Environmental impact of utilizing coal mining waste forroad construction
Польша и Украина являются крупнейшими мировыми производителями каменного угля. В среднем на каждую тонну добытого угля образуется приблизительно 0,35 т отходов. Хотя отходы каменноугольной промышленности не принадлежат к опасным отходам, они способны долгое время загрязнять окружающую среду вследств...
Збережено в:
Дата: | 2006 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-хімічний інститут ім. О.В. Богатського НАН України
2006
|
Назва видання: | Актуальні проблеми транспортної медицини |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/22769 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Environmental impact of utilizing coal mining waste forroad construction / S. Stefaniak, I. Twardowska // Актуальні проблеми транспортної медицини. — 2006. — № 1. — С. 78-84. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-22769 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-227692011-06-30T12:21:11Z Environmental impact of utilizing coal mining waste forroad construction Stefaniak, S. Twardowska, I. Экогигиена Польша и Украина являются крупнейшими мировыми производителями каменного угля. В среднем на каждую тонну добытого угля образуется приблизительно 0,35 т отходов. Хотя отходы каменноугольной промышленности не принадлежат к опасным отходам, они способны долгое время загрязнять окружающую среду вследствие высокого содержания сульфидов и хлоридов; в то же самое время, они — ценный строительный материал, широко используемый в гражданском строительстве. Из 35,8 Мт отходов, образующихся в Польше ежегодно, примерно 35 Мт, то есть 98 %, использовались как материал в строительных и дорожных работах. В то же время, широкое использование отходов каменноугольной промышленности приводит к загрязнению значительных территорий, а также воды и атмосферного воздуха. Статья посвящена рассмотрению взаимосвязи использования отходов каменноугольной промышленности в дорожном строительстве и качества природных вод, а также профилактическим мероприятиям, направленным на исправление складывающейся экологической ситуации. Польща і Україна є найбільшими світовими виробниками кам'яного вугілля. В середньому на кожну тонну здобутого вугілля утворюється приблизно 0,35 т відходів. Хоча відходи кам'яновугільної промисловості не належать до небезпечних відходів, вони здатні довгий час забруднювати оточуюче середовище внаслідок високого вмісту сульфідів і хлоридів; в той же самий час, вони — цінний будівельний матеріал, що широко використовується в громадському будівництві. З 35,8 Мт відходів, що утворюються в Польщіі щорічно, приблизно 35 Мт, тобто 98 %, використовувалися як матеріал в будівельних і дорожніх роботах. В той же час, широке використання відходів кам'яновугільної промисловості приводить до забруднення значних територій, а також води і атмосферного повітря. Стаття присвячена розгляду взаємозв'язку використовування відходів кам'яновугільної промисловості в дорожньому будівництві і якості природних вод, а також профілактичним заходам, спрямованим на виправлення екологічної ситуації. 2006 Article Environmental impact of utilizing coal mining waste forroad construction / S. Stefaniak, I. Twardowska // Актуальні проблеми транспортної медицини. — 2006. — № 1. — С. 78-84. — Бібліогр.: 13 назв. — англ. 1818-9385 http://dspace.nbuv.gov.ua/handle/123456789/22769 502.57:622.2:625.7/.8 en Актуальні проблеми транспортної медицини Фізико-хімічний інститут ім. О.В. Богатського НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Экогигиена Экогигиена |
spellingShingle |
Экогигиена Экогигиена Stefaniak, S. Twardowska, I. Environmental impact of utilizing coal mining waste forroad construction Актуальні проблеми транспортної медицини |
description |
Польша и Украина являются крупнейшими мировыми производителями каменного угля. В среднем на каждую тонну добытого угля образуется приблизительно 0,35 т отходов. Хотя отходы каменноугольной промышленности не принадлежат к опасным отходам, они способны долгое время загрязнять окружающую среду вследствие высокого содержания сульфидов и хлоридов; в то же самое время, они — ценный строительный материал, широко используемый в гражданском строительстве. Из 35,8 Мт отходов, образующихся в Польше ежегодно, примерно 35 Мт, то есть 98 %, использовались как материал в строительных и дорожных работах. В то же время, широкое использование отходов каменноугольной промышленности приводит к загрязнению значительных территорий, а также воды и атмосферного воздуха. Статья посвящена рассмотрению взаимосвязи использования отходов каменноугольной промышленности в дорожном строительстве и качества природных вод, а также профилактическим мероприятиям, направленным на исправление складывающейся экологической ситуации. |
format |
Article |
author |
Stefaniak, S. Twardowska, I. |
author_facet |
Stefaniak, S. Twardowska, I. |
author_sort |
Stefaniak, S. |
title |
Environmental impact of utilizing coal mining waste forroad construction |
title_short |
Environmental impact of utilizing coal mining waste forroad construction |
title_full |
Environmental impact of utilizing coal mining waste forroad construction |
title_fullStr |
Environmental impact of utilizing coal mining waste forroad construction |
title_full_unstemmed |
Environmental impact of utilizing coal mining waste forroad construction |
title_sort |
environmental impact of utilizing coal mining waste forroad construction |
publisher |
Фізико-хімічний інститут ім. О.В. Богатського НАН України |
publishDate |
2006 |
topic_facet |
Экогигиена |
url |
http://dspace.nbuv.gov.ua/handle/123456789/22769 |
citation_txt |
Environmental impact of utilizing coal mining waste forroad construction / S. Stefaniak, I. Twardowska // Актуальні проблеми транспортної медицини. — 2006. — № 1. — С. 78-84. — Бібліогр.: 13 назв. — англ. |
series |
Актуальні проблеми транспортної медицини |
work_keys_str_mv |
AT stefaniaks environmentalimpactofutilizingcoalminingwasteforroadconstruction AT twardowskai environmentalimpactofutilizingcoalminingwasteforroadconstruction |
first_indexed |
2025-07-03T01:02:16Z |
last_indexed |
2025-07-03T01:02:16Z |
_version_ |
1836585622560571392 |
fulltext |
АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ № 1 (3), 2006 г.
7878787878
ACTUAL PROBLEMS OF TRANSPORT MEDICINE # 1 (3), 2006
логия» (ЭКВАТЭК&2004) & М.: Сибико
Инт. & 2004.& с.467.
РезюмеРезюмеРезюмеРезюмеРезюме
МОНІТОРИНГ ЯКОСТІ ВОДИ В
ЛОКАЛЬНИХ ВОДООЧИСНИХ
УСТАНОВКАХ
Петренко Н.Ф., Винницька О.Л., Лагода
О.В., Андрейцова Н.И., Дмитрієва Т.Н.
У роботі представлені результати по&
рівняльної ефективності очищення води
централізованого господарсько&питного
водопостачання м. Одеси в 8 пунктах екс&
плуатації ВОУ за період 2004 р. & перший
квартал 2005 р.
Показано, що вживання ВОУ колек&
тивного користування, технологія очищен&
ня яких включає механічну фільтрацію, ад&
сорбцію на АУ, ін., для додаткового очищен&
ня води централізованого господарсько&
питного водопостачання дозволяє видаля&
ти з неї залишковий хлор, хлорфеноли і ін.
хлорорганічні сполуки (зниження значення
ПО), катіони заліза; одержувати питну воду
із сприятливими органолептичними власти&
востями.
SummarySummarySummarySummarySummary
MONITORING OF QUALITY OF WATER IN
LOCAL WATER&PURIFYING INSTALLATIONS.
Petrenko N.F., Vinnitskaya E.L., Lagoda
O.V., Andrejtsova N.I., Dmitrieva T.N.
In the work they present the results of
comparative study of the efficiency of water
treating of the centralized economic & drinking
water supply of Odessa in 8 points ВОУ
operation in 2004 & the first quarter 2005.
Application of ВОУ for common use which
technology of clearing includes a mechanical
filtration, adsorption on АУ, etc. for additional
water treating of the centralized economic &
drinking water supply allows. To delete from
it residual chlorine, chlorphenoles, and other
chlororganic substances (decrease of ПО
value), iron cations. To receive potable water
with favorable organoleptic properties.
Экогигиена Ecohygiene
IntrIntrIntrIntrIntroductionoductionoductionoductionoduction
Coal mining waste generation and use
Poland and Ukraine belong to the
world’s major producers of hard coal,
holding in 2004 8th position with 100.4 Mt/
yr and 10th position with 56.8 Mt/yr ,
respectively (WCI, 2004). For every ton of
coal output, about 0.35 t waste has been
generated (mean value). In these countries,
coal mining waste rock comprise thus one
of the biggest groups of waste (in Poland,
35.8 Mt of coal mining waste, i.e. 30% of
total was generated in 2004) (GUS, 2004).
In the EU, waste from the extractive
industries amounts to about 29% of total
waste generated in the EU each year, with
an annual volume over 400 million tons
(EEA, 1993&2005). In the EU member
states, coal mining waste is considered a
valuable construction material widely
util ized in civil engineering as fi l l and
earthworks material, also in transport
engineering structures: as a road base and
sub&base, for highway and railway
embankments, leveling of parking lots,
harbor constructions etc. Also in Poland,
roughly 35 Mt, i.e. 98%, has been utilized
for these purposes in 2004 (GUS, 2004).
Legislation on environmental
protection aspects of waste management
In the EU Member States, use of
industrial waste in civil engineering is
standardized and normalized with respect to
technical parameters (e.g. British Standards
BS882, 1992; BS3797, 1990; BS 1047,
1983; BS6543, 1985; BS 5328, 1991, BS
УДК 502.57:622.2:625.7/.8
ENVIRONMENTENVIRONMENTENVIRONMENTENVIRONMENTENVIRONMENTAL IMPAL IMPAL IMPAL IMPAL IMPACT OF UTILIZING COAL MINING WACT OF UTILIZING COAL MINING WACT OF UTILIZING COAL MINING WACT OF UTILIZING COAL MINING WACT OF UTILIZING COAL MINING WASTE FORASTE FORASTE FORASTE FORASTE FOR
ROAD CONSTRUCTIONROAD CONSTRUCTIONROAD CONSTRUCTIONROAD CONSTRUCTIONROAD CONSTRUCTION
Sebastian Stefaniak and IrSebastian Stefaniak and IrSebastian Stefaniak and IrSebastian Stefaniak and IrSebastian Stefaniak and Irena Tena Tena Tena Tena Twarwarwarwarwardowskadowskadowskadowskadowska
Polish Academy of Sciences, Institute of Environmental Engineering,
34 M. Sklodowska&Curie St., 41&819 Zabrze, Poland
ACTUAL PROBLEMS OF TRANSPORT MEDICINE # 1 (3), 2006
АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ № 1 (3), 2006 г.
7979797979
3892, 1982; BS12, 1991; BS146, 1991;
BS4246, 1991; German BAST&E9,1971;
FGSV 616/2, 1984; Dutch WKE&N&
78163,1965; WKE&R&78156, 1982, SVC
Normen en Proefvoorschriften 1992,
Bouwstoffenbesluit, Staatscourant 1991).
Adaptation of the EU legislation on the
environmental aspects of waste
management by the European countries,
both by member states and candidates, has
greatly contributed to harmonization of
national legislation and integration of
environment&related waste management
policy.
The framework EU waste legislation in
force is based on three major documents
with amendments: (1) Directive 75/442/EEC
on waste, as amended by Directives 91/
156/EEC, 91/692/EEC and Commission
Decision 96/350/EC; (2) Directive 91/689/
EEC on hazardous waste, as amended; (3)
Decision 2000/532/EC establishing a list of
waste, as amended, the latest amendment
by Council Decision 2001/573/EEC. In
addition to these documents, the EU
policies on waste comprise numerous
regulations concerning specific waste
streams, both in force and in preparation.
The EU legislation in preparation includes
the proposal for a Directive on the
management of waste from the extractive
industries, in this of coal mining wastes
(COM, 2003). Following this proposal, the
European Standardization Committee,
Technical Committee 292 “Characterization
of Waste” has undertaken works on
developing standards on environment
impact&related testing waste from the
extractive industry and established a
working group on Mining waste in CEN/TC
292 (2005).
The EU legislation on waste was
adopted also by Polish environmental
regulations, (e.g. Polish Act on waste, 2001,
and other legislative documents), which
cover also relevant regulations concerning
water protection (Directives of Minister of
Environment, 2002, 2004a,b).
Environmental impacts associated with
coal mining wastes
According to the EU list of waste
(2000), coal mining wastes do not belong
to hazardous waste. Though, they are also
not environmentally neutral, the major
issues being related to water pollution due
the formation of leachates, in particular of
acid rock drainage (ARD) that occurs as a
result of sulfide&rich mining waste material
exposure to atmospheric oxygen and water.
An extent of adverse environmental impact
on the water quality depends upon the
content of soluble substances, sulfides,
their reactivity, buffering capacity of a rock
material, as well as waste granulation that
influence the conditions of water percolation
and air penetration into waste rock layer.
In the case of mining waste reuse, the
major problem consists in the difficulty of a
reliable environmental impact assessment
(EIA) related to long&term pollutants release
from wastes and evaluation of a risk exerted
by these wastes in specific constructions
such e.g. as railway or highway
embankments and other engineering
constructions used for transport&related
purposes. Long&term EIA became thus the
major criterion of coal mining waste
management.
The aim of the presented study is to
illustrate the temporal transformations
occurring in the coal mining waste layer as
a result of technological processes of re&
extraction, transport and deposition of
waste at the place of destination according
to the reuse purpose (railway or highway
embankment, road sub&base, ground
leveling etc), exemplified in coal mining
wastes that originate from coal mining waste
dumps, and the impact of these processes
on ground water quality.
Material and MethodsMaterial and MethodsMaterial and MethodsMaterial and MethodsMaterial and Methods
CharCharCharCharCharacteristics of studied objectsacteristics of studied objectsacteristics of studied objectsacteristics of studied objectsacteristics of studied objects
For studies, coal mining wastes from
two dumping sites: Anna coal mine in Bukуw
and Szczyglowice coal mine in Smolnica
comminities (Upper Silesia, Poland) were
selected.
At the Bukуw dump (site I) coal mining
waste rock from coal seams of 600 and 700
groups of Namurian A carboniferous
formation was disposed since 1976. The
wastes consisted mainly of coarse&grained
washery discards (93.7%) that was a hard
material resistant to particle size
degradation due to wetting and effect of
other atmospheric factors. These waste
showed moderate chloride salinity (0.01%)
АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ № 1 (3), 2006 г.
8080808080
ACTUAL PROBLEMS OF TRANSPORT MEDICINE # 1 (3), 2006
and were relatively high&buffered: their
neutralization capacity exceeded acid
generation capacity 2.37 times (in
equivalent units).
At the Smolnica dump (site II) coal
mining waste from coal seams of 300 and
400 groups that consisted mainly from shale
and mudstone of Westphalian A, B and
Namurian C carboniferous formations was
disposed.
Minor, but environmentally important
components of waste are iron sulfides
(pyrite, markasite) responsible for ARD
generation due to ARD generation as a
result of sulfide reaction with oxygen and
moisture, and Ca&Mg carbonates (calcite,
dolomite), which are buffering agents
preventing from the rock acidification
provided that they are available in sufficient
amount, i.e. that ARD generation potential/
buffering capacity e” 3.0. Another factor of
importance with respect to pollution
potential of waste rock to water is chloride
salinity, fairly high in some coal seams
(Szczepaсska and Twardowska, 2005). At
both dumping sites, residual coal extraction
by physical methods was carried out.
Technology of waste rock re&extraction
from coal mining dump for obtaining
material for road/railways construction
comprised excavation of a rock deposited
at the dump, its transport, often size
reduction and finally deposition at the
destination place. As a result, the waste
layers were disturbed and exposed to the
atmospheric impacts, including water and
air. As a result of weathering processes, in
the waste rock the pollutants are generated,
released and transported with infiltrating
water to ground water causing degradation
of its quality to the level rendering it unfit to
any use.
MethodsMethodsMethodsMethodsMethods
At the studied coal mining waste sites,
the vertical drillings through the waste
dumps were conducted to the depth 10&15
m, and rock material from the subsequent
layers was collected and transported to the
laboratory in tightly closed plastic bags in
order to prevent from the moisture loss. In
the laboratory, pore solution from the rock
samples was extracted by pressure method
and analyzed for chemical composition by
ICP&MS (Perkin&Elmer Elan). In parallel,
samples of ground water up&gradient and
down&gradient of the dumps were also taken
and analyzed. Vertical transformation of
pore solution due to contaminants leaching
and re&distribution of loads in the infiltration
water stream in the studied dumps along
Fig. 1 Hydrogeochemical profile along the borehole A (Buków dump)
ACTUAL PROBLEMS OF TRANSPORT MEDICINE # 1 (3), 2006
АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ № 1 (3), 2006 г.
8181818181
with the impact of leached loads on the
ground water quality down&gradient of the
dump was evaluated. The studies were
focused on three major processes: chloride
leaching, and ARD generation and
buffering, which determine the pollution
potential from coal miming waste to ground
waters. These studies simulated the
processes occurring in the engineering
constructions for transport purposes
performed with use of coal mining wastes.
Results and DiscussionResults and DiscussionResults and DiscussionResults and DiscussionResults and Discussion
Pore solution along the non&disturbed
profile of coal mining waste at Bukуw dump
9&19 years’ after deposition showed high
degree of washing chlorides out from the
upper layer of waste 9&15 years after rock
deposition and proceeding intensive sulfide
oxidation within the waste layer (Fig 1). The
older bottom part of the waste rock up to
19 years old due to the lesser water
exchange rate and vertical load
redistribution displayed characteristic
downward increase of SO
4
2& concentrations
and thus also increase of pollution potential
to ground waters. Hydrogeochemical
composition of pore solutions changed
downward from SO
4
&Na&Ca in the upper part
of the waste layer profile to SO
4
&Ca&Na&Mg,
SO
4
&Na&Ca&Mg or SO
4
&Mg&Na&Ca. Neutral
or slightly alkaline pH 7&8 values were an
evidence of sufficient buffering properties,
thus maximum concentrations of SO
4
2& up to
3850 mg dm&3 were limited by equilibrium
with gypsum. Under these conditions, also
trace metal release was low; in the highest
concentrations Sr (up to 4 mg dm&3) and Mn
(up to 3.52 mg dm&3) occurred; also Fe, Zn,
Cu and Li were present in the detectable,
but permissible concentrations.
Ion concentration pattern along the BI
and BII profiles (Bukow) displayed a
significant impact of re&extraction and
disturbance of waste material on the
hydrogeochemical conditions in the waste
body that determined a pattern of
contaminant release from the wastes.
Compared to waste in non&disturbed layer,
increase of hydraulic conductivity, porosity
and bulk density of material was observed,
along with increase of moisture content and
therefore of an infiltration flow rate (Fig 2).
Also substantial changes of leaching
dynamics occurred that indicated the “re&
activation” of contaminant mobilization
(intensification of generation and leaching
of contaminants from the older waste,
mainly sulfates, but also chlorides as a
result of rock grain size reduction, re&
exposure to atmospheric conditions and
material admixing). Besides of significant
increase of concentrations and loads of
macro&contaminants in pore solutions after
re&deposition, the disturbance of the initial
pattern of a vertical redistribution downward
Fig. 2 Hydrogeochemical profile along the borehole BI (Buków dump)
АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ № 1 (3), 2006 г.
8282828282
ACTUAL PROBLEMS OF TRANSPORT MEDICINE # 1 (3), 2006
the profile was observed: re&deposited
waste displayed either inverse pattern, i.e.
occurrence of the highest concentrations of
constituents at the upper part of the profile,
which was characteristic for the freshly
deposited material (Fig.2), or generally
uniform concentrations of constituents
along the profile.
Due to satisfactory level of waste
buffering and slightly alkaline pH value of
pore solutions, trace metals were not
susceptible to release, nevertheless in pore
solutions of re&extracted wastes the
concentrations of some trace elements
appeared to be elevated (Tl, Li, Ba, Al, Mn),
up to the values exceeding standards for
drinking water (Ni), along with mobilization
of toxic elements occurring in the anionic
form (B, Mo).
Low buffering ratio of waste from
Smolnica coal mining waste dump
(buffering capacity to ARD generation ratio
of 0.68&0.71), opposite to relatively well&
buffered material from Bukow dumping site,
results in a gradual acidification of the rock
material. Reactivity of sulfides in this
material is characterized by half& period of
sulfide decomposition t
05
= 1440 days. The
acidification of a material, in particular in the
surface layers, has been observed already
in 10 years after waste deposition. Process
of acidification along with the vertical
redistribution of contaminant
concentrations downward the profile causes
adverse temporal transformations of waste
and pore solutions lasting for decades
(Szczepaсska and Twardowska, 2005).
Acidification process in the studied
waste profile was characterized by the
domination of sulfate anions equilibrated
mainly by Na+ and Mg2+ cations (Fig. 3).
Additional threat to the aquatic environment,
besides high sulfate concentrations in this
phase, exerted mobilization of trace
elements at pH<5 from waste matrix and the
underlying soil in the vadose zone.
The local monitoring of ground waters
in the vicinity of coal mining waste dumps
illustrates changes of water quality down&
gradient of the dump. Re&extraction and re&
disposal of waste exerted the strongest
impact on the sulfate mineralization level
due to “activation” of waste in a
technological process. Generation and
leaching of dissolved constituents from coal
mining waste resulted in multiple increase
in ground waters of dissolved substances
(conductivity), sulfates, chlorides and in
acid waters also of heavy metals, in
particular Zn, Ni and Cd that made these
waters unfit to any use and in the reported
cases caused closing the local wells and
forsed a need of a distant water supply for
the affected communities (Table 1).
Fig. 3 Hydrogeochemical profile along the borehole SI (Smolnica dump)
ACTUAL PROBLEMS OF TRANSPORT MEDICINE # 1 (3), 2006
АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ № 1 (3), 2006 г.
8383838383
ConclusionsConclusionsConclusionsConclusionsConclusions
An observation of hydrogeochemical
transformations occurring in the vertical
profile of coal mining waste resulting from
their re&extraction and re&deposition
showed significant changes of infiltration
water parameters in a waste layer. Re&
extraction appears to have the strongest
effect on the increase of hydraulic
conductivity, porosity and bulk density of the
material, and on the contact of material with
the environmental factors (atmospheric air,
water) that favor the generation and
mobilization of contaminants. Due to these
changes, the “activation” of generation and
leaching of contaminants from the older
wastes has been observed. As a result of
disturbance of the initial positioning of
waste along the waste profile, pore solution
in re&deposited wastes display the pattern
inverse to that in undisturbed old waste
layers, i.e. occurrence of the highest
concentrations of constituents in the upper
part of the profile. These waste, which due
to occurrence of sulfides display a long&
term pollution potential lasting for decades
and often show the time&delayed maximum
adverse effect to the aquatic environment,
are sensitive to the impact of both natural
and anthropogenic factors that should be
taken into consideration at using this
material for road, highways and railway
embankments construction and other
engineering constructions for transport
needs. In particular, adequate compaction,
drainage and insulation against air
penetration should be provided
(Twardowska et al., 2005).
ReferReferReferReferReferencesencesencesencesences
Act on Waste of 27 April 2001, Dz.U.
01.62.628, 2001 (in Polish).
CEN/TC 292: Resolution 503 of the
20th meeting of CEN/TC 292 in Vienna on the
establishment of a new working group WG
8 on Mining waste. Title: Wastes from the
extractive industry. Document N794, 2005.
COM (2003) 0319: Proposal for a
Directive of the European Parliament and of
the Council on the management of waste
from the extractive industries. http://
e u r o p a . e u . i n t / e u r & l e x / e n / c o m / re g /
en_register_15103030.html
Directive of the Minister of
Environment of 9 November 2002 on the
scope, time, methods and conditions of
conducting monitoring of waste landfills.
Dz.U.02.220.1858, 2002 (in Polish).
Directive of the Minister of
Environment of 11 February 2004 on the
classification for presenting state of surface
and ground waters, methods of conducting
monitoring and methods of interpretation of
results and presentation of state of these
waters. Dz.U.04.32.284, 2004a (in Polish).
Directive of the Minister of
Environment of 8 July 2004 on the
conditions to be fulfilled at waste discharge
to water and soil and on the substances
particularly harmful for the environment.
Dz.U.04.168.1763, 2004b (in Polish).
EC: Decision 2000/532/EC
Table 1
Selected ground water quality parameters down-gradient of coal mining waste
dumps. (P2,…P5B, S-3 – monitoring wells)
SMOLNICA coal mining waste dump
pH Conductivity
[μS/cm] SO4 [mg/dm3] Cl [mg/dm3]
P2 P3 P4 P2 P3 P4 P2 P3 P4 P2 P3 P4
1994 4.70 5.52 7.10 4620 3270 15080 1738 1013 2329 636 754 3498
2004 2.49 5.09 6.45 5460 5690 12230 2320 1873 6647 598 833 637
BUKÓW coal mining waste dump
pH Conductivity
[μS/cm] SO4 [mg/dm3] Cl [mg/dm3]
P4B P5B S-3 P4B P5B S-3 P4B P5B S-3 P4B P5B S-3
1998 7.06 6.98 6.56 4180 7573 3505 318 6427 2449 184 2020 617
2004 6.57 6.82 6.79 4000 4007 4190 1221 3386 2159 549 588 163
АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ № 1 (3), 2006 г.
8484848484
ACTUAL PROBLEMS OF TRANSPORT MEDICINE # 1 (3), 2006
establishing a list of waste, as amended, the
latest amendment by Council Decision
2001/573/EEC, 2000.
EEA – European Environment Agency,
1993& 2005,
h t t p : / / t h e m e s . e e a . e u . i n t /
Environmental_issues/waste/indicators
EEC: Directive 75/442/EEC on waste
as amended by Directive 91/156/EEC,
Directive 91/692/EC and Commission
Decision 96/350/EC.
EEC: Directive 91/689/EEC on
hazardous waste, as amended, 1991.
GUS – Central Statistical Office:
Environment Protection 2004. Information
and Statistical Studies. Statistical Publishing
Establishment, Warsaw 2004, pp. 508 (in
Polish).
Szczepaсska, J., and Twardowska, I:
Mining waste, pp.319&385. In Solid Waste:
Assessment, Monitoring and Remediation
(I. Twardowska, H.E. Allen, A.A.F. Kettrup
and W.J. Lacy, eds.) Elsevier, Amsterdam&
Boston&Heidelberg&London&New York&
Oxford&Paris&San Diego&San Francisco&
Singapore&Sydney&Tokyo, 2005.
Twardowska I., Stefaniak, S., and
Szczepaсska, J. High&volume mining waste
disposal, pp. 865&910. In Solid Waste:
Assessment, Monitoring and Remediation
(I. Twardowska, H.E. Allen, A.A.F. Kettrup
and W.J. Lacy, eds.) Elsevier, Amsterdam&
Boston&Heidelberg&London&New York&
Oxford&Paris&San Diego&San Francisco&
Singapore&Sydney&Tokyo, 2005.
WCI : Key coal statistics for 2004.
Ecoal, 51:8 (October 2004)
РезюмеРезюмеРезюмеРезюмеРезюме
ВЛИЯНИЕ ПРИМЕНЕНИЯ ОТХОДОВ
УГЛЕДОБЫВАЮЩЕЙ
ПРОМЫШЛЕННОСТИ В ДОРОЖНОМ
СТРОИТЕЛЬСТВЕ НА ОКРУЖАЮЩУЮ
СРЕДУ
Себастьян Стефаньяк, Ирена
Твардовская
Польша и Украина являются круп&
нейшими мировыми производителями
каменного угля. В среднем на каждую
тонну добытого угля образуется прибли&
зительно 0,35 т отходов. Хотя отходы ка&
менноугольной промышленности не при&
надлежат к опасным отходам, они спо&
собны долгое время загрязнять окружа&
ющую среду вследствие высокого содер&
жания сульфидов и хлоридов; в то же
самое время, они — ценный строитель&
ный материал, широко используемый в
гражданском строительстве. Из 35,8 Мт
отходов, образующихся в Польше еже&
годно, примерно 35 Мт, то есть 98 %,
использовались как материал в строи&
тельных и дорожных работах. В то же
время, широкое использование отходов
каменноугольной промышленности при&
водит к загрязнению значительных тер&
риторий, а также воды и атмосферного
воздуха. Статья посвящена рассмотре&
нию взаимосвязи использования отходов
каменноугольной промышленности в до&
рожном строительстве и качества при&
родных вод, а также профилактическим
мероприятиям, направленным на исправ&
ление складывающейся экологической
ситуации.
РезюмеРезюмеРезюмеРезюмеРезюме
ВПЛИВ ВИКОРИСТАННЯ ВІДХОДІВ
КАМ’ЯНОВУГІЛЬНОЇ ПРОМИСЛОВОСТІ
В ДОРОЖНЬОМУ БУДІВНИЦТВІ НА
ОТОЧУЮЧЕ СЕРЕДОВИЩЕ
Себастіан Стефаніак, Ірена Твардовська
Польща і Україна є найбільшими
світовими виробниками кам’яного вугіл&
ля. В середньому на кожну тонну здобу&
того вугілля утворюється приблизно 0,35
т відходів. Хоча відходи кам’яновугільної
промисловості не належать до небезпеч&
них відходів, вони здатні довгий час заб&
руднювати оточуюче середовище внасл&
ідок високого вмісту сульфідів і хлоридів;
в той же самий час, вони — цінний буді&
вельний матеріал, що широко використо&
вується в громадському будівництві. З
35,8 Мт відходів, що утворюються в
Польщіі щорічно, приблизно 35 Мт, тобто
98 %, використовувалися як матеріал в
будівельних і дорожніх роботах. В той же
час, широке використання відходів кам’&
яновугільної промисловості приводить до
забруднення значних територій, а також
води і атмосферного повітря. Стаття при&
свячена розгляду взаємозв’язку викори&
стовування відходів кам’яновугільної про&
мисловості в дорожньому будівництві і
якості природних вод, а також профілак&
тичним заходам, спрямованим на вип&
равлення екологічної ситуації.
|