Collection and level of homeostatic ions in plant tissues depending on their ages

Застосовуючи методи іоноселективних електродів у поєднанні з методом атомно-адсор-бційної спектроскопії встановлено градієнти розподілу основних мінеральних елементів та активність їх іонів у рослинах кукурудзи, які відрізняються за станом тканин. Мето¬дом ядерно-магнітного резонансу також встановле...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Brook, E., Bakhanashvili, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут ботаніки ім. М. Г. Холодного НАН України 2006
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/3511
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Collection and level of homeostatic ions in plant tissues depending on their ages / E. Brook, M. Bakhanashvili // Укр. ботан. журн. — 2006. — 63, № 2. — С. 272-278. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-3511
record_format dspace
spelling irk-123456789-35112009-08-05T16:09:50Z Collection and level of homeostatic ions in plant tissues depending on their ages Brook, E. Bakhanashvili, M. Фізіологія, біохімія та клітинна біологія Застосовуючи методи іоноселективних електродів у поєднанні з методом атомно-адсор-бційної спектроскопії встановлено градієнти розподілу основних мінеральних елементів та активність їх іонів у рослинах кукурудзи, які відрізняються за станом тканин. Мето¬дом ядерно-магнітного резонансу також встановлена активність води у різноякісних тка¬нинах. Показано, що періодам з найактивнішою ростовою функцією відповідає підви-щена активність органогенних фонів у тканинах. Встановлено набір та рівень деяких гомеостатичних іонів, а також підвищена активність води у молодих тканинах. Обговорюється здатність елементів переходити від зв’язаного стану в активну іонну форму, що забезпечує можливість їх участі у формуванні регулярних систем швидкого реагування у клітинах та в разі міжклітинних взаємодій шляхом миттєвих змін pH, rH, мембранного потенціалу, які визначають проникність мембран та активність ферментів. Применяя методы ионоселективных электродов в сочетании с методом атомно-адсорбционной спектроскопии, установлены градиенты распределения основных минеральных элементов и активности их ионов в растениях кукурузы, различающихся функциональным состоянием тканей. Методом ядерно-магнитного резонанса определена также активность воды в разнокачественных тканях. Показано, что периодам с наиболее активной ростовой функцией соответствует повышенная активность органогенных ионов в тканях. Установлены набор и уровень некоторых гомеостатических ионов, а также повышенная активность воды в молодых новообразующихся тканях. Обсуждается способность элементов переходить из связанного состояния в активную ионную форму, что обеспечивает возможность их участия в формировании регуляторных систем быстрого реагирования в клетках и при межклеточных взаимодействиях за счет мгновенных изменений pH, rH, мембранного потенциала, определяющих проницаемость мембран и активность ферментов. 2006 Article Collection and level of homeostatic ions in plant tissues depending on their ages / E. Brook, M. Bakhanashvili // Укр. ботан. журн. — 2006. — 63, № 2. — С. 272-278. — Бібліогр.: 14 назв. — англ. 0372-4123 http://dspace.nbuv.gov.ua/handle/123456789/3511 en Інститут ботаніки ім. М. Г. Холодного НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Фізіологія, біохімія та клітинна біологія
Фізіологія, біохімія та клітинна біологія
spellingShingle Фізіологія, біохімія та клітинна біологія
Фізіологія, біохімія та клітинна біологія
Brook, E.
Bakhanashvili, M.
Collection and level of homeostatic ions in plant tissues depending on their ages
description Застосовуючи методи іоноселективних електродів у поєднанні з методом атомно-адсор-бційної спектроскопії встановлено градієнти розподілу основних мінеральних елементів та активність їх іонів у рослинах кукурудзи, які відрізняються за станом тканин. Мето¬дом ядерно-магнітного резонансу також встановлена активність води у різноякісних тка¬нинах. Показано, що періодам з найактивнішою ростовою функцією відповідає підви-щена активність органогенних фонів у тканинах. Встановлено набір та рівень деяких гомеостатичних іонів, а також підвищена активність води у молодих тканинах. Обговорюється здатність елементів переходити від зв’язаного стану в активну іонну форму, що забезпечує можливість їх участі у формуванні регулярних систем швидкого реагування у клітинах та в разі міжклітинних взаємодій шляхом миттєвих змін pH, rH, мембранного потенціалу, які визначають проникність мембран та активність ферментів.
format Article
author Brook, E.
Bakhanashvili, M.
author_facet Brook, E.
Bakhanashvili, M.
author_sort Brook, E.
title Collection and level of homeostatic ions in plant tissues depending on their ages
title_short Collection and level of homeostatic ions in plant tissues depending on their ages
title_full Collection and level of homeostatic ions in plant tissues depending on their ages
title_fullStr Collection and level of homeostatic ions in plant tissues depending on their ages
title_full_unstemmed Collection and level of homeostatic ions in plant tissues depending on their ages
title_sort collection and level of homeostatic ions in plant tissues depending on their ages
publisher Інститут ботаніки ім. М. Г. Холодного НАН України
publishDate 2006
topic_facet Фізіологія, біохімія та клітинна біологія
url http://dspace.nbuv.gov.ua/handle/123456789/3511
citation_txt Collection and level of homeostatic ions in plant tissues depending on their ages / E. Brook, M. Bakhanashvili // Укр. ботан. журн. — 2006. — 63, № 2. — С. 272-278. — Бібліогр.: 14 назв. — англ.
work_keys_str_mv AT brooke collectionandlevelofhomeostaticionsinplanttissuesdependingontheirages
AT bakhanashvilim collectionandlevelofhomeostaticionsinplanttissuesdependingontheirages
first_indexed 2025-07-02T06:46:57Z
last_indexed 2025-07-02T06:46:57Z
_version_ 1836516709970739200
fulltext ISSN 0372-4123. Ukr. Botan. Journ., 2006, vol. 63, ¹ 2272 EMIL BROOK, MARY BAKHANASHVILI Faculty of Life Sciences, Bar-Ilan University Ramat-Gan 52900, Israel COLLECTION AND LEVEL OF HOMEOSTATIC IONS IN PLANT TISSUES DEPENDING ON THEIR AGES K e y w o r d s: homeostasis, ion activity, atomic-absorption spectroscopy, ion-selective ionometry Abstract Ionic composition and its peculiarities in the homeostasis of maize stem growth are considered at different stages of ontogenesis. The content of mineral elements and the activity of their ions are studied in tissues of different stem segments varying in their growth rate. Observations show that the stem growth function and the activity of ions are closely related. The period of peak growth function, especially in the first stage of ontogenesis, is characterized by an increase of ionic activity in tissues of a growing stem. The acropetal and basipetal distribution gradients of elements and the activity of their ions are determined for different organs of maize. The ionic state and the state of water in cells of maize stem tissues are found to be dependent on the functional load. Guidelines for further studies of ionic homeostasis are drawn up to elucidate the mechanism behind the formation of rapid response systems in plants. Introduction To explain the mechanisms of plant growth, contemporary physical and chemical biology resorts to molecular genetics and biochemistry of macromolecules. Analyzing the results of studies, we can infer that changes in the level and rate of biosynthesis of proteins and their respective RNAs may be triggered by certain earlier events, such as changes in the parameters of ionic homeostasis in cells [2, 5, 7, 10, 12]. Cellular ionic homeostasis governs the activities and concentrations of organic and inorganic ions and water content [9]. Organic ions (SO4 2-, NO3¯, H +, OH¯, PO4 2-, etc.) and polyamines can appear and disappear in metabolic processes, whereas inorganic ions (K+, Na+, Ca²+, Mg²+, etc.) can only take part in the transport or change their activity. Ionic activity means the effective concentration of ions-a in solution, which is usually less than the analytical concentration and equal to a = c•f, where c is the concentration and f is the coefficient of activity, which depends on the ionic strength of the solution and approaches 1 in extremely diluted solutions. The ionic activity of organic elements is usually taken into account when ions of these elements go from their bound state in organic or organomineral compounds to their free active state as ions of cytosol or xylem juice. © EMIL BROOK, MARY BAKHANASHVILI, 2006 ISSN 0372-4123. Óêð. áîòàí. æóðí., 2006, ò. 63, ¹ 2 273 Ionic activity is a factor vital for many important physiological functions. Changes in its level have far-reaching consequences in the functioning of an organism as a whole. The basic mineral elements participate in the synthesis of organic compounds in plant cells. On the one hand, they are the chemical elements that make up these organic compounds. On the other hand, they act as allosteric effectors and nonspecific agents, thus shaping the physical and chemical properties of ferments and their conformation without necessarily being their constituents. However, for a long time, the ideas about the impact of mineral elements on the colloid-chemical state and organization of protoplasts were not covered by the traditional approach in plant physiology. Even though there is certain success in the studies of ionic flows, ionic gradients, and ionic pumps, which play a leading role in energy and information exchange within the cell, not much is known about the basic parameters of ionic homeostasis and its peculiarities in plants [8, 14]. This is especially true for the ionic activity and ionic state (free or bound) of various elements and the possibility of their transformation during the processes of growth and development. Reviewing the recent studies of ionic homeostasis in animal cells [5, 6] and plant cells, we can clearly discern two main lines of research in this field [4, 11, 13]. The first estimates the role of parameters of ionic composition in the adaptive changes of membrane properties, the formation of action potential, changes of ionic equilibrium, osmoregulation, oxidation and reduction conditions, etc. The second line studies the relationship between the dynamic properties of ionic homeostasis and the system of replication of informational macromolecules. To understand how the parameters of ionic homeostasis affect the growth process, it is necessary to carefully and comprehensively investigate the acropetal and basipetal distribution gradients of the total content of basic macroelements and the activity of their ions in different organs and tissues of plants, depending on the age of tissues and the functional loads during the process of growth and development. The copious present-day literature on plant physiology still lacks reliable in vitro and in vivo data on the total content of different elements and the activity of their ions in plant tissues. The purpose of this study is to determine the parameters of ionic homeostasis in maize and their peculiarities in tissues with various functions, such as division, elongation, and differentiation in the process of growth. The acropetal and basipetal distribution gradients of nitrogen, phosphorus, potassium, calcium, and magnesium mineral in plant tissues and organs were determined and compared with the gradients of total content of these elements and their ionic activity. In new tissues of maize, we saw high ionic activity of Ca2+, Mg2+, and K+ in the division phase. These tissues were characterized by changing the phase of water. The main objective of the present study was to confirm the already measured homeostatic total content and ionic activity of different elements in certain plant organs and tissues and carry out mathematical analysis of data as described by Afifi and Eizen [1]. ISSN 0372-4123. Ukr. Botan. Journ., 2006, vol. 63, ¹ 2274 Materials and Methods In our field, vegetative, and laboratory experiments, we studied the «Dnepropetrovksaya 247» variety of maize. The samples of maize were selected in the period when stem internodes appear during intercalary growth. The modern methods of atomic-absorption spectroscopy (AAS) and ion- selective ionometry were used for analyzing the general content and ion activity of mineral nutrition elements in plant samples. We used magnetic resonance imaging (MRI) to study the phase of water in tissues of the maize as described by Buzukashvili and Gordetsky [3]. Results For many years, we studied the correlation between the growth function of maize stem and the total content of different elements and the activity of their ions. The studies show that despite the high heterogeneity of the total content of elements in stem tissues, stem growth function is closely related with ionic activity. Indeed, the curve of ionic activity in the ontogenesis of maize stem (Fig. 1, a) and the curve of growth (Fig. 1, b) have the same S-like shape but are of opposite signs. Fig. 1. Correlation between ion activity (a) and growth (b) in tissues of maize stem at different stages of ontogenesis ISSN 0372-4123. Óêð. áîòàí. æóðí., 2006, ò. 63, ¹ 2 275 Fig. 2. Acropetal and basipetal gradients of distribution of basic macroelements in organs of maize plants dependent on age m g 1 0 0 g d ry m a s s m g 1 0 0 g d ry m a s s m g 1 0 0 g d ry m a s s m g 1 0 0 g d ry m a s s m g 1 0 0 g d ry m a s s m g 1 0 0 g d ry m a s s m g 1 0 0 g d ry m a s s m g 1 0 0 g d ry m a s s The peak growth period is characterized by the increasing activity of ions in tissues of the growing stem, especially in the first stage of ontogenesis. We measured the acropetal and basipetal gradients of distribution of basic mineral elements (Fig. 2) and the activity of their ions (Table) in organs of different ages and in tissues of the growth zones of maize stem internodes with different functional states of cells (such as division, elongation, and differentiation). The data presented in Fig. 2 show that, unlike the basipetal gradients of nitrogen and phosphorus in maize organs, the acropetal gradients of the total content distribution of calcium, magnesium, and potassium are not always the same within tissues of the same age. Moreover, the widely accepted concept that calcium and magnesium are elements with acropetal distribution gradients, was not confirmed in the analysis of the ionic activity of these elements. We can see significant changes in the total content and the ionic activity of calcium and magnesium in internode cells undergoing division, elongation, and differentiation at all ages and in all tiers of the stem. These changes suggest that calcium and magnesium should be considered with more discretion as poorly reutilized elements. ISSN 0372-4123. Ukr. Botan. Journ., 2006, vol. 63, ¹ 2276 Discussion The results of our experiments show the lack of correlation between the total content of elements and the ionic activity in tissue cells independent of age or functional state. Elevated activity of Ca2+ , Mg2+ , and K+ ions was detected in tissues those cells which were predominantly in the phase of division. These tissues were also characterized by changing the phase of water (Fig. 3). In actively dividing cells (the meristem), we found water that did not freeze at temperatures below –40 °C. In cells of the differentiation and elongation zones, water freezes at –9 °C and –29 °C, respectively. Phase transitions of water and changes in the mobility of water molecules can be attributed to changes in ionic activity in actively dividing cells, especially the activity of ions with a high affinity to hydration. Cells of the elongation zone were also characterized by sharply increasing activity of Ca2+ ions, although the total content of this element in this zone was quite low. This may be associated with the participation of calcium ions in the exchange of hydrogen ions during the elongation of cell shells. Fig. 3. MRI spectrum of water tissue cells of 5th (above) and 7th (below) maize internodes with different functional loads: a — cells of differentiation zone; b — cells of division zone (above) and elongation zone (below) ISSN 0372-4123. Óêð. áîòàí. æóðí., 2006, ò. 63, ¹ 2 277 The results show that for calcium, the main part of which is in cells and especially in their shells and cytoplasm membranes, which is in the bound state, very sharp changes into the ionic form dependent on growth activity, was observed. This ability of elements to change from the bound state to the active form enables their participation in the formation of a regulatory rapid response system in cells during cell interactions through abrupt changes of pH, rH, and membrane potential, which determine the permeability of membranes and the activity of ferments. Changes in the ionic activity may underlie the formation of action potentials and cause the rapid response and coordination of physiological functions of a whole organism in quickly changing or extreme conditions. The facts of significant violations in the behavior of parameters of ionic homeostasis, such as the increased activity of univalent and bivalent ions in actively dividing cells, deserve special attention and further investigation. Stresses and violations of the vital functions of organisms are accompanied by abrupt changes in the parameters of ionic homeostasis, which lead to the reduplication of macromolecules and division of cells. All these aspects of ionic homeostasis in plants are not studied enough and call for further investigation. 1. Afifi A., Eizen S. Systematic Analysis with the Employment of Computer. — M.: Nauka, 1992. 2. Buzukashvili E. Gradients of localization and activity of ions, main macroelements in the organs and tissue of maize depending of their ages and functional role // Report Academy of Science of Ukraine. — 1986. — B, N 3. — P. 51—54. 3. Buzukashvili E., Gordetsky A. Methodical aspects of researches on the peculiarities of ionic homeostasis and conditions of water and plant tissues // Ukr. Botan. Journ. — 1987. — 44, N 4. — P. 25—29. 4. Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis // Planta. — 2001. — 212. — P. 475—486 5. Kafiani K., Malenkov A. The role of the ion homeostasis of cell in phenomenon of growth and development // Successes of Modern Biology. — Moscow, 1976. — 81. — P. 445—463. 6. Lane M., Gardner DK. Regulation of ionic homeostasis by mammalian embryos // Semin Reprod Med. — 2000. — 18. — P. 195—204. 7. Lott JNA., Greenwood JS., Batten GD. Mechanisms and regulation of mineral nutrient storage during seed development // Kigel J., Galili G. (eds.). Seed development and Ggermination. — New York: Marcel Dekker, 1995. — P. 215—235. 8. Maeshima M. Tonoplast transporters: Organization and function // Annu Rev. Plant. Physiol. Plant. Mol. Biol. — 2000. — 152. — P. 469—497. 9. Malenkov A. Problems and perspectives of the biophysics // Priroda. — 1981. — 7. — P. 73—84. 10. Marschner H. Mineral nutrition of higher plants. —London; San Diego: Acad. Press, 1995. 11. Niu X., Bressan R.A., Hasegawa P.M., Pardo JM. Ion homeostasis in NaCl stress environments // Plant Physiol. — 1995. — 109. — P. 735—742. 12. Shaul O. Magnesium transport and function in plants: the tip of the iceberg // Bio Metals. — 2002. — 15. — P. 309—322. 13. Shaul O., Hilgemann D.W., de-Almeida-Engler J., Van Montagu M., Inze D., Galili G. Cloning and characterization of a novel Mg2+/H+ exchanger // EMBO J. — 1999. — 18. — P. 3973—3980. 14. Vahmistrov D. Ion regime of plants: problems of evolution // The new directions in plant physiology. —M.: Nauka, 1985. Recommended for publication Submitted 29.08.2005 by L.I. Musatenko ISSN 0372-4123. Ukr. Botan. Journ., 2006, vol. 63, ¹ 2278 Å. Áðóê, Ì. Áàõàíàøâ³ë³ Áàð-²ëàíñüêèé óí³âåðñèòåò, Ðàìàò-Ãàí, ²çðà¿ëü ÍÀÁ²Ð ÒÀ вÂÅÍÜ ÃÎÌÅÎÑÒÀÒÈ×ÍÈÕ ²ÎÍ²Â Ó ÐÎÑËÈÍÍÈÕ ÒÊÀÍÈÍÀÕ ÇÀËÅÆÍÎ Â²Ä Â²ÊÓ Çàñòîñîâóþ÷è ìåòîäè ³îíîñåëåêòèâíèõ åëåêòðîä³â ó ïîºäíàíí³ ç ìåòîäîì àòîìíî-àäñîð- áö³éíî¿ ñïåêòðîñêîﳿ âñòàíîâëåíî ãðà䳺íòè ðîçïîä³ëó îñíîâíèõ ì³íåðàëüíèõ åëåìåíò³â òà àêòèâí³ñòü ¿õ ³îí³â ó ðîñëèíàõ êóêóðóäçè, ÿê³ â³äð³çíÿþòüñÿ çà ñòàíîì òêàíèí. Ìåòî- äîì ÿäåðíî-ìàãí³òíîãî ðåçîíàíñó òàêîæ âñòàíîâëåíà àêòèâí³ñòü âîäè ó ð³çíîÿê³ñíèõ òêà- íèíàõ. Ïîêàçàíî, ùî ïåð³îäàì ç íàéàêòèâí³øîþ ðîñòîâîþ ôóíêö³ºþ â³äïîâ³äຠï³äâè- ùåíà àêòèâí³ñòü îðãàíîãåííèõ ôîí³â ó òêàíèíàõ. Âñòàíîâëåíî íàá³ð òà ð³âåíü äåÿêèõ ãîìåîñòàòè÷íèõ ³îí³â, à òàêîæ ï³äâèùåíà àêòèâí³ñòü âîäè ó ìîëîäèõ òêàíèíàõ. Îáãîâîðþºòüñÿ çäàòí³ñòü åëåìåíò³â ïåðåõîäèòè â³ä çâ’ÿçàíîãî ñòàíó â àêòèâíó ³îííó ôîðìó, ùî çàáåçïå÷óº ìîæëèâ³ñòü ¿õ ó÷àñò³ ó ôîðìóâàíí³ ðåãóëÿðíèõ ñèñòåì øâèäêîãî ðåàãóâàííÿ ó êë³òèíàõ òà â ðàç³ ì³æêë³òèííèõ âçàºìîä³é øëÿõîì ìèòòºâèõ çì³í pH, rH, ìåìáðàííîãî ïîòåíö³àëó, ÿê³ âèçíà÷àþòü ïðîíèêí³ñòü ìåìáðàí òà àêòèâí³ñòü ôåðìåíò³â. Ê ë þ ÷ î â ³ ñ ë î â à: ãîìåîñòàç, àêòèâí³ñòü ³îí³â, àòîìíî-àáñîðáö³éíà ñïåêòðîñêîï³ÿ, ³îíîñåëåêòèâíà ³îíîìåòð³ÿ Ý. Áðóê, Ì. Áàõàíàøâèëè Áàð-Èëàíñêèé óíèâåðñèòåò, Ðàìàò-Ãàí, Èçðàèëü ÍÀÁÎÐ È ÓÐÎÂÅÍÜ ÃÎÌÅÎÑÒÀÒÈ×ÅÑÊÈÕ ÈÎÍΠ ÐÀÑÒÈÒÅËÜÍÛÕ ÒÊÀÍßÕ Â ÇÀÂÈÑÈÌÎÑÒÈ ÎÒ ÂÎÇÐÀÑÒÀ Ïðèìåíÿÿ ìåòîäû èîíîñåëåêòèâíûõ ýëåêòðîäîâ â ñî÷åòàíèè ñ ìåòîäîì àòîìíî-àäñîðá- öèîííîé ñïåêòðîñêîïèè, óñòàíîâëåíû ãðàäèåíòû ðàñïðåäåëåíèÿ îñíîâíûõ ìèíåðàëüíûõ ýëåìåíòîâ è àêòèâíîñòè èõ èîíîâ â ðàñòåíèÿõ êóêóðóçû, ðàçëè÷àþùèõñÿ ôóíêöèîíàëü- íûì ñîñòîÿíèåì òêàíåé. Ìåòîäîì ÿäåðíî-ìàãíèòíîãî ðåçîíàíñà îïðåäåëåíà òàêæå àê- òèâíîñòü âîäû â ðàçíîêà÷åñòâåííûõ òêàíÿõ. Ïîêàçàíî, ÷òî ïåðèîäàì ñ íàèáîëåå àêòèâ- íîé ðîñòîâîé ôóíêöèåé ñîîòâåòñòâóåò ïîâûøåííàÿ àêòèâíîñòü îðãàíîãåííûõ èîíîâ â òêàíÿõ. Óñòàíîâëåíû íàáîð è óðîâåíü íåêîòîðûõ ãîìåîñòàòè÷åñêèõ èîíîâ, à òàêæå ïîâû- øåííàÿ àêòèâíîñòü âîäû â ìîëîäûõ íîâîîáðàçóþùèõñÿ òêàíÿõ. Îáñóæäàåòñÿ ñïîñîá- íîñòü ýëåìåíòîâ ïåðåõîäèòü èç ñâÿçàííîãî ñîñòîÿíèÿ â àêòèâíóþ èîííóþ ôîðìó, ÷òî îáåñïå÷èâàåò âîçìîæíîñòü èõ ó÷àñòèÿ â ôîðìèðîâàíèè ðåãóëÿòîðíûõ ñèñòåì áûñòðîãî ðåàãèðîâàíèÿ â êëåòêàõ è ïðè ìåæêëåòî÷íûõ âçàèìîäåéñòâèÿõ çà ñ÷åò ìãíîâåííûõ èçìå- íåíèé pH, rH, ìåìáðàííîãî ïîòåíöèàëà, îïðåäåëÿþùèõ ïðîíèöàåìîñòü ìåìáðàí è àê- òèâíîñòü ôåðìåíòîâ. Ê ë þ ÷ å â û å ñ ë î â à: ãîìåîñòàç, àêòèâíîñòü èîíîâ, àòîìíî-àáñîðöèîííàÿ ñïåêòðî- ñêîïèÿ, èîí-ñåëåêòèâíàÿ èîíîìåòðèÿ