Protection of a lens of an eye against the simulated diabetic cataract

Катаракта является очень распространенным осложнением при диабете. Мы подвергли бычие линзы действию высокой концентрации глюкозы (450 мг.%) в условиях культуры в течение двух недель и исследовали повреждения в линзе и возможную защиту специальными антиоксидантами N ацетил L цистеином (NAC) и цинков...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Bormusov, E., Dovrat, A., Chevion, M.
Формат: Стаття
Мова:English
Опубліковано: Фізико-хімічний інститут ім. О.В. Богатського НАН України 2010
Назва видання:Актуальні проблеми транспортної медицини
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/23244
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Protection of a lens of an eye against the simulated diabetic cataract / E. Bormusov, A. Dovrat, M. Chevion // Актуальні проблеми транспортної медицини. — 2010. — № 4. — С. 68-79. — Бібліогр.: 44 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-23244
record_format dspace
spelling irk-123456789-232442013-02-13T03:24:40Z Protection of a lens of an eye against the simulated diabetic cataract Bormusov, E. Dovrat, A. Chevion, M. Медицина транспорта Катаракта является очень распространенным осложнением при диабете. Мы подвергли бычие линзы действию высокой концентрации глюкозы (450 мг.%) в условиях культуры в течение двух недель и исследовали повреждения в линзе и возможную защиту специальными антиоксидантами N ацетил L цистеином (NAC) и цинковым комплексом desferrioxamine (DFO), селективным хелатором для железа. Исследовалось оптическое качество линз и окисление эпителия с дихлорфлюоресцеином (DCF), а также оценивались изменения в 2D гель электрофоретическом профиле белков хрусталика. Наблюдались изменения при высоком содержании глюкозы в фокусном расстоянии линзы, повышении окисления. NAC И Zn DFO почти полностью защищали линзы; DFO показывал только частичную защиту. Результаты демонстрировали, что антиоксиданты могут защищають хрусталик повреждающего действия высоких концентраций глюкозы. Комбинация NAC и ZnDFO действовала более эффективно. Катаракта є дуже поширеним ускладненням при діабеті. Ми піддали кришталик ока бика дії високої концентрації глюкози (450 мг %) в умовах культури протягом двох тижнів і досліджували пошкодження в лінзі і можливий захист спеціальними антиоксидантами N ацетил L цистеином (NAC) і цинковим комплексом desferrioxamine (DFO), селективним хелатором для заліза. Досліджувалася оптична якість лінз і окислення епітелію з дихлорфлюоресцеїном (DCF), а також оцінювалися зміни в 2D гель електрофоретичному профілі білків кришталика. Спостерігалися зміни при високому вмісті глюкози у фокусній відстані лінзи, підвищенні окислення. NAC І Zn DFO майже повністю захищали лінзи; DFO показував тільки частковий захист. Результати демонстрували, що антиоксиданти можуть защищають кришталик від ушкоджувальної дії високих концентрацій глюкози. Комбінація NAC і ZNDFO діяла ефективніше. 2010 Article Protection of a lens of an eye against the simulated diabetic cataract / E. Bormusov, A. Dovrat, M. Chevion // Актуальні проблеми транспортної медицини. — 2010. — № 4. — С. 68-79. — Бібліогр.: 44 назв. — англ. 1818-9385 http://dspace.nbuv.gov.ua/handle/123456789/23244 617.741-004.1 en Актуальні проблеми транспортної медицини Фізико-хімічний інститут ім. О.В. Богатського НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Медицина транспорта
Медицина транспорта
spellingShingle Медицина транспорта
Медицина транспорта
Bormusov, E.
Dovrat, A.
Chevion, M.
Protection of a lens of an eye against the simulated diabetic cataract
Актуальні проблеми транспортної медицини
description Катаракта является очень распространенным осложнением при диабете. Мы подвергли бычие линзы действию высокой концентрации глюкозы (450 мг.%) в условиях культуры в течение двух недель и исследовали повреждения в линзе и возможную защиту специальными антиоксидантами N ацетил L цистеином (NAC) и цинковым комплексом desferrioxamine (DFO), селективным хелатором для железа. Исследовалось оптическое качество линз и окисление эпителия с дихлорфлюоресцеином (DCF), а также оценивались изменения в 2D гель электрофоретическом профиле белков хрусталика. Наблюдались изменения при высоком содержании глюкозы в фокусном расстоянии линзы, повышении окисления. NAC И Zn DFO почти полностью защищали линзы; DFO показывал только частичную защиту. Результаты демонстрировали, что антиоксиданты могут защищають хрусталик повреждающего действия высоких концентраций глюкозы. Комбинация NAC и ZnDFO действовала более эффективно.
format Article
author Bormusov, E.
Dovrat, A.
Chevion, M.
author_facet Bormusov, E.
Dovrat, A.
Chevion, M.
author_sort Bormusov, E.
title Protection of a lens of an eye against the simulated diabetic cataract
title_short Protection of a lens of an eye against the simulated diabetic cataract
title_full Protection of a lens of an eye against the simulated diabetic cataract
title_fullStr Protection of a lens of an eye against the simulated diabetic cataract
title_full_unstemmed Protection of a lens of an eye against the simulated diabetic cataract
title_sort protection of a lens of an eye against the simulated diabetic cataract
publisher Фізико-хімічний інститут ім. О.В. Богатського НАН України
publishDate 2010
topic_facet Медицина транспорта
url http://dspace.nbuv.gov.ua/handle/123456789/23244
citation_txt Protection of a lens of an eye against the simulated diabetic cataract / E. Bormusov, A. Dovrat, M. Chevion // Актуальні проблеми транспортної медицини. — 2010. — № 4. — С. 68-79. — Бібліогр.: 44 назв. — англ.
series Актуальні проблеми транспортної медицини
work_keys_str_mv AT bormusove protectionofalensofaneyeagainstthesimulateddiabeticcataract
AT dovrata protectionofalensofaneyeagainstthesimulateddiabeticcataract
AT chevionm protectionofalensofaneyeagainstthesimulateddiabeticcataract
first_indexed 2025-07-03T02:40:15Z
last_indexed 2025-07-03T02:40:15Z
_version_ 1836591785483173888
fulltext АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ  № 4 (22), 2010 г. 68 ACTUAL PROBLEMS OF TRANSPORT MEDICINE #4 (22), 2010 Резюме ОСОБЕННОСТИ ВТОРИЧНОЙ ПРОФИЛАКТИКИ ИШЕМИЧЕСКОЙ БОЛЕЗНИ СЕРДЦА У РАБОЧИХ ТРАНСПОРТА Телятников О.В. Обследовано 52 больных со стено? кардией напряжения ИИ?ИИИ ФК на фоне артериальной гипертензии, атерогеноq дислипопротеинемии и сер? дечной недостаточности, которые прини? мали аторвастатин в суточных дозах 10 и 20 мг, что привело к повышению уровня NO?синтазы, уровня нитратов и снижения нитритов на фоне базисной терапии, в сравнении с базисной терапией без аторвастатина. Ключевые слова: статины, NО#синтаза, нитраты, нитриты, ишемическая бо# лезнь сердца. Summary THE FEATURES OF SECOND PROPHYLAXIS OF ISCHEMIC HEART TROUBLE FOR TRANSPORT WORKERS Telyatnikov O.V. Examinated 52 patients with Stenocardia of tention II?III Functional Classes (FC) with arterial hipertention (AH),heart insufficiency and atherogenic dislipoproteinemia, who took atorvastatin (daily dose?20 mg), what led to increase of NO?sуntase activity, content of nitrites had decreased, content of nitrates had increased. In another group of patients, that didn’t receive statins, wasn’t observed increase of activity NO?sуntase in blood plasma. Key words: statins, NO#sуntase, nitrites, nitrates, ischemic heart disease Впервые поступила в редакцию 29.08.2010 г. Рекомендована к печати на заседании редакционной коллегии после рецензирования Abstract Oxidative stress represents a mechanism which could lead to diabetic cataract. We exposed bovine lenses in culture conditions for two weeks to high glucose concentration (450 mg%) and investigated the damage to the lens and possible protection by special antioxidants ? N?acetyl? L?cysteine (NAC) and the zinc complex of desferrioxamine (DFO), a selective chelator for iron. We monitored the optical quality of the lenses and the oxidation of the epithelium with dichlorofluorescein (DCF) assay, as well as the changes in lens proteins profile by 2D gel electrophoresis. Under high glucose changes in lens focal length, increased oxidation, and changes in lens crystalline were observed. NAC and Zn? DFO nearly completely protected the lenses; DFO showed only partial protection. The results demonstrated that antioxidants should be considered as treatment modality protecting the lens from high glucose damage. It is proposed that a combination of NAC and Zn/ DFO could prove highly efficient. Introduction Cataract is a highly prevalent complication in diabetes. Several mechanisms explaining the formation of diabetic cataract have been proposed, including those that involve oxidative stress, as a causative factor. The “Free Radical УДК 617.741#004.1 PROTECTION OF A LENS OF AN EYE AGAINST THE SIMULATED DIABETIC CATARACT Elvira Bormusov, Ahuva Dovrat and Mordechai Chevion Rappaport Faculty of Medicine, Technion, Haifa, Israel Faculties of Medicine and Dental Medicine, the Hebrew University of Jerusalem Key words: diabetic cataract, protection of a lens ACTUAL PROBLEMS OF TRANSPORT MEDICINE #4 (22), 2010 АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ  № 4 (22), 2010 г. 69 Theory of Aging”, first proposed in 1956 by Denham Harman [1] (reviewed by Harman 2003[2]), suggests that aging results from accumulation of changes caused by highly reactive oxygen?derived species (ROS), including free radicals, known to induce cell damage [3]. Continuous exposure of the lens to oxidative stress has been shown to lead to reduced lens clarity and cataract formation [4]. Since the epithelial layer contains the bulk of the metabolic enzymes, and since labile iron has been incriminated as a necessary factor for injurious oxidative stress, the damage to the epithelial layer can precede and account for the development of lens opacity [5]. Indeed, the levels of redoxactive iron were found elevated in the advanced forms of cataract [6]. Desferrioxiamine (Desferal®, DFO) is a selective high affinity iron chelator, rendering iron as a stable ferric complex [7]. DFO has been often used as a means of reducing tissue oxidative stress and injury. Reddan et al. demonstrated that DFO protects cultured rabbit lens epithelial cell from oxidative insult [8]. Avunduk et al. showed the effectiveness of DFO in preventing cataractous changes in rat lenses following in vivo exposure of rats to oxidative stress [7]. We prepared the complex of DFO with zinc and gallium [9?13]. These complexes are similar to the ferrioxamine (Fe(III)?DFO complex), but show three additional advantages: (i) they better infiltrate into cells, (ii) are less toxic than DFO alone, and (iii) act via the combination of both ‘push’ and ‘pull’ mechanisms. Thus, we examined the protective effect of these DFO complexes on cataract formation in bovine lens, under conditions simulating the diabetic state. We have used an additional alternative strategy for curbing ROS?induced injury and protection of the lens. This involved the employment of N?acetyl cysteine (NAC), to scavenge free radicals [14?16] and to replenish reduced sulfhydryl residues [14? 19]. NAC is a precursor of glutathione – the major source of cellular sulfhydryl groups and acts as a potent an anti?inflammatory agent. Experimentally, we incubated intact bovine lenses in culture, in the presence of high glucose concentrations (450 mg %), mimicking the diabetic state, and examined the protection bestowed by the DFO complexes and NAC, on the injurious processes on the lenses. We used a unique system of intact bovine lenses, maintained for a long?term, under culture conditions. This system allows for direct exposure to a pre?set glucose concentration, and monitoring the effects on lens transparency with a highly sensitive optical method [20]. The system can detect early optical damage to lenses, which cannot be detected by other methods often used. At the completion of the culture period lens epithelium and lens proteins were analyzed. It was anticipated that the extent of protection exerted on the lens, in this system, will be indicative of the involvement of iron as a catalyst and of free radicals as causative agents, in the damage to the diabetic lens. Materials and Methods Lens organ culture system: Lenses were excised in a delicate operation from eyes obtained from 1?year? old male calves under sterile conditions, 2? 4 hours after enucleating. From each animal one eye is used for experimental treatment and the other eye serves as control. Each lens is placed in a specially designed culture container, which we have developed [21]. The culture medium consists of M199 with Earl’s balanced salt solution, supplemented with 5.96g/L HEPES, 3% dialyzed fetal calf serum and antibiotics (penicillin 100 U/ml and streptomycin 0.1 mg/ml). Our intact lens culture system mimics the lens conditions inside the eye and makes it possible to keep lenses for long?term studies for several weeks in order to test the effects of potentially damaging agents. The lenses were incubated at 35°C. Experimental treatments were initiated after pre?incubation for 24 hours. Damaged lenses and their matched controls from the contra lateral eyes were excluded prior to experimental treatment. The culture medium is replaced every 24 hours. Lens optical quality monitoring system An automated scanning laser system [21] was used for daily testing of both treated and control lenses. A 670 nm diode laser with the beam parallel to the axis of the lens is directed towards the cultured lens along one АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ  № 4 (22), 2010 г. 70 ACTUAL PROBLEMS OF TRANSPORT MEDICINE #4 (22), 2010 meridian. After passing through the lens, the laser beam is refracted and the system determines the back vertex focal length for every beam position. Each scan consists of measurements of the same beam from 22 different points across the lens. A lens of good optical quality is able to focus the laser beam from various locations. When the lens is damaged, its ability to focus the laser beam at various locations is altered. High glucose concentration (simulating diabetes): Lenses were exposed to 450 mg% glucose in the culture medium, which simulates diabetes conditions. Preparation of lens epithelial samples for dichlorofluorescein (DCF) assay There were preparations of a forward monolayer epithelium bovine lenses from all experiments. For this purpose the capsule opened and crystalline lens fibers were cleaned. On the object�plate here was only a capsule and a cellular monolayer epithelium. Reactive Oxygen Species (ROS) was discovered by flow of epithelial cells lens labeled with 5�(and 6�)chloromethyl�2',7'� dichlorodihydrofluorescein diacetate, acetyl ester (CM�H 2 DCFDA, C6827) to measure the component level of cellular oxidation in the cells of lens epithelium. When is added oxidation to cells this reagent undergoes and converts in the fluorescent isomer. The fluorescent signal was detected with a f l u o r e s c e n c e microscope, using sources of excitement and filters, corresponding to for fluorescein. Protein analysis using two�dimensional polyacrylamide gel electrophoresis was done according to [22]. Protein concentration was measured by the micro�method of Lowry [23] Results and Discussion The experiments included 78 intact bovine lenses, which were divided into eight different treatment groups. These groups include lenses incubated, for 12 days, with high glucose levels (450 mg %) with or without each one of the antioxidants tested (NAC, Zn/DFO and DFO), as well as control lenses. Lens optical quality was analyzed every 24 hours. Figure1 demonstrates the changes in the optical quality of the lenses along the incubation period. In the control group no significant change in the Back Vertex Distance (BVD) with time of incubation, was observed. Lenses incubated with high glucose showed fluctuations in the BVD along the incubation period, which indicate changes in lens volume. High fluctuations appear also in lenses treated with high glucose and NAC. The group exposed to ZnDFO and to DFO alone, demonstrated reduced optical changes representing smaller lens injury. The lenses show almost no volume changes. Other studies also demonstrated Fig. 1. Lens optical quality during the twelve days of incubation of intact lenses in cul- ture conditions, demonstrated by "Back Vertex Distance". Control lenses show almost no change in Back Vertex Distance with time in culture (red), while glucose treated lenses show variability in Back Vertex Distance which reflect changes in lens volume. ACTUAL PROBLEMS OF TRANSPORT MEDICINE #4 (22), 2010 АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ  № 4 (22), 2010 г. 71 changes in lens optical quality in diabetes [24] measured lens opacity in diabetic patients using a back�light scattering quantification system. Lens opacity was significantly higher in diabetic patients than in the control group, and showed correlation with glycated hemoglobin levels. Freel [25] compared cytoplasmic textures from a variety of human and animal lenses in electron microscope images in order to relate the extent of roughness with the extent of opacification. Lens cytoplasms exhibiting the greatest roughness correlated with the greatest light scattering. Tkachov [26] described histomorphological changes in the cataractous lens of diabetic patients using Scheimpflug densitometry and light microscopy. Their study revealed smaller cell density of the lens, larger cell area of lens epithelium, and a lower nucleusplasma ratio in cataractous lenses of diabetics compared to clear non�diabetic lenses. In our study at the end of the culture period, lenses were photographed by inverted microscope. Figure 2a shows a photograph of a control lens with clear sutures and homogeneous epithelial cell layer. Figure 2b demonstrates the severe damage to the lens, when incubated in the presence of high glucose, which is indicated by the blisters under and between the epithelial cells. Photographs of the lens epithelial layer with higher magnification (Figure 3) show that for the controls an intact lens epithelial layer is observed (Figure 3a). Glucose treated lenses show swollen epithelial cells with blisters at the cells borders (Figure 3b). Each of the three antioxidants used in the study reduces the glucose�induced damage to the lens epithelium (Figures 3c�3e). The antioxidant protective effect of each of the three agents were compared using the 5,6� chloromethyl�2',7'� dichlorodihydrofluorescein diacetate (DCF) assay. Formation of ROS in the epithelium was monitored and detected, by fluorescence, in intact bovine epithelial cells layers, from the different treatment groups. Figure 4a shows a molecule of non fluorescent (reduced and acetylated) DCF. The di�acetyl ester of DCF is cell permeable and undergoes hydrolysis within cells, thus remain trapped within the cells. While the DCF is a poorly fluorescent molecule, upon its oxidation by ROS DCF is converted to a highly fluorescent compound that can be easily monitored. Figure 4b demonstrates control lens epithelium after incubation of the intact lens for 12 days in culture. There is almost no fluorescence in the cells; minor fluorescence can be detected in the cells nuclei. On the other hand, glucose treated lenses epithelium show very high fluorescence, in the swollen epithelial cells (Figure 4c). DFO prevents the cytosolic oxidation, but high oxidation was observed within the nuclei (Figure 4d). ZnDFO provided better protection against oxidation than DFO or NAC. The epithelium from glucose�plus� Fig 2a - Inverted Microscope photograph of control lens after 12 days incubation in organ culture conditions. (Magnification x25) Note the clear lens with lens sutures. Fig 2b - Inverted Microscope photograph of glucose treated lens (450 mg%), after 12 days incubation in organ culture conditions. The photo show high glucose damage as bubbles at the lens surface. (Magnification x25). АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ  № 4 (22), 2010 г. 72 ACTUAL PROBLEMS OF TRANSPORT MEDICINE #4 (22), 2010 ZnDFO treated lenses look like the controls (Figure 4e). Glucose and NAC treated lens epithelium showed swollen cells with less oxidation than in glucose�alone treated lens epithelium (Figure 4f). Fig 4d – Glucose and DFO treated lens epithelium after 12 days in organ culture conditions. DFO reduced the oxidation levels in the cells. Note that the main oxidation remained in the nuclei of the cells In order to follow the effects of exposure to high glucose together with the antioxidants on the cells nuclei, the nuclei were stained with propidium iodide, an intercalating DNA staining fluorescent agent (Figure 5). Control lens epithelium show Fig 3a. Inverted microscope photograph of control lens epithelium after 12 days incubation in organ culture conditions. (Magnification x 100) Note the similar size of the cells and the borders between the cells Fig 3b. Inverted microscope photograph of glucose treated lens epithelium after 12 days incubation in organ culture conditions. (Magnification x 100) note the swelling cells with different size and the bubbles between the cells Fig 3c Inverted microscope photograph of glucose and DFO treated lens epithelium after 12 days in- cubation in organ culture conditions. (Magnification x 100) glucose damage was reduced by DFO treatment . Fig 3d. Inverted microscope photograph of glucose and ZnDFO treated lens epithelium after 12 days incubation in organ culture conditions. (Magnifica- tion x 100) glucose damage was reduced by ZnDFO treatment Fig 3e Inverted microscope photograph of glucose and NAC treated lens epithelium after 12 days incubation in organ culture conditions. (Magnification x 100) glucose damage was reduced by NAC treatment ACTUAL PROBLEMS OF TRANSPORT MEDICINE #4 (22), 2010 АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ  № 4 (22), 2010 г. 73 intact cells and intact nuclei (Figure 5a); glucose treated lens epithelium show swollen cells with broken nuclei (Figure 5b). DFO and NAC slightly reduced the damage to the cells nuclei (Figures 5c &5e), while Zn/DFO totally prevent the damage. The epithelium from lenses treated with glucose in the presence of ZnDFO looks the same as the controls (Figure 5d). The injurious effects of high glucose and the protective effects of the three antioxidants under study, on the profile of lens soluble proteins and their intactness were examined by 2D gel electrophoresis analysis (Figure 6). Protein profile of control lens soluble proteins is demonstrated in Figure 6a. The molecular weight of lens soluble proteins is below 32kDa. Incubation of the lenses in the presence of 450mg% glucose for 12 days reduce the amount of Fig 4a. Non-fluorescent DCF Fig 4b. Control lens epithelium after 12 days in or- gan culture conditions. Note the low fluorescence of the epithelial cells Fig 4c.Glucose treated lens epithelium after 12 days in organ culture conditions. Note the high fluoresce in the epithelial cells which indicate high oxidation Fig 4d. Glucose and DFO treated lens epithelium after 12 days in organ culture conditions. DFO re- duced the oxidation levels in the cells. Note that the main oxidation remained in the nuclei of the cells Fig 4e. Glucose and ZnDFO treated lens epithe- lium after 12 days in organ culture conditions. ZnDFO prevents the oxidation in the cells and the cells looks like the controls Fig 4f . Glucose and NAC treated lens epithelium after 12 days in organ culture conditions. АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ  № 4 (22), 2010 г. 74 ACTUAL PROBLEMS OF TRANSPORT MEDICINE #4 (22), 2010 soluble proteins mainly at the basic area of the gel, the area of gamma crystalline (Figure 6b) Incubation of the glucose treated lenses in the presence of DFO partially protect lens proteins as demonstrated in Figure 6c. Almost no protection to lens soluble proteins was provided in the presence of ZnDFO (Figure 6d). On the other handfull protection from glucose damage was provided in the presence of NAC. Lenses incubated in high glucose in the presence of NAC show the same soluble protein profile as the controls. (Figure 6e). We have demonstrated a role for oxidative damage in diabetic cataract formation. This is in accord with previous proposals [27�29]. Thus, the possible use of antioxidant agents in cataract prevention and treatment is highly appealing. Future investigations should consider this possibility in human subjects. It is likely that NAC and Zn/DFO (rather than DFO alone) could provide a beneficial outcome. In summary, we used a unique Fig 5a. Control lens epithelium after 12 days in or- gan culture conditions Fig 5b. Glucose treated lens epithelium after 12 days in organ culture conditions Fig 5c. Glucose and DFO treated lens epithelium after 12 days in organ culture conditions Fig 5d . Glucose and ZnDFO treated lens epithe- lium after 12 days in organ culture conditions Fig 5e. Glucose and NAC treated lens epithelium after 12 days in organ culture conditions ACTUAL PROBLEMS OF TRANSPORT MEDICINE #4 (22), 2010 АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ  № 4 (22), 2010 г. 75 experimental lens culture system equipped with highly sensitive and reproducible detection monitoring instrumentation. When lenses were exposed to diabetic�like conditions, under incubation for 12 days in culture, an oxidative damage developed. This was in contrast to incubation of lenses under normo�glycemic medium, where the lenses remained clear and un�affected. When NAC was included in the incubation medium, no protein alterations were developed. Likewise Zn/DFO provided complete protection against oxidative injury. DFO alone provided good, but limited, protection. We propose that these antioxidants, in particularly NAC and Zn/DFO should be considered as preventative treatment in diabetic patients, in order to delay or avoid, and possible treat ocular opacity. Indeed, In vitro and in vivo studies have demonstrated that NAC, a thiol compound that is used clinically possesses not only antioxidant properties, but also anti� inflammatory and vasodilatory properties. NAC acts as a cysteine pro�drug and a GSH Fig 6a. Lens soluble protein profile (2D gel electrophore- sis) of control lens after 12 day incubation in culture con- ditions. Fig 6b. Lens soluble protein profile (2D gel electro- phoresis) of glucose (450 mg%) treated lens after 12 day incubation in culture conditions. Note the missing proteins mainly at the basic side of the gel, the area of gamma crystalline Fig 6c. Lens soluble protein profile (2D gel electrophore- sis) of glucose (450 mg%) + DFO treated lens after 12 day incubation in culture conditions. Note the missing proteins mainly at the basic side of the gel, the area of gamma crystalline Fig 6d. Lens soluble protein profile (2D gel electro- phoresis) of glucose (450 mg%) + ZnDFO treated lens after 12 day incubation in culture conditions. Note the missing proteins mainly at the basic side of the gel, the area of gamma crystalline Fig 6e. Lens soluble protein profile (2D gel electrophoresis) of glucose (450 mg%) + NAC treated lens after 12 day in- cubation in culture conditions. Note the protective effect of NAC on lens proteins. АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ  № 4 (22), 2010 г. 76 ACTUAL PROBLEMS OF TRANSPORT MEDICINE #4 (22), 2010 precursor [17]. It can reduce disulfide bonds in proteins[14] [18], scavenge free radicals [15] and bind metals to form complexes [19]. This can explain our results, where the unusual protective effect of NAC on lenticular epithelium, was observed. Further research is needed to examine whether within the intact animal NAC will prove as efficient. This is since pharmacokinetics studies have shown that NAC undergoes extensive first pass metabolism in the liver and kidneys resulting in low concentrations of ‘free’ NAC in the plasma [30] and [31]. In earlier studies using the same model with non�diabetic lenses, we demonstrated that lens periphery is the most sensitive area first damaged by exposure to hyperbaric oxygen tension. While DFO proved only partially beneficial in salvaging the lens periphery from oxidative damage, Zn/DFO led to complete protective benefit to the lens anterior pole, the part most relevant for sight preservation [32, 33]. These observations were in accord with other publications demonstrating the beneficial effects of iron chelating agents against oxidative insult�induced tissue damage [7, 8, 34�37]. Typically, high dose of DFO mesylate (Desferal®) was administred, subcutaneously (10 mg/kg of body weight), for lomg term(up to 90 consecutive days), prevented cataractous changes in rats. The disadvantage of DFO in these studies stems from its limited tissue penetration [38, 39]. Indeed, Zn/DFO easily infiltrates into cells and tissues [9, 32, 40] and is, thus, a better protective drug, as is evident also under conditions that simulate diabetes. The unusual activity of Zn/DFO is based on the combination of ‘push and pull’ mechanisms [10, 41]. Desferrioxamine neutralized the redox activity of iron by binding labile ferric iron and ‘pulling out’ iron from its (low affinity) binding sites. Zinc ion is liberated from the complex during the exchange of the zinc with iron, and the ‘free’ zinc acts as a secondary antioxidant, ‘pushing out’ additional iron from binding sites, thus, inhibiting the catalysis of the formation of highly reactive ROS. The Zn/ DFO complex carries additional attributes which make it more effective – it infiltrates into cells, and eliminates the toxicity of free DFO. It is a well accepted notion that oxygen and ROS play key roles in senile cataract formation. This view is supported by former observations demonstrating the rapid development of cataract under conditions of high oxygen load in humans treated by hyperbaric oxygen [42]. Oxygen is also believed to be one of the potential causative agents for the development of nuclear cataract following vitrectomy [43, 44]. Under normal clinical circumstances the effects of oxygen�load accumulate over many years of exposure to relatively low oxygen loads. We have shown that increasing the partial pressure of oxygen, for a relatively short time causes a sharp increase in the damage to the lens. Conclusions Based on the independent effects of NAC and Zn/DFO, we propose to use their combination as a means of prevention and/ or treatment of cataract, in diabetic patients. This combination can be applied by topically drops or systemically by ingestion. It is anticipated that in both ways the antioxidants will get access to the lens through the posterior chamber of the aqueous humor. While the risk of using such a combination is very limited, further investigation is needed in order to crystallize, in detail, the efficiency and protocol/s of treatment of human subjects. References 1. Harman D. Aging: a theory based on free radical and radiation chemistry, “J Gerontol”, vol. 11, no. 3, pp. 298�300, 1956. 2. Harman D. The free radical theory of aging, “Antioxid Redox Signal”, vol. 5, no. 5, pp. 557�61, 2003. 3. Rosini M, Andrisano V, Bartolini M, et al. Rational approach to discover multipotent anti�Alzheimer drugs, “J Med Chem”, vol. 48, no. 2, pp. 360�3, 2005. 4. Marsili S, Salganik RI, Albright CD, et al. Cataract formation in a strain of rats selected for high oxidative stress, “Exp ACTUAL PROBLEMS OF TRANSPORT MEDICINE #4 (22), 2010 АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ  № 4 (22), 2010 г. 77 Eye Res”, vol. 79, no. 5, pp. 595�612, 2004. 5. Giblin FJ, McCready JP. The effect of inhibition of glutathione reductase on the detoxification of H2O2 by rabbit lens, “Invest Ophthalmol Vis Sci”, vol. 24, no. 1, pp. 113�8, 1983. 6. Garner B, Davies MJ, Truscott RJ. Formation of hydroxyl radicals in the human lens is related to the severity of nuclear cataract, “Exp Eye Res”, vol. 70, no. 1, pp. 81�8, 2000. 7. Avunduk AM, Yardimci S, Avunduk MC, Kurnaz L. Cataractous changes in rat lens following cigarette smoke exposure is prevented by parenteral deferoxamine therapy, “Arch Ophthalmol”, vol. 117, no. 10, pp. 1368�72, 1999. 8. Reddan J, Sevilla M, Giblin F, Padgaonkar V, Dziedzic D, Leverenz V. Tempol and deferoxamine protect cultured rabbit lens epithelial cells from H2O2 insult: insight into the mechanism of H2O2�induced injury, “Lens Eye Toxic Res”, vol. 9, no. 3�4, pp. 385�93, 1992. 9. Chevion M, Chuang L, Golenser J. Effects of zinc�desferrioxamine on Plasmodium falciparum in culture, “Antimicrob Agents Chemother”, vol. 39, no. 8, pp. 1902�5, 1995. 10. Karck M, Tanaka S, Berenshtein E, Sturm C, Haverich A, Chevion M. The push� and�pull mechanism to scavenge redox� active transition metals: a novel concept in myocardial protection, “J Thorac Cardiovasc Surg”, vol. 121, no. 6, pp. 1169�78, 2001. 11. Banin E, Berenshtein E, Kitrossky N, Pe’er J, Chevion M. Gallium� desferrioxamine protects the cat retina against injury after ischemia and reperfusion, “Free Radic Biol Med”, vol. 28, no. 3, pp. 315�23, 2000. 12. Chevion M, Berenshtein E, Chevion M, Berenshtein EChevion M, Berenshtein Es; United States Patent and Trademark Office, assignee. Gallium complexes for the treatment of free radical�induced diseases. USA patent 5,618,838. 1997. 13. Banin E, Lozinski A, Brady KM, et al. The potential of desferrioxamine�gallium as an anti� Pseudomonas therapeutic agent, “Proc Natl Acad Sci U S A”, vol. 105, no. 43, pp. 16761�6, 2008. 14. Ziment I. Acetylcysteine: a drug that is much more than a mucokinetic, “Biomed Pharmacother”, vol. 42, no. 8, pp. 513� 9, 1988. 15. Aruoma OI, Halliwell B, Hoey BM, Butler J. The antioxidant action of N� acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid, “Free Radic Biol Med”, vol. 6, no. 6, pp. 593�7, 1989. 16. Atkuri KR, Mantovani JJ, Herzenberg LA, Herzenberg LA. N�Acetylcysteine—a safe antidote for cysteine/glutathione deficiency, “Curr Opin Pharmacol”, vol. 7, no. 4, pp. 355�9, 2007. 17. Zafarullah M, Li WQ, Sylvester J, Ahmad M. Molecular mechanisms of N� acetylcysteine actions, “Cell Mol Life Sci”, vol. 60, no. 1, pp. 6�20, 2003. 18. Harada D, Anraku M, Fukuda H, et al. Kinetic studies of covalent binding between N�acetyl�L�cysteine and human serum albumin through a mixed�disulfide using an N�methylpyridinium polymer� based column, “Drug Metab Pharmacokinet”, vol. 19, no. 4, pp. 297� 302, 2004. 19. Koh AS, Simmons�Willis TA, Pritchard JB, Grassl SM, Ballatori N. Identification of a mechanism by which the methylmercury antidotes N� acetylcysteine and dimercaptopropanesulfonate enhance urinary metal excretion: transport by the renal organic anion transporter�1, “Mol Pharmacol”, vol. 62, no. 4, pp. 921�6, 2002. 20. Sivak JG, Yoshimura M, Weerheim J, Dovrat A. Effect of hydrogen peroxide, DL�propranolol, and prednisone on bovine lens optical function in culture, “Invest Ophthalmol Vis Sci”, vol. 31, no. 5, pp. 954�63, 1990. 21. Dovrat A, Sivak JG. Long�term lens organ culture system with a method for monitoring lens optical quality, АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ  № 4 (22), 2010 г. 78 ACTUAL PROBLEMS OF TRANSPORT MEDICINE #4 (22), 2010 “Photochem Photobiol”, vol. 81, no. 3, pp. 502�5, 2005. 22. Bloemendal H, Van de gaer K, Benedetti EL, Dunia I, Steely HT. Towards a human crystallin map. Two�dimensional gel electrophoresis and computer analysis of water�soluble crystallins from normal and cataractous human lenses, “Ophthalmic Res”, vol. 29, no. 4, pp. 177�90, 1997. 23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent, “J Biol Chem”, vol. 193, no. 1, pp. 265�75, 1951. 24. Di Benedetto A, Aragona P, Romano G, et al. Age and metabolic control influence lens opacity in type I, insulin� dependent diabetic patients, “J Diabetes Complications”, vol. 13, no. 3, pp. 159� 62, 1999. 25. Freel CD, Gilliland KO, Wesley Lane C, Giblin FJ, Joseph Costello M. Fourier analysis of cytoplasmic texture in nuclear fiber cells from transparent and cataractous human and animal lenses, “Exp Eye Res”, vol. 74, no. 6, pp. 689� 702, 2002. 26. Tkachov SI, Lautenschlager C, Ehrich D, Struck HG. Changes in the lens epithelium with respect to cataractogenesis: light microscopic and Scheimpflug densitometric analysis of the cataractous and the clear lens of diabetics and non�diabetics, “Graefes Arch Clin Exp Ophthalmol”, vol. 244, no. 5, pp. 596�602, 2006. 27. Lou MF. Redox regulation in the lens, “Prog Retin Eye Res”, vol. 22, no. 5, pp. 657�82, 2003. 28. Shin DM, Jeon JH, Kim CW, et al. Cell type�specific activation of intracellular transglutaminase 2 by oxidative stress or ultraviolet irradiation: implications of transglutaminase 2 in age�related cataractogenesis, “J Biol Chem”, vol. 279, no. 15, pp. 15032�9, 2004. 29. Tarwadi K, Agte V. Linkages of antioxidant, micronutrient, and socioeconomic status with the degree of oxidative stress and lens opacity in indian cataract patients, “Nutrition”, vol. 20, no. 3, pp. 261�7, 2004. 30. Holdiness MR. Clinical pharmacokinetics of N�acetylcysteine, “Clin Pharmacokinet”, vol. 20, no. 2, pp. 123� 34, 1991. 31. Cotgreave IA. N�acetylcysteine: pharmacological considerations and experimental and clinical applications, “Adv Pharmacol”, vol. 38, no., pp. 205� 27, 1997. 32. Schaal S, Beiran I, Bormusov E, Chevion M, Dovrat A. Zinc�desferrioxamine reduces damage to lenses exposed to hyperbaric oxygen and has an ameliorative effect on catalase and Na, K�ATPase activities, “Exp Eye Res”, vol. 84, no. 3, pp. 455�63, 2007. 33. Schaal S, Beiran I, Rozner H, et al. Desferrioxamine and zinc� desferrioxamine reduce lens oxidative damage, “Exp Eye Res”, vol. 84, no. 3, pp. 561�8, 2007. 34. Goralska M, Holley BL, McGahan MC. Identification of a mechanism by which lens epithelial cells limit accumulation of overexpressed ferritin H�chain, “J Biol Chem”, vol. 278, no. 44, pp. 42920�6, 2003. 35. Argirova M, Kleine�Reidick M, Breipohl W. Redox status of the eye lens: a regional study, “Cell Biochem Biophys”, vol. 41, no. 3, pp. 381�90, 2004. 36. Banin E, Morad Y, Berenshtein E, et al. Injury induced by chemical warfare agents: characterization and treatment of ocular tissues exposed to nitrogen mustard, “Invest Ophthalmol Vis Sci”, vol. 44, no. 7, pp. 2966�72, 2003. 37. Morad Y, Banin E, Averbukh E, Berenshtein E, Obolensky A, Chevion M. Treatment of ocular tissues exposed to nitrogen mustard: beneficial effect of zinc desferrioxamine combined with steroids, “Invest Ophthalmol Vis Sci”, vol. 46, no. 5, pp. 1640�6, 2005. 38. Samuni Y, Coffin D, DeLuca AM, et al. The use of Zn�desferrioxamine for radioprotection in mice, tissue culture, and isolated DNA, “Cancer Res”, vol. 59, no. 2, pp. 405�9, 1999. 39. Cable H, Lloyd JB. Cellular uptake and ACTUAL PROBLEMS OF TRANSPORT MEDICINE #4 (22), 2010 АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ  № 4 (22), 2010 г. 79 release of two contrasting iron chelators, “J Pharm Pharmacol”, vol. 51, no. 2, pp. 131�4, 1999. 40. Nagler R, Marmary Y, Golan E, Chevion M. Novel protection strategy against X� ray�induced damage to salivary glands, “Radiat Res”, vol. 149, no. 3, pp. 271�6, 1998. 41. Chevion M. Protection against free radical�induced and transition metal� mediated damage: the use of “pull” and “push” mechanisms, “Free Radic Res Commun”, vol. 12�13 Pt 2, no., pp. 691� 6, 1991. 42. Palmquist BM, Philipson B, Barr PO. Nuclear cataract and myopia during hyperbaric oxygen therapy, “Br J Ophthalmol”, vol. 68, no. 2, pp. 113�7, 1984. 43. Barbazetto IA, Liang J, Chang S, Zheng L, Spector A, Dillon JP. Oxygen tension in the rabbit lens and vitreous before and after vitrectomy, “Exp Eye Res”, vol. 78, no. 5, pp. 917�24, 2004. 44. Harocopos GJ, Shui YB, McKinnon M, Holekamp NM, Gordon MO, Beebe DC. Importance of vitreous liquefaction in age�related cataract, “Invest Ophthalmol Vis Sci”, vol. 45, no. 1, pp. 77�85, 2004. Реферат ЗАЩИТА ХРУСТАЛИКА ГЛАЗА ОТ ИМИТИРОВАННОЙ ДИАБЕТИЧЕСКОЙ КАТАРАКТЫ Эльвира Бормусова, Аува Доврат и Мордехай Чевион Катаракта является очень распрос� траненным осложнением при диабете. Мы подвергли бычие линзы действию вы� сокой концентрации глюкозы (450 мг.%) в условиях культуры в течение двух не� дель и исследовали повреждения в лин� зе и возможную защиту специальными антиоксидантами � N�ацетил�L�цистеи� ном (NAC) и цинковым комплексом desferrioxamine (DFO), селективным хела� тором для железа. Исследовалось опти� ческое качество линз и окисление эпите� лия с дихлорфлюоресцеином (DCF), а также оценивались изменения в 2D гель� электрофоретическом профиле белков хрусталика. Наблюдались изменения при высоком содержании глюкозы в фокус� ном расстоянии линзы, повышении окис� ления. NAC И Zn DFO почти полностью защищали линзы; DFO показывал только частичную защиту. Результаты демонст� рировали, что антиоксиданты могут за� щищають хрусталик повреждающего действия высоких концентраций глюко� зы. Комбинация NAC и ZnDFO действо� вала более эффективно. Ключевые слова: хрусталик, диабети� ческая катаракта Резюме ЗАХИСТ КРИШТАЛИКА ОКА ВІД ІМІТОВАНОЇ ДІАБЕТИЧНОЇ КАТАРАКТИ. Ельвіра Бормусова, Аува Доврат і Мордехай Чевіон Катаракта є дуже поширеним уск� ладненням при діабеті. Ми піддали криш� талик ока бика дії високої концентрації глюкози (450 мг %) в умовах культури протягом двох тижнів і досліджували по� шкодження в лінзі і можливий захист спеціальними антиоксидантами � N�аце� тил�L�цистеином (NAC) і цинковим комп� лексом desferrioxamine (DFO), селектив� ним хелатором для заліза. Досліджувала� ся оптична якість лінз і окислення епіте� лію з дихлорфлюоресцеїном (DCF), а та� кож оцінювалися зміни в 2D гель�елект� рофоретичному профілі білків криштали� ка. Спостерігалися зміни при високому вмісті глюкози у фокусній відстані лінзи, підвищенні окислення. NAC І Zn DFO май� же повністю захищали лінзи; DFO пока� зував тільки частковий захист. Результа� ти демонстрували, що антиоксиданти мо� жуть защищають кришталик від ушкоджу� вальної дії високих концентрацій глюко� зи. Комбінація NAC і ZNDFO діяла ефек� тивніше. Ключові слова: кришталик ока, діабе� тична катаракта Впервые поступила в редакцию 22.07.2010 г. Рекомендована к печати на заседании редакционной коллегии после рецензирования