Analysis of Al2O3 layers morphology and microstructure

The paper presents the characterization of obtaining Al2O3 oxide layers on aluminium AlMg2 alloy as a result of hard anodizing by the electrolytic method in a three-component electrolyte. The Al2O3 layers obtained on the AlMg2 alloy in the three-component SBS electrolyte were subjected to detailed m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2010
1. Verfasser: Skoneczny, W.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-механічний інститут ім. Г.В. Карпенка НАН України 2010
Schriftenreihe:Фізико-хімічна механіка матеріалів
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/31772
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Analysis of Al2O3 layers morphology and microstructure / W Skoneczny // Фізико-хімічна механіка матеріалів. — 2010. — Т. 46, № 2. — С. 130-135. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-31772
record_format dspace
spelling irk-123456789-317722012-03-18T12:26:58Z Analysis of Al2O3 layers morphology and microstructure Skoneczny, W. The paper presents the characterization of obtaining Al2O3 oxide layers on aluminium AlMg2 alloy as a result of hard anodizing by the electrolytic method in a three-component electrolyte. The Al2O3 layers obtained on the AlMg2 alloy in the three-component SBS electrolyte were subjected to detailed microstructural investigations (by means of a scanning electron microscope, SEM). By applying X-ray diffraction, examination of the obtained oxide layers phase compositions was carried out. It was found that the Al2O3 oxide layers obtained via hard anodizing in a three-component electrolyte are amorphous. The chemical composition of the Al2O3 layers is presented and compared to the results of stechiometric calculations for the Al2O3 layer. Surface morphologies of the obtained oxide layers are characterized and discussed in nano- and microscopic scales. The surface morphologies of the layers obtained have a significant influence on their properties, including their susceptibility to further modification (e.g. to incorporation of graphite), their wear resistance and the capacity for sorption of lubricants. Описано спосіб отримання оксидних покривів на основі Al2O3, сформованих на підкладці сплаву AlMg2 анодуванням у трикомпонентному електроліті. Мікроструктурні особливості шарів Al2O3 досліджено за допомогою сканівного електронного мікроскопа (SEM). Для вивчення фазового складу покривів використовували рентгенодифракційний аналіз. Виявлено, що оксидні покриви з Al2O3, отримані анодним оксидуванням у трикомпонентному електроліті, аморфні. Подано хімічний склад покривів та порівняно його з результатами стехіометричних обчислень. Проаналізовано морфологію поверхні оксидних покривів та обговорено їх поведінку на нано- та макрорівнях. Морфологія поверхні суттєво змінює інші властивості, зокрема, їх здатність до подальшої модифікації (включення графіту), зносотривкість та схильність до сорбції компонентів мастил. Описан способ получения оксидных покрытий на основе Al2O3, сформированных на подкладке сплава AlMg2 анодированием в трехкомпонентном электролите. Микроструктурные особенности слоев Al2O3 исследовано с помощью сканирующего электронного микроскопа (SEM). Для изучения фазового состава покрытий использован рентгенодифракионный анализ. Обнаружено, что оксидные покрытия из Al2O3, полученные анодным оксидированием в трехкомпонентном электролите, аморфны. Наведен химический состав покрытий и сравнено его с результатами стехиометрических расчетов. Проанализирована морфология поверхности оксидынх покрытий и обсуждено их поведение на нано- и макроуровнях. Морфология поверхности существенно изменяет другие свойства, в частности, их способность к дальнейшей модификации (включения графита), износостойкость и склонность к сорбции компонентов масла. 2010 Article Analysis of Al2O3 layers morphology and microstructure / W Skoneczny // Фізико-хімічна механіка матеріалів. — 2010. — Т. 46, № 2. — С. 130-135. — Бібліогр.: 8 назв. — англ. 0430-6252 http://dspace.nbuv.gov.ua/handle/123456789/31772 en Фізико-хімічна механіка матеріалів Фізико-механічний інститут ім. Г.В. Карпенка НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The paper presents the characterization of obtaining Al2O3 oxide layers on aluminium AlMg2 alloy as a result of hard anodizing by the electrolytic method in a three-component electrolyte. The Al2O3 layers obtained on the AlMg2 alloy in the three-component SBS electrolyte were subjected to detailed microstructural investigations (by means of a scanning electron microscope, SEM). By applying X-ray diffraction, examination of the obtained oxide layers phase compositions was carried out. It was found that the Al2O3 oxide layers obtained via hard anodizing in a three-component electrolyte are amorphous. The chemical composition of the Al2O3 layers is presented and compared to the results of stechiometric calculations for the Al2O3 layer. Surface morphologies of the obtained oxide layers are characterized and discussed in nano- and microscopic scales. The surface morphologies of the layers obtained have a significant influence on their properties, including their susceptibility to further modification (e.g. to incorporation of graphite), their wear resistance and the capacity for sorption of lubricants.
format Article
author Skoneczny, W.
spellingShingle Skoneczny, W.
Analysis of Al2O3 layers morphology and microstructure
Фізико-хімічна механіка матеріалів
author_facet Skoneczny, W.
author_sort Skoneczny, W.
title Analysis of Al2O3 layers morphology and microstructure
title_short Analysis of Al2O3 layers morphology and microstructure
title_full Analysis of Al2O3 layers morphology and microstructure
title_fullStr Analysis of Al2O3 layers morphology and microstructure
title_full_unstemmed Analysis of Al2O3 layers morphology and microstructure
title_sort analysis of al2o3 layers morphology and microstructure
publisher Фізико-механічний інститут ім. Г.В. Карпенка НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/31772
citation_txt Analysis of Al2O3 layers morphology and microstructure / W Skoneczny // Фізико-хімічна механіка матеріалів. — 2010. — Т. 46, № 2. — С. 130-135. — Бібліогр.: 8 назв. — англ.
series Фізико-хімічна механіка матеріалів
work_keys_str_mv AT skonecznyw analysisofal2o3layersmorphologyandmicrostructure
first_indexed 2025-07-03T12:14:02Z
last_indexed 2025-07-03T12:14:02Z
_version_ 1836627885103775744
fulltext 130 Ô³çèêî-õ³ì³÷íà ìåõàí³êà ìàòåð³àë³â. – 2010. – ¹ 2. – Physicochemical Mechanics of Materials ANALYSIS OF Al2O3 LAYERS MORPHOLOGY AND MICROSTRUCTURE W. SKONECZNY University of Silesia, Faculty of Computer Science and Materials Science, Poland The paper presents the characterization of obtaining Al2O3 oxide layers on aluminium AlMg2 alloy as a result of hard anodizing by the electrolytic method in a three-component electrolyte. The Al2O3 layers obtained on the AlMg2 alloy in the three-component SBS electrolyte were subjected to detailed microstructural investigations (by means of a scanning electron microscope, SEM). By applying X-ray diffraction, examination of the obtained oxide layers phase compositions was carried out. It was found that the Al2O3 oxide layers obtained via hard anodizing in a three-component electrolyte are amorphous. The chemical composition of the Al2O3 layers is presented and compared to the results of stechiometric calculations for the Al2O3 layer. Surface morphologies of the obtained oxide layers are characterized and discussed in nano- and microscopic scales. The surface morphologies of the layers obtained have a significant influence on their properties, including their susceptibility to further modification (e.g. to incorporation of graphite), their wear resistance and the capacity for sorption of lubricants. Keywords: nano- and microstructure, surface layer Al2O3, surface characterization, scanning electron microscopy (SEM), X-ray diffraction. According to many authors [1–3] one of the most important research directions in the field of new constructional materials in machine building are materials resistant to operation at high temperatures (above 1000°C). Such materials will be necessary for, e.g., car engines of new type, which must meet new requirements concerning fuel consumption. Most probably, these will be ceramic materials or materials covered with special coatings. A characteristic feature of ceramic materials is their insignificant wear and a low friction coefficient when co-working with other materials in the presence of a lubricant. The most recent world trends in the machine building sector, in particular with reference to piston machines, are heading to reduce their lubrication and cooling. A question arises then, what the upper layer of a ceramic material should be like in order to maintain the low wear and frictional resistance. The Al2O3 layers belong to ceramic layers and, in the opinion of many authors who deal with the problems of upper layers, the nearest era of future construction materials will belong to ceramic materials. One of the most popular ceramic materials is the aluminium oxide Al2O3 which, with the development of technology, has found a number of new application areas over the past years. Ceramic materials have physicochemical properties which predispose them to a vast range of applications in structures working at high temperatures, i.e. in combustion engines, gas turbines and piston compressors. The possibility of covering aluminium and its alloys with oxide coatings has resulted in an enhanced application of these materials, especially for: Контактна особа: W. SKONECZNY, e-mail: ladyslaw.skoneczny@us.edu.pl 131 – components of couplings, transmissions, guides and slide ways; – components in automatics and hydraulic controllers; – rolling bearing races in a couple: steel – Al2O3; – engine pistons and compressor cylinders sliding surfaces. Experimental procedure. A new significant problem (due to the possibility of shaping materials properties in a wide range) is the oxide layer on aluminium obtained by means of hard anodizing. The basis for the hard anodizing of aluminium is the fact that the coating is formed at the expense of mass decrement of the substrate which turns into the Al2O3 compound. The electrolytic processes of obtaining oxide layers on aluminium are conducted in electrolyte solutions which partly dissolve the layer being formed. Therefore, an essential amount of the electric energy consumed for the production of an oxide layer on aluminium surface will not actually correspond to the theoretical calculations. The most widespread method so far has been anodic coating in a sulfuric or oxalic acid at lowered temperatures, from –10°C to +5°C, depending on the type of electrolyte. This required the erection of necessary installations to lower the electrolyte temperature for surface treatment which was connected with high capital expenditure. Therefore, researches on anodizing at elevated temperatures have been conducted for years. The purpose of the researches is to apply such electrolyte that would make it possible to obtain hard oxide layers at room temperatures. Elimination of the electrolyte cooling stage would considerably reduce the cost of oxide coatings production. It would be possible if hard anodizing is conducted at temperatures of 20...40°C and higher. At the same time coatings with better properties could be obtained owing to the Al203 oxide phase transition at a temperature of 20°C. An increase in temperature accompanying the oxidation process is conducive to etching aluminium oxide fibers. In consequence, an oxide cell of a more regular (ideal) structure is formed [4–7]. The increasing electrolyte temperature has also an effect on the oxide coating porosity [1, 4, 8]. Porosity of the obtained oxide layers is of major importance for their utilization for sliding cooperation with plastic materials. The anodizing method developed by the author does not require cooling and the process heat is used for controlling the properties of the oxide layers obtained. Controlling of anodizing parameters allows, within some limits, programming the selected functional properties of future upper layers [3–4]. According to the method proposed, oxidation is conducted in a three-component water electrolyte. Hard anodizing was conducted in a three-component electrolyte called SBS, consisting of: sulfuric acid – H2SO4; oxalic acid – (COOH)2; succinic acid – (CH2)2(COOH)2. The process control factors are: current density – 2...4 A/dm2; temperature of electrolyte – 293...313 K; oxidation time – 20...80 min. Before the anodic oxidation process, the surfaces of specimens were ground with abrasive papers of different gradation, always using the same technology, in order to obtain an identical accuracy class for the precoat (irregularities height Ra = 0.75 ± 0.15 µm). Results and discussion. Microstructure and morphology of Al2O3 layers surfaces. The structure of oxide layers is one of the main factors determining their chemical, physical, surface and mechanical properties. Therefore the control of the structure of oxide layers of Al and its alloys is very important for the electrolytic 132 method of producing some machine parts. In this connection the knowledge of the formation mechanism of oxide layers obtained via the hard anodizing method is essential. Examination of the microstructure and morphology of Al2O3 oxide layers obtained via hard anodizing was conducted using a scanning electron microscope, Philips X130/ESEM/EDAX. Based on the outcomes of the research on obtaining oxide layers on aluminium in the first few seconds of electrodeposition, it can be affirmed that the initially active places are roughness peaks of the substrate metal surface and crystal ribs as well as the places with crystal lattice deformations and other defects of the anode surface. The effect of the oxide layer growth during the first several seconds of anodizing is the formation of structure of dendrites. A conclusion can be drawn based on this investigation that the size and quantity of substrate metal crystals, as well as their form and orientation, i.e. their mutual arrangement, are of decisive importance for obtaining the oxide layer final structure. The more are the substrate metal crystals with a given growth direction in relation to the total number of crystals, the higher is the orientation degree or the texture improvement degree in the oxide layer obtained. So, it can be concluded that both the texture and the crystal size are important factors, determining the properties of an oxide layer obtained via hard anodizing. The next stage of the layers formation mechanism is transformation of the dendritic structure into a co- lumnar (fibrous) one. Such transforma- tion takes place as a result of the applied electric field which is directed from the anode to the cathode and as a result of another factor, i.e. the abstraction direc- tion of the heat emitted very intensively in the oxide layers growth regions. The formed columnar (fibrous) structures, oriented as a result of the electric field influence and the heat abstraction direc- tion from places of oxide layers growth (substrate), are presented in Fig. 1. The structure of oxide layers depends, to a large degree, on the type and concentration of electrolyte as well as on the conditions in which the hard anodizing process is conducted. The anodic density of current applied during the electrolytic process has a significant influence on the structure of anodic oxide coatings. It influences the process speed which is strictly correlated with the growth and size of crystals in the coating. Also, the temperature of electrolyte affects the formation of coatings of a different grain size, which results from changes in the conditions of secondary oxide dissolution. The investigation results of the morphology of Al2O3 layers obtained via hard anodizing are presented in Figs. 2. Chemical and phase compositions of Al2O3 layers. The analysis of the chemical composition of the Al2O3 layers obtained via the electrochemical method in a three-component SBS electrolyte was conducted using a scanning electron microscope Philips X130 with an EDS attachment. The analysis of the chemical composition of the Al2O3 layer on a transverse microsection has shown that only in Fig. 1. Columnar (fibrous) structure of the Al2O3 layer. 133 the central zone, according to thickness, the chemical composition corresponded to the stechiometric calculations. The chemical composition measurements carried out in the middle part of the layer showed 52.93% aluminium content and a 47.07% oxygen content. According to the stechiometric calculations, the Al2O3 layer should have the following chemical composition: 52.92% Al and 47.08% of oxygen. Fig. 2. Nanopores (a–c), micropores (d–f) and developed morphology (g–i) of the Al2O3 layer obtained via hard anodizing: j = 2 A/dm2, t = 60 min; b – j = 4 A/dm2, t = 40 min; c – j = 4 A/dm2, t = 60 min. Results of the chemical composition analysis of the Al2O3 layer in the middle zone are presented in Fig. 3. According to the conducted research, when approaching the Al substrate, the content of oxygen decreases and the Al content grows, whereas when receding from the metal substrate, the oxygen content in the layer increases and the Al content decreases. The research results regarding the changes in oxygen and aluminium contents along the Al2O3 layer thickness are shown in Fig. 4. Fig. 3. Fig. 4. Fig. 3. Results of the Al2O3 layer chemical composition analysis. Fig. 4. Change in oxygen and aluminium contents across the Al2O3 layer thickness: ♦ – O; ■ – Al. 134 A DRON-2 diffractometer was used for the X-ray phase analysis of the obtained Al2O3 layers. The X-ray diffractogram of the Al2O3 layer obtained on a crystalline AlMg2 aluminium alloy is presented in Fig. 5. All diffraction reflexes in the figure originated from the metal substrate. The X-ray phase analysis has shown that the obtained Al2O3 layers are amorphous. Measurements of the Al2O3 layers microhardness done on transverse microsections have shown that as the oxygen and aluminium contents change, the microhardness (µHV) decreases. Examination of the layers microhardness was conducted using a Neophot 2 microscope with a Hanemann’s attachment (microhardness tester). The results of distribution of the Al2O3 layer microhardness according to the thickness are presented in Fig. 6. Fig. 7. Fig. 8. Fig. 7. X–ray diffraction pattern of oxide layer. Fig. 8. Distribution of the Al2O3 layer microhardness according to the thickness: ♦ – µHV. CONCLUSIONS On the basis of the researches on the morphology of the nano- and micro- structure, the chemical composition and phase composition of Al2O3 layers obtained on the AlMg2 aluminium alloy via hard anodizing in a three-component SBS elect- rolyte, as well as using the theoretical analysis results, it can be concluded that: – the Al2O3 layers obtained on the AlMg2 alloy as a result of hard anodizing are completely amorphous; – the Al2O3 layers obtained as a result of hard anodizing have a fibrous structure of amorphous layers; – the Al2O3 layers obtained in the SBS electrolyte have a chemical composition similar to the stechiometric calculations for Al2O3; – the Al2O3 layers have a developed surface morphology being the result of a fibrous structure (the effect of which are the nanopores formed at the contact points of aluminium oxide fibers) and of the secondary dissolution of electrolyte as well as energetic interferences (micropores being the effect). РЕЗЮМЕ. Описано спосіб отримання оксидних покривів на основі Al2O3, сформова- них на підкладці сплаву AlMg2 анодуванням у трикомпонентному електроліті. Мікрост- руктурні особливості шарів Al2O3 досліджено за допомогою сканівного електронного мік- роскопа (SEM). Для вивчення фазового складу покривів використовували рентгенодиф- ракційний аналіз. Виявлено, що оксидні покриви з Al2O3, отримані анодним оксидуван- ням у трикомпонентному електроліті, аморфні. Подано хімічний склад покривів та порів- няно його з результатами стехіометричних обчислень. Проаналізовано морфологію по- верхні оксидних покривів та обговорено їх поведінку на нано- та макрорівнях. Морфоло- 135 гія поверхні суттєво змінює інші властивості, зокрема, їх здатність до подальшої модифі- кації (включення графіту), зносотривкість та схильність до сорбції компонентів мастил. РЕЗЮМЕ. Описан способ получения оксидных покрытий на основе Al2O3, сформи- рованных на подкладке сплава AlMg2 анодированием в трехкомпонентном электролите. Микроструктурные особенности слоев Al2O3 исследовано с помощью сканирующего электронного микроскопа (SEM). Для изучения фазового состава покрытий использован рентгенодифракионный анализ. Обнаружено, что оксидные покрытия из Al2O3, полу- ченные анодным оксидированием в трехкомпонентном электролите, аморфны. Наведен химический состав покрытий и сравнено его с результатами стехиометрических расчетов. Проанализирована морфология поверхности оксидынх покрытий и обсуждено их пове- дение на нано- и макроуровнях. Морфология поверхности существенно изменяет другие свойства, в частности, их способность к дальнейшей модификации (включения графита), износостойкость и склонность к сорбции компонентов масла. 1. Skoneczny W. Oxide Layers obtained using the electrolytic method on AlMg2 aluminium alloy // Inżynieria Chemiczna I Procesowa. – 1999. – 20. – P. 363–373. 2. Ravel A., Tsameret Z. K., and Grossman E. Surface characterization of thin layers of aluminium oxide // Surface and Coatings Technology. – 1996. – 88. – P. 103–111. 3. Skoneczny W. and Tokarz A. Mechanizm of destructive changes in oxide-covered surfaces caused by friction // Wear. – 1993. – 169. – P. 209–14. 4. Kmita T., Skoneczny W. Warstwy gradientowe na stopach aluminium otrzymywane metodą elektrolityczną // Inżynieria Chemiczna i Procesowa. – 2005. – 26. – S. 735–744. 5. De Leat J., Terryn H., and Vereecken J. Development of an optical model for steady state porous anodic films on aluminium formed in phosphoric acid // Thin Solid Films. – 1998. – 320. – P. 241–252. 6. Skoneczny W. Model of structure of Al2O3 layer obtained via hard anodising method // Surface Engineering. – 2001. – 17. – P. 389–392. 7. Sealing of anodic films obtained in oxalic acid baths / V. Lopez, E. Otero, A. Bautista, J. A. Gonzalez // Surface and Coatings technology. – 2000. – 124. – P. 76–84. 8. Aluminium oxide film for 2D photonic structure: room temperature formation / I. Mikulskas, S. Juodkazis, A. Jagminas et al. // Optical Materials. – 2001. – 17. – P. 343–346. Received 30.04.2008