining wastes that originate from coal mining waste dumps, and the impact of these processes on ground water quality. Material and MethodsMaterial and MethodsMaterial and MethodsMaterial and MethodsMaterial and Methods CharCharCharCharCharacteristics of studied objectsacteristics of studied objectsacteristics of studied objectsacteristics of studied objectsacteristics of studied objects For studies, coal mining wastes from two dumping sites: Anna coal mine in Bukуw and Szczyglowice coal mine in Smolnica comminities (Upper Silesia, Poland) were selected. At the Bukуw dump (site I) coal mining waste rock from coal seams of 600 and 700 groups of Namurian A carboniferous formation was disposed since 1976. The wastes consisted mainly of coarse&grained washery discards (93.7%) that was a hard material resistant to particle size degradation due to wetting and effect of other atmospheric factors. These waste showed moderate chloride salinity (0.01%) АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ № 1 (3), 2006 г. 8080808080 ACTUAL PROBLEMS OF TRANSPORT MEDICINE # 1 (3), 2006 and were relatively high&buffered: their neutralization capacity exceeded acid generation capacity 2.37 times (in equivalent units). At the Smolnica dump (site II) coal mining waste from coal seams of 300 and 400 groups that consisted mainly from shale and mudstone of Westphalian A, B and Namurian C carboniferous formations was disposed. Minor, but environmentally important components of waste are iron sulfides (pyrite, markasite) responsible for ARD generation due to ARD generation as a result of sulfide reaction with oxygen and moisture, and Ca&Mg carbonates (calcite, dolomite), which are buffering agents preventing from the rock acidification provided that they are available in sufficient amount, i.e. that ARD generation potential/ buffering capacity e” 3.0. Another factor of importance with respect to pollution potential of waste rock to water is chloride salinity, fairly high in some coal seams (Szczepaсska and Twardowska, 2005). At both dumping sites, residual coal extraction by physical methods was carried out. Technology of waste rock re&extraction from coal mining dump for obtaining material for road/railways construction comprised excavation of a rock deposited at the dump, its transport, often size reduction and finally deposition at the destination place. As a result, the waste layers were disturbed and exposed to the atmospheric impacts, including water and air. As a result of weathering processes, in the waste rock the pollutants are generated, released and transported with infiltrating water to ground water causing degradation of its quality to the level rendering it unfit to any use. MethodsMethodsMethodsMethodsMethods At the studied coal mining waste sites, the vertical drillings through the waste dumps were conducted to the depth 10&15 m, and rock material from the subsequent layers was collected and transported to the laboratory in tightly closed plastic bags in order to prevent from the moisture loss. In the laboratory, pore solution from the rock samples was extracted by pressure method and analyzed for chemical composition by ICP&MS (Perkin&Elmer Elan). In parallel, samples of ground water up&gradient and down&gradient of the dumps were also taken and analyzed. Vertical transformation of pore solution due to contaminants leaching and re&distribution of loads in the infiltration water stream in the studied dumps along Fig. 1 Hydrogeochemical profile along the borehole A (Buków dump) ACTUAL PROBLEMS OF TRANSPORT MEDICINE # 1 (3), 2006 АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ № 1 (3), 2006 г. 8181818181 with the impact of leached loads on the ground water quality down&gradient of the dump was evaluated. The studies were focused on three major processes: chloride leaching, and ARD generation and buffering, which determine the pollution potential from coal miming waste to ground waters. These studies simulated the processes occurring in the engineering constructions for transport purposes performed with use of coal mining wastes. Results and DiscussionResults and DiscussionResults and DiscussionResults and DiscussionResults and Discussion Pore solution along the non&disturbed profile of coal mining waste at Bukуw dump 9&19 years’ after deposition showed high degree of washing chlorides out from the upper layer of waste 9&15 years after rock deposition and proceeding intensive sulfide oxidation within the waste layer (Fig 1). The older bottom part of the waste rock up to 19 years old due to the lesser water exchange rate and vertical load redistribution displayed characteristic downward increase of SO 4 2& concentrations and thus also increase of pollution potential to ground waters. Hydrogeochemical composition of pore solutions changed downward from SO 4 &Na&Ca in the upper part of the waste layer profile to SO 4 &Ca&Na&Mg, SO 4 &Na&Ca&Mg or SO 4 &Mg&Na&Ca. Neutral or slightly alkaline pH 7&8 values were an evidence of sufficient buffering properties, thus maximum concentrations of SO 4 2& up to 3850 mg dm&3 were limited by equilibrium with gypsum. Under these conditions, also trace metal release was low; in the highest concentrations Sr (up to 4 mg dm&3) and Mn (up to 3.52 mg dm&3) occurred; also Fe, Zn, Cu and Li were present in the detectable, but permissible concentrations. Ion concentration pattern along the BI and BII profiles (Bukow) displayed a significant impact of re&extraction and disturbance of waste material on the hydrogeochemical conditions in the waste body that determined a pattern of contaminant release from the wastes. Compared to waste in non&disturbed layer, increase of hydraulic conductivity, porosity and bulk density of material was observed, along with increase of moisture content and therefore of an infiltration flow rate (Fig 2). Also substantial changes of leaching dynamics occurred that indicated the “re& activation” of contaminant mobilization (intensification of generation and leaching of contaminants from the older waste, mainly sulfates, but also chlorides as a result of rock grain size reduction, re& exposure to atmospheric conditions and material admixing). Besides of significant increase of concentrations and loads of macro&contaminants in pore solutions after re&deposition, the disturbance of the initial pattern of a vertical redistribution downward Fig. 2 Hydrogeochemical profile along the borehole BI (Buków dump) АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ № 1 (3), 2006 г. 8282828282 ACTUAL PROBLEMS OF TRANSPORT MEDICINE # 1 (3), 2006 the profile was observed: re&deposited waste displayed either inverse pattern, i.e. occurrence of the highest concentrations of constituents at the upper part of the profile, which was characteristic for the freshly deposited material (Fig.2), or generally uniform concentrations of constituents along the profile. Due to satisfactory level of waste buffering and slightly alkaline pH value of pore solutions, trace metals were not susceptible to release, nevertheless in pore solutions of re&extracted wastes the concentrations of some trace elements appeared to be elevated (Tl, Li, Ba, Al, Mn), up to the values exceeding standards for drinking water (Ni), along with mobilization of toxic elements occurring in the anionic form (B, Mo). Low buffering ratio of waste from Smolnica coal mining waste dump (buffering capacity to ARD generation ratio of 0.68&0.71), opposite to relatively well& buffered material from Bukow dumping site, results in a gradual acidification of the rock material. Reactivity of sulfides in this material is characterized by half& period of sulfide decomposition t 05 = 1440 days. The acidification of a material, in particular in the surface layers, has been observed already in 10 years after waste deposition. Process of acidification along with the vertical redistribution of contaminant concentrations downward the profile causes adverse temporal transformations of waste and pore solutions lasting for decades (Szczepaсska and Twardowska, 2005). Acidification process in the studied waste profile was characterized by the domination of sulfate anions equilibrated mainly by Na+ and Mg2+ cations (Fig. 3). Additional threat to the aquatic environment, besides high sulfate concentrations in this phase, exerted mobilization of trace elements at pH<5 from waste matrix and the underlying soil in the vadose zone. The local monitoring of ground waters in the vicinity of coal mining waste dumps illustrates changes of water quality down& gradient of the dump. Re&extraction and re& disposal of waste exerted the strongest impact on the sulfate mineralization level due to “activation” of waste in a technological process. Generation and leaching of dissolved constituents from coal mining waste resulted in multiple increase in ground waters of dissolved substances (conductivity), sulfates, chlorides and in acid waters also of heavy metals, in particular Zn, Ni and Cd that made these waters unfit to any use and in the reported cases caused closing the local wells and forsed a need of a distant water supply for the affected communities (Table 1). Fig. 3 Hydrogeochemical profile along the borehole SI (Smolnica dump) ACTUAL PROBLEMS OF TRANSPORT MEDICINE # 1 (3), 2006 АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ № 1 (3), 2006 г. 8383838383 ConclusionsConclusionsConclusionsConclusionsConclusions An observation of hydrogeochemical transformations occurring in the vertical profile of coal mining waste resulting from their re&extraction and re&deposition showed significant changes of infiltration water parameters in a waste layer. Re& extraction appears to have the strongest effect on the increase of hydraulic conductivity, porosity and bulk density of the material, and on the contact of material with the environmental factors (atmospheric air, water) that favor the generation and mobilization of contaminants. Due to these changes, the “activation” of generation and leaching of contaminants from the older wastes has been observed. As a result of disturbance of the initial positioning of waste along the waste profile, pore solution in re&deposited wastes display the pattern inverse to that in undisturbed old waste layers, i.e. occurrence of the highest concentrations of constituents in the upper part of the profile. These waste, which due to occurrence of sulfides display a long& term pollution potential lasting for decades and often show the time&delayed maximum adverse effect to the aquatic environment, are sensitive to the impact of both natural and anthropogenic factors that should be taken into consideration at using this material for road, highways and railway embankments construction and other engineering constructions for transport needs. In particular, adequate compaction, drainage and insulation against air penetration should be provided (Twardowska et al., 2005). ReferReferReferReferReferencesencesencesencesences Act on Waste of 27 April 2001, Dz.U. 01.62.628, 2001 (in Polish). CEN/TC 292: Resolution 503 of the 20th meeting of CEN/TC 292 in Vienna on the establishment of a new working group WG 8 on Mining waste. Title: Wastes from the extractive industry. Document N794, 2005. COM (2003) 0319: Proposal for a Directive of the European Parliament and of the Council on the management of waste from the extractive industries. http:// e u r o p a . e u . i n t / e u r & l e x / e n / c o m / re g / en_register_15103030.html Directive of the Minister of Environment of 9 November 2002 on the scope, time, methods and conditions of conducting monitoring of waste landfills. Dz.U.02.220.1858, 2002 (in Polish). Directive of the Minister of Environment of 11 February 2004 on the classification for presenting state of surface and ground waters, methods of conducting monitoring and methods of interpretation of results and presentation of state of these waters. Dz.U.04.32.284, 2004a (in Polish). Directive of the Minister of Environment of 8 July 2004 on the conditions to be fulfilled at waste discharge to water and soil and on the substances particularly harmful for the environment. Dz.U.04.168.1763, 2004b (in Polish). EC: Decision 2000/532/EC Table 1 Selected ground water quality parameters down-gradient of coal mining waste dumps. (P2,…P5B, S-3 – monitoring wells) SMOLNICA coal mining waste dump pH Conductivity [μS/cm] SO4 [mg/dm3] Cl [mg/dm3] P2 P3 P4 P2 P3 P4 P2 P3 P4 P2 P3 P4 1994 4.70 5.52 7.10 4620 3270 15080 1738 1013 2329 636 754 3498 2004 2.49 5.09 6.45 5460 5690 12230 2320 1873 6647 598 833 637 BUKÓW coal mining waste dump pH Conductivity [μS/cm] SO4 [mg/dm3] Cl [mg/dm3] P4B P5B S-3 P4B P5B S-3 P4B P5B S-3 P4B P5B S-3 1998 7.06 6.98 6.56 4180 7573 3505 318 6427 2449 184 2020 617 2004 6.57 6.82 6.79 4000 4007 4190 1221 3386 2159 549 588 163 АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ № 1 (3), 2006 г. 8484848484 ACTUAL PROBLEMS OF TRANSPORT MEDICINE # 1 (3), 2006 establishing a list of waste, as amended, the latest amendment by Council Decision 2001/573/EEC, 2000. EEA – European Environment Agency, 1993& 2005, h t t p : / / t h e m e s . e e a . e u . i n t / Environmental_issues/waste/indicators EEC: Directive 75/442/EEC on waste as amended by Directive 91/156/EEC, Directive 91/692/EC and Commission Decision 96/350/EC. EEC: Directive 91/689/EEC on hazardous waste, as amended, 1991. GUS – Central Statistical Office: Environment Protection 2004. Information and Statistical Studies. Statistical Publishing Establishment, Warsaw 2004, pp. 508 (in Polish). Szczepaсska, J., and Twardowska, I: Mining waste, pp.319&385. In Solid Waste: Assessment, Monitoring and Remediation (I. Twardowska, H.E. Allen, A.A.F. Kettrup and W.J. Lacy, eds.) Elsevier, Amsterdam& Boston&Heidelberg&London&New York& Oxford&Paris&San Diego&San Francisco& Singapore&Sydney&Tokyo, 2005. Twardowska I., Stefaniak, S., and Szczepaсska, J. High&volume mining waste disposal, pp. 865&910. In Solid Waste: Assessment, Monitoring and Remediation (I. Twardowska, H.E. Allen, A.A.F. Kettrup and W.J. Lacy, eds.) Elsevier, Amsterdam& Boston&Heidelberg&London&New York& Oxford&Paris&San Diego&San Francisco& Singapore&Sydney&Tokyo, 2005. WCI : Key coal statistics for 2004. Ecoal, 51:8 (October 2004) РезюмеРезюмеРезюмеРезюмеРезюме ВЛИЯНИЕ ПРИМЕНЕНИЯ ОТХОДОВ УГЛЕДОБЫВАЮЩЕЙ ПРОМЫШЛЕННОСТИ В ДОРОЖНОМ СТРОИТЕЛЬСТВЕ НА ОКРУЖАЮЩУЮ СРЕДУ Себастьян Стефаньяк, Ирена Твардовская Польша и Украина являются круп& нейшими мировыми производителями каменного угля. В среднем на каждую тонну добытого угля образуется прибли& зительно 0,35 т отходов. Хотя отходы ка& менноугольной промышленности не при& надлежат к опасным отходам, они спо& собны долгое время загрязнять окружа& ющую среду вследствие высокого содер& жания сульфидов и хлоридов; в то же самое время, они — ценный строитель& ный материал, широко используемый в гражданском строительстве. Из 35,8 Мт отходов, образующихся в Польше еже& годно, примерно 35 Мт, то есть 98 %, использовались как материал в строи& тельных и дорожных работах. В то же время, широкое использование отходов каменноугольной промышленности при& водит к загрязнению значительных тер& риторий, а также воды и атмосферного воздуха. Статья посвящена рассмотре& нию взаимосвязи использования отходов каменноугольной промышленности в до& рожном строительстве и качества при& родных вод, а также профилактическим мероприятиям, направленным на исправ& ление складывающейся экологической ситуации. РезюмеРезюмеРезюмеРезюмеРезюме ВПЛИВ ВИКОРИСТАННЯ ВІДХОДІВ КАМ’ЯНОВУГІЛЬНОЇ ПРОМИСЛОВОСТІ В ДОРОЖНЬОМУ БУДІВНИЦТВІ НА ОТОЧУЮЧЕ СЕРЕДОВИЩЕ Себастіан Стефаніак, Ірена Твардовська Польща і Україна є найбільшими світовими виробниками кам’яного вугіл& ля. В середньому на кожну тонну здобу& того вугілля утворюється приблизно 0,35 т відходів. Хоча відходи кам’яновугільної промисловості не належать до небезпеч& них відходів, вони здатні довгий час заб& руднювати оточуюче середовище внасл& ідок високого вмісту сульфідів і хлоридів; в той же самий час, вони — цінний буді& вельний матеріал, що широко використо& вується в громадському будівництві. З 35,8 Мт відходів, що утворюються в Польщіі щорічно, приблизно 35 Мт, тобто 98 %, використовувалися як матеріал в будівельних і дорожніх роботах. В той же час, широке використання відходів кам’& яновугільної промисловості приводить до забруднення значних територій, а також води і атмосферного повітря. Стаття при& свячена розгляду взаємозв’язку викори& стовування відходів кам’яновугільної про& мисловості в дорожньому будівництві і якості природних вод, а також профілак& тичним заходам, спрямованим на вип& равлення екологічної ситуації.