Collection and level of homeostatic ions in plant tissues depending on their ages
Застосовуючи методи іоноселективних електродів у поєднанні з методом атомно-адсор-бційної спектроскопії встановлено градієнти розподілу основних мінеральних елементів та активність їх іонів у рослинах кукурудзи, які відрізняються за станом тканин. Мето¬дом ядерно-магнітного резонансу також встановле...
Збережено в:
Дата: | 2006 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут ботаніки ім. М. Г. Холодного НАН України
2006
|
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/3511 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Collection and level of homeostatic ions in plant tissues depending on their ages / E. Brook, M. Bakhanashvili // Укр. ботан. журн. — 2006. — 63, № 2. — С. 272-278. — Бібліогр.: 14 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-3511 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-35112009-08-05T16:09:50Z Collection and level of homeostatic ions in plant tissues depending on their ages Brook, E. Bakhanashvili, M. Фізіологія, біохімія та клітинна біологія Застосовуючи методи іоноселективних електродів у поєднанні з методом атомно-адсор-бційної спектроскопії встановлено градієнти розподілу основних мінеральних елементів та активність їх іонів у рослинах кукурудзи, які відрізняються за станом тканин. Мето¬дом ядерно-магнітного резонансу також встановлена активність води у різноякісних тка¬нинах. Показано, що періодам з найактивнішою ростовою функцією відповідає підви-щена активність органогенних фонів у тканинах. Встановлено набір та рівень деяких гомеостатичних іонів, а також підвищена активність води у молодих тканинах. Обговорюється здатність елементів переходити від зв’язаного стану в активну іонну форму, що забезпечує можливість їх участі у формуванні регулярних систем швидкого реагування у клітинах та в разі міжклітинних взаємодій шляхом миттєвих змін pH, rH, мембранного потенціалу, які визначають проникність мембран та активність ферментів. Применяя методы ионоселективных электродов в сочетании с методом атомно-адсорбционной спектроскопии, установлены градиенты распределения основных минеральных элементов и активности их ионов в растениях кукурузы, различающихся функциональным состоянием тканей. Методом ядерно-магнитного резонанса определена также активность воды в разнокачественных тканях. Показано, что периодам с наиболее активной ростовой функцией соответствует повышенная активность органогенных ионов в тканях. Установлены набор и уровень некоторых гомеостатических ионов, а также повышенная активность воды в молодых новообразующихся тканях. Обсуждается способность элементов переходить из связанного состояния в активную ионную форму, что обеспечивает возможность их участия в формировании регуляторных систем быстрого реагирования в клетках и при межклеточных взаимодействиях за счет мгновенных изменений pH, rH, мембранного потенциала, определяющих проницаемость мембран и активность ферментов. 2006 Article Collection and level of homeostatic ions in plant tissues depending on their ages / E. Brook, M. Bakhanashvili // Укр. ботан. журн. — 2006. — 63, № 2. — С. 272-278. — Бібліогр.: 14 назв. — англ. 0372-4123 http://dspace.nbuv.gov.ua/handle/123456789/3511 en Інститут ботаніки ім. М. Г. Холодного НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Фізіологія, біохімія та клітинна біологія Фізіологія, біохімія та клітинна біологія |
spellingShingle |
Фізіологія, біохімія та клітинна біологія Фізіологія, біохімія та клітинна біологія Brook, E. Bakhanashvili, M. Collection and level of homeostatic ions in plant tissues depending on their ages |
description |
Застосовуючи методи іоноселективних електродів у поєднанні з методом атомно-адсор-бційної спектроскопії встановлено градієнти розподілу основних мінеральних елементів та активність їх іонів у рослинах кукурудзи, які відрізняються за станом тканин. Мето¬дом ядерно-магнітного резонансу також встановлена активність води у різноякісних тка¬нинах. Показано, що періодам з найактивнішою ростовою функцією відповідає підви-щена активність органогенних фонів у тканинах. Встановлено набір та рівень деяких гомеостатичних іонів, а також підвищена активність води у молодих тканинах.
Обговорюється здатність елементів переходити від зв’язаного стану в активну іонну форму, що забезпечує можливість їх участі у формуванні регулярних систем швидкого реагування у клітинах та в разі міжклітинних взаємодій шляхом миттєвих змін pH, rH, мембранного потенціалу, які визначають проникність мембран та активність ферментів. |
format |
Article |
author |
Brook, E. Bakhanashvili, M. |
author_facet |
Brook, E. Bakhanashvili, M. |
author_sort |
Brook, E. |
title |
Collection and level of homeostatic ions in plant tissues depending on their ages |
title_short |
Collection and level of homeostatic ions in plant tissues depending on their ages |
title_full |
Collection and level of homeostatic ions in plant tissues depending on their ages |
title_fullStr |
Collection and level of homeostatic ions in plant tissues depending on their ages |
title_full_unstemmed |
Collection and level of homeostatic ions in plant tissues depending on their ages |
title_sort |
collection and level of homeostatic ions in plant tissues depending on their ages |
publisher |
Інститут ботаніки ім. М. Г. Холодного НАН України |
publishDate |
2006 |
topic_facet |
Фізіологія, біохімія та клітинна біологія |
url |
http://dspace.nbuv.gov.ua/handle/123456789/3511 |
citation_txt |
Collection and level of homeostatic ions in plant tissues depending on their ages / E. Brook, M. Bakhanashvili // Укр. ботан. журн. — 2006. — 63, № 2. — С. 272-278. — Бібліогр.: 14 назв. — англ. |
work_keys_str_mv |
AT brooke collectionandlevelofhomeostaticionsinplanttissuesdependingontheirages AT bakhanashvilim collectionandlevelofhomeostaticionsinplanttissuesdependingontheirages |
first_indexed |
2025-07-02T06:46:57Z |
last_indexed |
2025-07-02T06:46:57Z |
_version_ |
1836516709970739200 |
fulltext |
ISSN 0372-4123. Ukr. Botan. Journ., 2006, vol. 63, ¹ 2272
EMIL BROOK, MARY BAKHANASHVILI
Faculty of Life Sciences, Bar-Ilan University
Ramat-Gan 52900, Israel
COLLECTION AND LEVEL
OF HOMEOSTATIC IONS IN PLANT
TISSUES DEPENDING ON THEIR AGES
K e y w o r d s: homeostasis, ion activity, atomic-absorption
spectroscopy, ion-selective ionometry
Abstract
Ionic composition and its peculiarities in the homeostasis of maize stem growth are
considered at different stages of ontogenesis. The content of mineral elements and
the activity of their ions are studied in tissues of different stem segments varying in
their growth rate. Observations show that the stem growth function and the activity
of ions are closely related. The period of peak growth function, especially in the first
stage of ontogenesis, is characterized by an increase of ionic activity in tissues of a
growing stem. The acropetal and basipetal distribution gradients of elements and the
activity of their ions are determined for different organs of maize. The ionic state
and the state of water in cells of maize stem tissues are found to be dependent on the
functional load. Guidelines for further studies of ionic homeostasis are drawn up to
elucidate the mechanism behind the formation of rapid response systems in plants.
Introduction
To explain the mechanisms of plant growth, contemporary physical and chemical
biology resorts to molecular genetics and biochemistry of macromolecules. Analyzing
the results of studies, we can infer that changes in the level and rate of biosynthesis
of proteins and their respective RNAs may be triggered by certain earlier events, such
as changes in the parameters of ionic homeostasis in cells [2, 5, 7, 10, 12]. Cellular
ionic homeostasis governs the activities and concentrations of organic and inorganic
ions and water content [9]. Organic ions (SO4
2-, NO3¯, H
+, OH¯, PO4
2-, etc.) and
polyamines can appear and disappear in metabolic processes, whereas inorganic
ions (K+, Na+, Ca²+, Mg²+, etc.) can only take part in the transport or change
their activity. Ionic activity means the effective concentration of ions-a in solution,
which is usually less than the analytical concentration and equal to a = c•f, where
c is the concentration and f is the coefficient of activity, which depends on the
ionic strength of the solution and approaches 1 in extremely diluted solutions.
The ionic activity of organic elements is usually taken into account when ions
of these elements go from their bound state in organic or organomineral compounds
to their free active state as ions of cytosol or xylem juice.
© EMIL BROOK, MARY BAKHANASHVILI, 2006
ISSN 0372-4123. Óêð. áîòàí. æóðí., 2006, ò. 63, ¹ 2 273
Ionic activity is a factor vital for many important physiological functions.
Changes in its level have far-reaching consequences in the functioning of an organism
as a whole. The basic mineral elements participate in the synthesis of organic
compounds in plant cells. On the one hand, they are the chemical elements that
make up these organic compounds. On the other hand, they act as allosteric effectors
and nonspecific agents, thus shaping the physical and chemical properties of ferments
and their conformation without necessarily being their constituents.
However, for a long time, the ideas about the impact of mineral elements on
the colloid-chemical state and organization of protoplasts were not covered by the
traditional approach in plant physiology. Even though there is certain success in
the studies of ionic flows, ionic gradients, and ionic pumps, which play a leading
role in energy and information exchange within the cell, not much is known about
the basic parameters of ionic homeostasis and its peculiarities in plants [8, 14].
This is especially true for the ionic activity and ionic state (free or bound) of various
elements and the possibility of their transformation during the processes of growth
and development.
Reviewing the recent studies of ionic homeostasis in animal cells [5, 6] and
plant cells, we can clearly discern two main lines of research in this field [4, 11,
13]. The first estimates the role of parameters of ionic composition in the adaptive
changes of membrane properties, the formation of action potential, changes of ionic
equilibrium, osmoregulation, oxidation and reduction conditions, etc. The second
line studies the relationship between the dynamic properties of ionic homeostasis
and the system of replication of informational macromolecules.
To understand how the parameters of ionic homeostasis affect the growth
process, it is necessary to carefully and comprehensively investigate the acropetal
and basipetal distribution gradients of the total content of basic macroelements and
the activity of their ions in different organs and tissues of plants, depending on the
age of tissues and the functional loads during the process of growth and development.
The copious present-day literature on plant physiology still lacks reliable in vitro
and in vivo data on the total content of different elements and the activity of their
ions in plant tissues.
The purpose of this study is to determine the parameters of ionic homeostasis
in maize and their peculiarities in tissues with various functions, such as division,
elongation, and differentiation in the process of growth. The acropetal and basipetal
distribution gradients of nitrogen, phosphorus, potassium, calcium, and magnesium
mineral in plant tissues and organs were determined and compared with the gradients
of total content of these elements and their ionic activity. In new tissues of maize,
we saw high ionic activity of Ca2+, Mg2+, and K+ in the division phase. These tissues
were characterized by changing the phase of water.
The main objective of the present study was to confirm the already measured
homeostatic total content and ionic activity of different elements in certain plant
organs and tissues and carry out mathematical analysis of data as described by Afifi
and Eizen [1].
ISSN 0372-4123. Ukr. Botan. Journ., 2006, vol. 63, ¹ 2274
Materials and Methods
In our field, vegetative, and laboratory experiments, we studied the
«Dnepropetrovksaya 247» variety of maize. The samples of maize were selected in
the period when stem internodes appear during intercalary growth.
The modern methods of atomic-absorption spectroscopy (AAS) and ion-
selective ionometry were used for analyzing the general content and ion activity of
mineral nutrition elements in plant samples. We used magnetic resonance imaging
(MRI) to study the phase of water in tissues of the maize as described by Buzukashvili
and Gordetsky [3].
Results
For many years, we studied the correlation between the growth function of maize
stem and the total content of different elements and the activity of their ions. The
studies show that despite the high heterogeneity of the total content of elements in
stem tissues, stem growth function is closely related with ionic activity. Indeed,
the curve of ionic activity in the ontogenesis of maize stem (Fig. 1, a) and the curve
of growth (Fig. 1, b) have the same S-like shape but are of opposite signs.
Fig. 1. Correlation between ion activity (a) and growth (b) in tissues of maize stem at different
stages of ontogenesis
ISSN 0372-4123. Óêð. áîòàí. æóðí., 2006, ò. 63, ¹ 2 275
Fig. 2. Acropetal and basipetal gradients of distribution of basic macroelements in organs of maize
plants dependent on age
m
g
1
0
0
g
d
ry
m
a
s
s
m
g
1
0
0
g
d
ry
m
a
s
s
m
g
1
0
0
g
d
ry
m
a
s
s
m
g
1
0
0
g
d
ry
m
a
s
s
m
g
1
0
0
g
d
ry
m
a
s
s
m
g
1
0
0
g
d
ry
m
a
s
s
m
g
1
0
0
g
d
ry
m
a
s
s
m
g
1
0
0
g
d
ry
m
a
s
s
The peak growth period is characterized by the increasing activity of ions in
tissues of the growing stem, especially in the first stage of ontogenesis.
We measured the acropetal and basipetal gradients of distribution of basic
mineral elements (Fig. 2) and the activity of their ions (Table) in organs of different
ages and in tissues of the growth zones of maize stem internodes with different
functional states of cells (such as division, elongation, and differentiation). The
data presented in Fig. 2 show that, unlike the basipetal gradients of nitrogen and
phosphorus in maize organs, the acropetal gradients of the total content distribution
of calcium, magnesium, and potassium are not always the same within tissues of
the same age. Moreover, the widely accepted concept that calcium and magnesium
are elements with acropetal distribution gradients, was not confirmed in the analysis
of the ionic activity of these elements.
We can see significant changes in the total content and the ionic activity of
calcium and magnesium in internode cells undergoing division, elongation, and
differentiation at all ages and in all tiers of the stem. These changes suggest that
calcium and magnesium should be considered with more discretion as poorly
reutilized elements.
ISSN 0372-4123. Ukr. Botan. Journ., 2006, vol. 63, ¹ 2276
Discussion
The results of our experiments show the lack of correlation between the total content
of elements and the ionic activity in tissue cells independent of age or functional
state. Elevated activity of Ca2+
, Mg2+
, and K+ ions was detected in tissues those
cells which were predominantly in the phase of division. These tissues were also
characterized by changing the phase of water (Fig. 3). In actively dividing cells (the
meristem), we found water that did not freeze at temperatures below –40 °C. In
cells of the differentiation and elongation zones, water freezes at –9 °C and –29 °C,
respectively. Phase transitions of water and changes in the mobility of water
molecules can be attributed to changes in ionic activity in actively dividing cells,
especially the activity of ions with a high affinity to hydration. Cells of the elongation
zone were also characterized by sharply increasing activity of Ca2+ ions, although
the total content of this element in this zone was quite low. This may be associated
with the participation of calcium ions in the exchange of hydrogen ions during the
elongation of cell shells.
Fig. 3. MRI spectrum of water tissue cells of 5th (above) and 7th (below) maize internodes with
different functional loads: a — cells of differentiation zone; b — cells of division zone (above)
and elongation zone (below)
ISSN 0372-4123. Óêð. áîòàí. æóðí., 2006, ò. 63, ¹ 2 277
The results show that for calcium, the main part of which is in cells and especially
in their shells and cytoplasm membranes, which is in the bound state, very sharp
changes into the ionic form dependent on growth activity, was observed. This ability
of elements to change from the bound state to the active form enables their
participation in the formation of a regulatory rapid response system in cells during
cell interactions through abrupt changes of pH, rH, and membrane potential, which
determine the permeability of membranes and the activity of ferments. Changes in
the ionic activity may underlie the formation of action potentials and cause the
rapid response and coordination of physiological functions of a whole organism in
quickly changing or extreme conditions.
The facts of significant violations in the behavior of parameters of ionic
homeostasis, such as the increased activity of univalent and bivalent ions in actively
dividing cells, deserve special attention and further investigation.
Stresses and violations of the vital functions of organisms are accompanied by
abrupt changes in the parameters of ionic homeostasis, which lead to the
reduplication of macromolecules and division of cells. All these aspects of ionic
homeostasis in plants are not studied enough and call for further investigation.
1. Afifi A., Eizen S. Systematic Analysis with the Employment of Computer. — M.: Nauka, 1992.
2. Buzukashvili E. Gradients of localization and activity of ions, main macroelements in the
organs and tissue of maize depending of their ages and functional role // Report Academy of
Science of Ukraine. — 1986. — B, N 3. — P. 51—54.
3. Buzukashvili E., Gordetsky A. Methodical aspects of researches on the peculiarities of ionic
homeostasis and conditions of water and plant tissues // Ukr. Botan. Journ. — 1987. —
44, N 4. — P. 25—29.
4. Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis // Planta. —
2001. — 212. — P. 475—486
5. Kafiani K., Malenkov A. The role of the ion homeostasis of cell in phenomenon of growth
and development // Successes of Modern Biology. — Moscow, 1976. — 81. — P. 445—463.
6. Lane M., Gardner DK. Regulation of ionic homeostasis by mammalian embryos // Semin
Reprod Med. — 2000. — 18. — P. 195—204.
7. Lott JNA., Greenwood JS., Batten GD. Mechanisms and regulation of mineral nutrient storage
during seed development // Kigel J., Galili G. (eds.). Seed development and Ggermination. —
New York: Marcel Dekker, 1995. — P. 215—235.
8. Maeshima M. Tonoplast transporters: Organization and function // Annu Rev. Plant. Physiol.
Plant. Mol. Biol. — 2000. — 152. — P. 469—497.
9. Malenkov A. Problems and perspectives of the biophysics // Priroda. — 1981. — 7. — P. 73—84.
10. Marschner H. Mineral nutrition of higher plants. —London; San Diego: Acad. Press, 1995.
11. Niu X., Bressan R.A., Hasegawa P.M., Pardo JM. Ion homeostasis in NaCl stress environments //
Plant Physiol. — 1995. — 109. — P. 735—742.
12. Shaul O. Magnesium transport and function in plants: the tip of the iceberg // Bio Metals. —
2002. — 15. — P. 309—322.
13. Shaul O., Hilgemann D.W., de-Almeida-Engler J., Van Montagu M., Inze D., Galili G. Cloning and
characterization of a novel Mg2+/H+ exchanger // EMBO J. — 1999. — 18. — P. 3973—3980.
14. Vahmistrov D. Ion regime of plants: problems of evolution // The new directions in plant
physiology. —M.: Nauka, 1985.
Recommended for publication Submitted 29.08.2005
by L.I. Musatenko
ISSN 0372-4123. Ukr. Botan. Journ., 2006, vol. 63, ¹ 2278
Å. Áðóê, Ì. Áàõàíàøâ³ë³
Áàð-²ëàíñüêèé óí³âåðñèòåò, Ðàìàò-Ãàí, ²çðà¿ëü
ÍÀÁ²Ð ÒÀ вÂÅÍÜ ÃÎÌÅÎÑÒÀÒÈ×ÍÈÕ ²ÎͲÂ
Ó ÐÎÑËÈÍÍÈÕ ÒÊÀÍÈÍÀÕ ÇÀËÅÆÍÎ Â²Ä Â²ÊÓ
Çàñòîñîâóþ÷è ìåòîäè ³îíîñåëåêòèâíèõ åëåêòðîä³â ó ïîºäíàíí³ ç ìåòîäîì àòîìíî-àäñîð-
áö³éíî¿ ñïåêòðîñêîﳿ âñòàíîâëåíî ãðà䳺íòè ðîçïîä³ëó îñíîâíèõ ì³íåðàëüíèõ åëåìåíò³â
òà àêòèâí³ñòü ¿õ ³îí³â ó ðîñëèíàõ êóêóðóäçè, ÿê³ â³äð³çíÿþòüñÿ çà ñòàíîì òêàíèí. Ìåòî-
äîì ÿäåðíî-ìàãí³òíîãî ðåçîíàíñó òàêîæ âñòàíîâëåíà àêòèâí³ñòü âîäè ó ð³çíîÿê³ñíèõ òêà-
íèíàõ. Ïîêàçàíî, ùî ïåð³îäàì ç íàéàêòèâí³øîþ ðîñòîâîþ ôóíêö³ºþ â³äïîâ³äຠï³äâè-
ùåíà àêòèâí³ñòü îðãàíîãåííèõ ôîí³â ó òêàíèíàõ. Âñòàíîâëåíî íàá³ð òà ð³âåíü äåÿêèõ
ãîìåîñòàòè÷íèõ ³îí³â, à òàêîæ ï³äâèùåíà àêòèâí³ñòü âîäè ó ìîëîäèõ òêàíèíàõ.
Îáãîâîðþºòüñÿ çäàòí³ñòü åëåìåíò³â ïåðåõîäèòè â³ä çâ’ÿçàíîãî ñòàíó â àêòèâíó ³îííó
ôîðìó, ùî çàáåçïå÷óº ìîæëèâ³ñòü ¿õ ó÷àñò³ ó ôîðìóâàíí³ ðåãóëÿðíèõ ñèñòåì øâèäêîãî
ðåàãóâàííÿ ó êë³òèíàõ òà â ðàç³ ì³æêë³òèííèõ âçàºìîä³é øëÿõîì ìèòòºâèõ çì³í pH, rH,
ìåìáðàííîãî ïîòåíö³àëó, ÿê³ âèçíà÷àþòü ïðîíèêí³ñòü ìåìáðàí òà àêòèâí³ñòü ôåðìåíò³â.
Ê ë þ ÷ î â ³ ñ ë î â à: ãîìåîñòàç, àêòèâí³ñòü ³îí³â, àòîìíî-àáñîðáö³éíà ñïåêòðîñêîï³ÿ,
³îíîñåëåêòèâíà ³îíîìåòð³ÿ
Ý. Áðóê, Ì. Áàõàíàøâèëè
Áàð-Èëàíñêèé óíèâåðñèòåò, Ðàìàò-Ãàí, Èçðàèëü
ÍÀÁÎÐ È ÓÐÎÂÅÍÜ ÃÎÌÅÎÑÒÀÒÈ×ÅÑÊÈÕ ÈÎÍÎÂ
 ÐÀÑÒÈÒÅËÜÍÛÕ ÒÊÀÍßÕ Â ÇÀÂÈÑÈÌÎÑÒÈ ÎÒ ÂÎÇÐÀÑÒÀ
Ïðèìåíÿÿ ìåòîäû èîíîñåëåêòèâíûõ ýëåêòðîäîâ â ñî÷åòàíèè ñ ìåòîäîì àòîìíî-àäñîðá-
öèîííîé ñïåêòðîñêîïèè, óñòàíîâëåíû ãðàäèåíòû ðàñïðåäåëåíèÿ îñíîâíûõ ìèíåðàëüíûõ
ýëåìåíòîâ è àêòèâíîñòè èõ èîíîâ â ðàñòåíèÿõ êóêóðóçû, ðàçëè÷àþùèõñÿ ôóíêöèîíàëü-
íûì ñîñòîÿíèåì òêàíåé. Ìåòîäîì ÿäåðíî-ìàãíèòíîãî ðåçîíàíñà îïðåäåëåíà òàêæå àê-
òèâíîñòü âîäû â ðàçíîêà÷åñòâåííûõ òêàíÿõ. Ïîêàçàíî, ÷òî ïåðèîäàì ñ íàèáîëåå àêòèâ-
íîé ðîñòîâîé ôóíêöèåé ñîîòâåòñòâóåò ïîâûøåííàÿ àêòèâíîñòü îðãàíîãåííûõ èîíîâ â
òêàíÿõ. Óñòàíîâëåíû íàáîð è óðîâåíü íåêîòîðûõ ãîìåîñòàòè÷åñêèõ èîíîâ, à òàêæå ïîâû-
øåííàÿ àêòèâíîñòü âîäû â ìîëîäûõ íîâîîáðàçóþùèõñÿ òêàíÿõ. Îáñóæäàåòñÿ ñïîñîá-
íîñòü ýëåìåíòîâ ïåðåõîäèòü èç ñâÿçàííîãî ñîñòîÿíèÿ â àêòèâíóþ èîííóþ ôîðìó, ÷òî
îáåñïå÷èâàåò âîçìîæíîñòü èõ ó÷àñòèÿ â ôîðìèðîâàíèè ðåãóëÿòîðíûõ ñèñòåì áûñòðîãî
ðåàãèðîâàíèÿ â êëåòêàõ è ïðè ìåæêëåòî÷íûõ âçàèìîäåéñòâèÿõ çà ñ÷åò ìãíîâåííûõ èçìå-
íåíèé pH, rH, ìåìáðàííîãî ïîòåíöèàëà, îïðåäåëÿþùèõ ïðîíèöàåìîñòü ìåìáðàí è àê-
òèâíîñòü ôåðìåíòîâ.
Ê ë þ ÷ å â û å ñ ë î â à: ãîìåîñòàç, àêòèâíîñòü èîíîâ, àòîìíî-àáñîðöèîííàÿ ñïåêòðî-
ñêîïèÿ, èîí-ñåëåêòèâíàÿ èîíîìåòðèÿ
|