The Molecular Structure and Chromatographic Parameters of Calix[4]аrеnehydroxymethylphosphonic Acids

The basic chromatographic characteristics (retention time, tR, capacity factors, k’, and coeffi cients of asymmetry peaks, KS) of the number of biologically signifi cant calix[4]аrenehydroxymethylphosphonic acids and their sodium salts have been obtained in a reversed-phase high-performance liquid c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2012
Hauptverfasser: Kalchenko, O.I., Cherenok, S.O., Rozhenko, O.B., Yushchenko, O.A., Kalchenko, V.I.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут органічної хімії НАН України 2012
Schriftenreihe:Журнал органічної та фармацевтичної хімії
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/42066
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The Molecular Structure and Chromatographic Parameters of Calix[4]аrеnehydroxymethylphosphonic Acids / O.I. Kalchenko, S.O. Cherenok, O.B. Rozhenko, O.A. Yushchenko, V.I. Kalchenko // Журнал органічної та фармацевтичної хімії. — 2012. — Т. 10, вип. 4(40). — С. 59-64. — Бібліогр.: 37 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-42066
record_format dspace
spelling irk-123456789-420662013-03-08T03:07:27Z The Molecular Structure and Chromatographic Parameters of Calix[4]аrеnehydroxymethylphosphonic Acids Kalchenko, O.I. Cherenok, S.O. Rozhenko, O.B. Yushchenko, O.A. Kalchenko, V.I. The basic chromatographic characteristics (retention time, tR, capacity factors, k’, and coeffi cients of asymmetry peaks, KS) of the number of biologically signifi cant calix[4]аrenehydroxymethylphosphonic acids and their sodium salts have been obtained in a reversed-phase high-performance liquid chromatography (RP HPLC) on Zorbax CN. The structure of calix[4]аrenehydroxymethylphosphonic acids have been studied by the molecular modeling method (TURBOMOLE program). The relationship between the structure and chromatographic characteristics of the calix[4]аrenes, as well as their sorption mechanism on the column surface have been discussed. Основні хроматографічні характеристики (часи утримання tR коефіцієнти ємкості к', коефіцієнти асиметрії піків КS) низки біологічно значимих калікс[4]аренгідроксиметилфосфонових кислот та їх натрієвих солей були визначені методом обернено-фазної високоефективної рідинної хроматографії (ОФ ВЕРХ) при застосуванні хроматографічної насадки Zorbax CN. Будову калікс[4]аренгідроксиметилфосфонових кислот було досліджено методом молекулярного моделювання (програмний пакет TURBOMOLE). Обговорено взаємозв'язок між будовою, хроматографічною поведінкою та механізмом сорбції каліксаренів поверхнею хроматографічної насадки. Основные хроматографические характеристики (времена удерживания коэффициенты емкости к', коэффициенты асимметрии пиков КS) серии биологически значимых каликс[4]аренгидроксиметилфосфоновых кислот и их натриевых солей определены методом обращенно-фазной высокоэффективной жидкостной хроматографии (ОФ ВЭЖХ) при использовании хроматографической насадки Zorbax CN. Строение каликс[4]аренгидроксиметилфосфоновых кислот исследовано методом молекулярного моделирования (программный пакет TURBOMOLE). Обсуждена взаимосвязь между строением и хроматографическим поведением и механизмом сорбции каликсаренов поверхностью хроматографической насадки. 2012 Article The Molecular Structure and Chromatographic Parameters of Calix[4]аrеnehydroxymethylphosphonic Acids / O.I. Kalchenko, S.O. Cherenok, O.B. Rozhenko, O.A. Yushchenko, V.I. Kalchenko // Журнал органічної та фармацевтичної хімії. — 2012. — Т. 10, вип. 4(40). — С. 59-64. — Бібліогр.: 37 назв. — англ. 0533-1153 http://dspace.nbuv.gov.ua/handle/123456789/42066 547.03+547.562 en Журнал органічної та фармацевтичної хімії Інститут органічної хімії НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The basic chromatographic characteristics (retention time, tR, capacity factors, k’, and coeffi cients of asymmetry peaks, KS) of the number of biologically signifi cant calix[4]аrenehydroxymethylphosphonic acids and their sodium salts have been obtained in a reversed-phase high-performance liquid chromatography (RP HPLC) on Zorbax CN. The structure of calix[4]аrenehydroxymethylphosphonic acids have been studied by the molecular modeling method (TURBOMOLE program). The relationship between the structure and chromatographic characteristics of the calix[4]аrenes, as well as their sorption mechanism on the column surface have been discussed.
format Article
author Kalchenko, O.I.
Cherenok, S.O.
Rozhenko, O.B.
Yushchenko, O.A.
Kalchenko, V.I.
spellingShingle Kalchenko, O.I.
Cherenok, S.O.
Rozhenko, O.B.
Yushchenko, O.A.
Kalchenko, V.I.
The Molecular Structure and Chromatographic Parameters of Calix[4]аrеnehydroxymethylphosphonic Acids
Журнал органічної та фармацевтичної хімії
author_facet Kalchenko, O.I.
Cherenok, S.O.
Rozhenko, O.B.
Yushchenko, O.A.
Kalchenko, V.I.
author_sort Kalchenko, O.I.
title The Molecular Structure and Chromatographic Parameters of Calix[4]аrеnehydroxymethylphosphonic Acids
title_short The Molecular Structure and Chromatographic Parameters of Calix[4]аrеnehydroxymethylphosphonic Acids
title_full The Molecular Structure and Chromatographic Parameters of Calix[4]аrеnehydroxymethylphosphonic Acids
title_fullStr The Molecular Structure and Chromatographic Parameters of Calix[4]аrеnehydroxymethylphosphonic Acids
title_full_unstemmed The Molecular Structure and Chromatographic Parameters of Calix[4]аrеnehydroxymethylphosphonic Acids
title_sort molecular structure and chromatographic parameters of calix[4]аrеnehydroxymethylphosphonic acids
publisher Інститут органічної хімії НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/42066
citation_txt The Molecular Structure and Chromatographic Parameters of Calix[4]аrеnehydroxymethylphosphonic Acids / O.I. Kalchenko, S.O. Cherenok, O.B. Rozhenko, O.A. Yushchenko, V.I. Kalchenko // Журнал органічної та фармацевтичної хімії. — 2012. — Т. 10, вип. 4(40). — С. 59-64. — Бібліогр.: 37 назв. — англ.
series Журнал органічної та фармацевтичної хімії
work_keys_str_mv AT kalchenkooi themolecularstructureandchromatographicparametersofcalix4arenehydroxymethylphosphonicacids
AT cherenokso themolecularstructureandchromatographicparametersofcalix4arenehydroxymethylphosphonicacids
AT rozhenkoob themolecularstructureandchromatographicparametersofcalix4arenehydroxymethylphosphonicacids
AT yushchenkooa themolecularstructureandchromatographicparametersofcalix4arenehydroxymethylphosphonicacids
AT kalchenkovi themolecularstructureandchromatographicparametersofcalix4arenehydroxymethylphosphonicacids
AT kalchenkooi molecularstructureandchromatographicparametersofcalix4arenehydroxymethylphosphonicacids
AT cherenokso molecularstructureandchromatographicparametersofcalix4arenehydroxymethylphosphonicacids
AT rozhenkoob molecularstructureandchromatographicparametersofcalix4arenehydroxymethylphosphonicacids
AT yushchenkooa molecularstructureandchromatographicparametersofcalix4arenehydroxymethylphosphonicacids
AT kalchenkovi molecularstructureandchromatographicparametersofcalix4arenehydroxymethylphosphonicacids
first_indexed 2025-07-04T00:30:55Z
last_indexed 2025-07-04T00:30:55Z
_version_ 1836674246377472000
fulltext Журнал органічної та фармацевтичної хімії. – 2012. – Т. 10, вип. 4 (40) 59 УДК 547.03+547.562 THE MOLECULAR STRUCTURE AND CHROMATOGRAPHIC PARAMETERS OF CALIX�4� АRЕNEHYDROXYMETHYLPHOSPHONIC ACIDS O.I.Kalchenko, S.O.Cherenok, O.B.Rozhenko, O.A.Yushchenko, V.I.Kalchenko Institute of Organic Chemistry National Academy of Sciences of Ukraine 02660, Murmanska str. 5, Kyiv. E-mail: vik@ioch.kiev.ua Key words: liquid chromatography; calix[4]аrеnehydroxymethylphosphonic acids; chromatographic characteristics The basic chromatographic characteristics (retention time, tR, capacity factors, k’, and coef- fi cients of asymmetry peaks, KS) of the number of biologically signifi cant calix[4]аrеnehyd- roxymethylphosphonic acids and their sodium salts have been obtained in a reversed-phase high-performance liquid chromatography (RP HPLC) on Zorbax CN. The structure of calix[4] аrеnehydroxymethylphosphonic acids have been studied by the molecular modeling method (TURBOMOLE program). The relationship between the structure and chromatographic char- acteristics of the calix[4]аrеnes, as well as their sorption mechanism on the column surface have been discussed. MOЛЕКУЛЯРНА БУДОВА ТA ХРОМАТОГРАФІЧНІ ХАРАКТЕРИСТИКИ КАЛІКС[4]АРЕНГІД- РОКСИМЕТИЛФОСФОНОВИХ КИСЛОТ O.I.Kaльчeнкo, С.O.Черенок, O.B.Роженко, O.A.Ющенкo, В.I.Kaльчeнкo Основні хроматографічні характеристики (часи утримання tR, коефіцієнти ємкості k’, коефіцієнти асиметрії піків KS) низки біологічно значимих калікс[4]аренгідроксиме- тилфосфонових кислот та їх натрієвих солей були визначені методом обернено-фаз- ної високоефективної рідинної хроматографії (ОФ ВЕРХ) при застосуванні хромато- графічної насадки Zorbax CN. Будову калікс[4]аренгідроксиметилфосфонових кислот було досліджено методом молекулярного моделювання (програмний пакет TURBOMOLE). Обговорено взаємозв’язок між будовою, хроматографічною поведінкою та механізмом сорбції каліксаренів поверхнею хроматографічної насадки. MOЛЕКУЛЯРНОЕ СТРОЕНИЕ И ХРОМАТОГРАФИЧЕСКИЕ ХАРАКТЕРИСТИКИ КАЛИКС[4]АРЕН- ГИДРОКСИМЕТИЛ-ФОСФОНОВЫХ КИСЛОТ O.И.Kaльчeнкo, С.А.Черенок, А.Б.Роженко, А.A.Ющенкo, В.И.Kaльчeнкo Основные хроматографические характеристики (времена удерживания tR, коэффици- енты емкости k’, коэффициенты асимметрии пиков KS) серии биологически значи- мых каликс[4]аренгидроксиметилфосфоновых кислот и их натриевых солей опреде- лены методом обращенно-фазной высокоэффективной жидкостной хроматографии (ОФ ВЭЖХ) при использовании хроматографической насадки Zorbax CN. Строение ка- ликс[4]аренгидроксиметилфосфоновых кислот исследовано методом молекулярно- го моделирования (программный пакет TURBOMOLE). Обсуждена взаимосвязь между строением и хроматографическим поведением и механизмом сорбции каликсаренов поверхностью хроматографической насадки. Calixarenes [1] are macrocyclic compounds with cone shaped structure which can be synthesized by the cyclocondensation of para-substituted phenols with formaldehyde. These compounds due to the ability to the selective formation of host-guest supramo- lecular complexes with substrates (cations, anions, organic molecules, biopolymers) are widely used in chemistry, physics, and biology [1-5]. Due to the ability to simulate the substrate-re- ceptor interactions with biomolecules, calixarenes are objects of biomedical research [6, 7]. Calixarenes contained preorganized bio-af!ine groups are able to recognize and bind in supramolecular complexes different biologically active molecules such as amino acids, dipeptides, proteins, choline and acetylcholine, carbohydrates, ribo!lavin, vitamin B12, nucleotides, nuc- leosides and short DNA fragments [8-20]. The ca- lixarenes substrate-receptor interactions in water solutions can be investigated by HPLC method [21]. The aim of this work is determination of the HPLC chromatographic characteristics of calix[4]аrеnehyd- roxymethylphosphonic acids 1а-4а, their sodium salts 1b-4b as well as modeling tetrapropoxycalixarene 5 (Scheme) and investigation of relationship of these characteristics with molecular structure of the calix- arenes. The calix[4]аrеnehydroxymethylphosphonic acids form host-guest inclusion complexes with amino acids Журнал органічної та фармацевтичної хімії. – 2012. – Т. 10, вип. 4 (40) 60 and dipeptides [22, 23]. They are also selective mo- dulators of calcium metabolism in cells [24] and inhi- bitors of proteintyrozynphosphataze [25]. Thus, the chromatographic characteristics of the acids may be useful for determination of the binding constants of their supramolecular complexes with the biomole- cules in water solutions [26] as well as for their phar- macological investigations by the HPLC method. Experimental HPLC analysis. The solvents were obtained from Acros Organics. Calix[4]аrеnehydroxymethylphospho- nic acids 1а-4a (Scheme 1) were synthesized by the reaction of the corresponding formylcalixarenes with sodium salts of dialkylphosphites and the next deal- kylation of the esters formed by the consecutive treat- ment with trimethylbromosilan and methanol accor- ding to [25]. Sodium salts of calix[4]аrеnehydroxy- methylphosphonic acids 1b-4b were obtained by ad- dition of an equivalent quantity of sodium methylate to methanol solution of the acids. Unsubstituted at the upper rim tetrapropoxycalixarene 5 was synthe- sized by the method [26]. HPLC analysis was performed using the high pres- sure liquid chromatographic system Hitachi. The co- lumn (250 × 4,6 mm i.d.) was packed with Zorbax CN. The mobile phase THF/Н2O (90/10 v/v) was utilized for calix[4]аrеnehydroxymethylphosphonic acids 1а- 4a and tetrapropoxycalixarene 5. The mobile phase Н2O/MeCN (99/1 v/v) was used for sodium salts 1b- 4b. Flow rate of the both mobile phases was 0.8 ml/min. Chromatographic samples were prepared in the sol- vents identical to the mobile phases. Concentration of the calixarenes in samples for the analysis was 10-3- 10-4 M, the samples volume was 20 mkl. Each of the samples were analyzed three times. Wave length of UV detector was 254 nm. All chromatograms were obtained at temperature 26oC. Molecular modelling. All the structures were $irst optimized using TURBOMOLE (version 6.02) program packet [27, 28] in order to utilize advantages of the Resolution Identity (RI) [29] algorithm implement- ed in the TURBOMOLE program packet. B97-D func- tional [32, 33] and standard triple-zeta basis sets (TZVP) [34] were used. The basis sets were con- tracted as (14s9p)/[5s4p] → {73211/6111} for Si, (11s6p)/[5s3p] → {62111/411} for C, N, O and (5s)/ [3s] → {311} for H. One set of ($ive) d-functions was added for every heavy atom and one set of p-func- tions was used for hydrogen atoms. In order to $ind conformers with the lowest total energies optimized structures were modi$ied. Maximal number of hyd- rogen bonds under condition of minimal steric in- teractions between the guest and the host has been chosen as criteria for modi$ication. After modi$ica- tion the structures were fully optimized again and the resulted total energy was compared with that before modification. The procedure was repeated until no total energy lowering was observed. For the structure with the lowest total energy vibrational analysis was performed computing analytically $irst and second order derivatives. No imaginary frequen- cies were found for 3a, complex 6 and complex 7. Solvent effects (H2O) were modeled using COSMO [35] procedure. Corrected and uncorrected total en- ergy values and relative energy magnitudes are list- ed in Table 1. The DЕ values were calculated as a dif- ference between the total energy magnitudes for the adduct and free host and guest structures corrected on zero point energy correction (ZPE). DG values were derived from the total energy magnitudes cor- rected on chemical potential (ch. pot.), computed for standard conditions (Т= 298.15К, р= 0.1 МРа). VMD program packet [36] was used for graphical repre- sentation of the structures. Chromatographic characteristics determina- tion. The most suitable eluents for chromatographic analysis of acids 1а-4а and calixarene 5 was THF/ H2O mixture (90/10 v/v), and for sodium salts 1b- 4b – H2O/MeCN mixture (99/1 v/v). The main chro- matographic parameters of calixarenes 1-5 – reten- tion times tR, retention volumes VR, capacity factors k’, and peak asymmetry coef$icients KS are given in Table 1. Results and Discussion. The retention times of calixarene 5 and calix[4]аrеne-hydroxymethylphos- phonic acids 1а-4а are within 3.34-6.55 min. The сhanging of calix[4]аrеnehydroxymethylphosphonic Scheme Журнал органічної та фармацевтичної хімії. – 2012. – Т. 10, вип. 4 (40) 61 acids 1а-4а to their salts 1b-4b insigni�icantly chan- ges their retention time (3.14-12.37 min), with the exception of calixarene 4 (6.55 min for the acid and 12.37 min for the salt). The retention volume VR and capacity factor k’ are increased as well. Calixarene peaks are characterized by reasonable values of the asymmetry coefficients within 0.71-2.0. Thus, for the acids and their salts the increasing of the number of propyl groups at the lower rim and phosphoryl groups at the upper rim of the macrocycle leads to the increasing of the retention parameters – tR, VR and k’. For the acids 1а-4а the inverse dependence of capacity factors k’ from the molecule lipophilicity parameter log P calculated by the software package Hyper Chem, 8 is observed (Fig. 1). Calixarenes 1-4 adsorb on the Zorbax CN sur- face, covered by cyanoalkyl groups, mainly by the upper rim of the macrocycle. This is con�irmed by the greater retention time of tetrapropoxycalixare- ne-bis-phosphonic acid 4a (6.55 min) and its salt 4b (12.37 min) comparatively with unsubstituted at the upper rim model tetrapropoxycalixarene 5 (3.12 min) (Table 1). To determine a nature of the adsorption the mo- lecular structure of the calixarenes was studied. Con- formation of macrocyclic skeleton of the calixarenes is con�irmed by the 1H NMR and quantum-chemical calculations methods. In the NMR spectra of dipro- poxycalixarenes 1, 3 signals of ArCH2Ar methylene groups are observed as two doublets of axial and equatorial protons of the spin system AB (2JHH = 13 Hz) with the differences between their chemical shifts ∆δ 0.85-0.90 ppm. This indicates that calixarenes 1, 3 exist in the !lattened cone conformation with C2ν symmetry of the macrocyclic skeleton. The !lattened cone conformation is stereochemically rigid due to the intramolecular hydrogen bonds OH···OPr at the lower rim of the macrocycle. At the same time, the Таble 1 Retention times tR, retention volumes VR, capacity factors k’, and peak asymmetry coe� cients KS of calixarenes 1-5 Calixarene, № Retention time, tR, min Retention volume, VR, ml Capacity factor, k’ Peak asymmetry coe� cient, KS 1a 3.34 2.67 1.30 1.00 1b 3.14 2.51 1.17 0.71 2a 4.16 3.33 1.87 1.50 2b 4.74 3.79 2.27 0.93 3a 5.35 4.28 2.69 1.30 3b 5.42 4.34 2.74 0.81 4a 6.55 5.24 3.52 2.00 4b 12.37 9.90 7.53 1.89 5 3.12 2.50 1.15 1.00 Fig.1. Correlation of capacity factors k’ with lipophilicity log P of calixarenes 1а-3а, 5. Fig. 2. Conformational transitions fl attened cone - fl attened cone in tetrapropoxycalixarenes 4, 5. Журнал органічної та фармацевтичної хімії. – 2012. – Т. 10, вип. 4 (40) 62 difference between chemical shifts of the axial and equatorial protons ∆δ for tetrapropoxycalixarenes 4 and 5 consists 1.1-1.2 ppm which corresponds to the stereochemically mobile regular cone conformation with С4v symmetry of the skeleton [2]. Rapid in the NMR scale lattened cone – lattened cone transitions take place for the tetrapropoxycalyxarenes (Fig. 2) [2]. Tripropoxycalixarene 2 occupies an intermedi- ate position between these two conformations (∆d 1.01 ppm). Quantum-chemical calculations for calixarene 3а structure were carried out at the DFT approxima- tion. For geometry optimization, the modern DFT- functional Grimme B97-D was used [37]. This takes into account effects of electronic dispersion (for ex- ample, van der Waals interactions), which is of im- portance for molecular complexes. The most stable conformation for 3а (Fig. 3) is lattened cone where the aromatic fragments substituted with phosphoryl groups lay closer to the main plane of the molecule formed by methylene groups of their macrocyclic skeleton. Unsubstituted aromatic fragments are ap- proximately perpendicular to this plane. Hydroxyl group of CH-O-H moiety and one of the hydroxyl groups of P-OH fragment form hydrogen bonds with oxygen of P=O groups. Hydroxyl group of remaining P-OH fragment interacts with the aromatic π-system. In order to elucidate in#luence of the calixarene na- ture on sorption processes we have calculated the struc- ture of the host-guest complex for compound 3а with 4-(trimethylsilyl)butyronitrile Me3SiCH2CH2CH2CN (complex 6), and 4-(trisiloxysilil)butyronitrile (H3SiO)3SiCH2CH2CH2CN (complex 7). These com- pounds model binding sites of calixarenes on the of Table 2 The calculated values of total energies (E), total energies, taking into account amendments to the � uctuations at 0K (E + ZPE), chemical potential (E + h.p.) and relative energy of adduct formation (∆E and ∆G) Structure Е, Hartree ZPE (х.п.)а, Hartree Hartree ν, см-1 ∆Е (∆G)а, kcal / mol 3а -2981.954273 -2982.004634б 0.718895 0.623782 - -2981.235378 -2981.330491 - 9.9 0.00 0.00 0.00 6 -3601.910628 -3601.960179б 0.919571 0.807206 - -3600.991058 -3601.103422 - 6.6 -16.11 0.02 -9.63 7 -4581.938440 -4581.993561б 0.904090 0.786235 -4581.034349 -4581.152204 - 14.5 -21.33 0.14 -19.07 Me3Si(CH2)3CN -619.928202 -619.940194б 0.198196 0.155239 - -619.730006 -619.772963 - 23.3 - - - (H3SiО)3Si(CH2)3CN -1599.944531 -1599.958538б 0.179548 0.122601 - -1599.764983 -1599.821929 - 17.9 - - - а Value ch. pot., E+ ch. pot. and ∆G are shown in italics. b Value of total and relative energies, calculated with the COSMO procedure for wаter as solvent (ε = 78.39), uncorrected. Fig. 3. The most favorable conformation calixarene 3а (a – side view, b – top view). Журнал органічної та фармацевтичної хімії. – 2012. – Т. 10, вип. 4 (40) 63 Zorbax CN surface. In 6 (Fig. 4) hydrogen bonds P-O H∙∙∙NC and P=O∙∙∙H2CCN with two calixarenes phos- phonic residues are formed without including the guest molecule into the host cavity. The reaction of the complex formation is exo- thermic (∆E = -16.1 kcal/mol). However, the transi- tion relative free Gibbs energy values (∆G) decreases exothermicity reaction to zero (Table 2), due to de- creasing entropy by formation of guest-host adduct. Consideration of the solvent in"luence (water) using of the empirical COSMO procedure reduces the ∆E value to -9.6 kcal/mol. So, in polar solvent the binding ef"iciency of 3а calixarene towards 4-(trimethylsilyl)butyronitrile is low. 4-(Trisiloxysilyl)butyronitrile better mimics the Zorbax CN silica gel surface. The theoretically cal- culated complex 3a with this guest molecule (7, Fig. 5) is additionally stabilized by two hydrogen bonds PO-H∙∙∙OSi, so values of the calculated exothermic DE reaction energy increases to -21.3 kcal/mol (-19.1 kcal/mol in water). However the entropy ef- fect reduces the exothermic Gibbs free energy of the reaction to zero (+0.1 kcal/mol). This corresponds to a dynamic equilibrium of the complex 7 with mol- ecules 3a and 4-(trisiloxysilyl)butyronitrile. However, it is noteworthy that in the Zorbax CN silica gel the butyronitrile moiety is covalently bound to the polysilicate matrix, and has a much lower num- ber of degrees of freedom compared with model com- pound 7. Therefore, from point of view of entropy the guest-host interaction will be more favorable and the reaction can become exothermic. In addition, in the real chromatographic processes interactions of the calixarene host with residual silanol groups Si-OH of Zorbax CN should not be neglected as well. Conclusion Analyzing the data obtained one can conclude that the cone shaped calix[4]аrеne hyd roxy me thyl- phosphonic acids and their sodium salts in condi- tions of the high-performance liquid chromatogra- phy adsorb on Zorbax CN support by the upper rim of the macrocycle forming the hydrogen bonds with cyanoalkyl groups at the support surface. The calix- arenes are registered as sharp peaks with the reten- tion time within 3.14-12.37 min and can be analyzed by HPLC method in aqueous solutions, including bio- logical "luids during bio-medical investigations. Acknowledgement This work was partially supported by the State Fund for Fundamental Researches of Ukraine (con- tract F40/78-2011). The authors are grateful to Pro- fessor Uwe Manthe, Department of Chemistry, Uni- versity of Bielefeld (Germany) for providing the ac- cess to the TURBOMOLE software package and com- puter cluster. References 1. Gutsche C.D. Calixarenes: an introduction, Monographs in Supramolecular Chemistry. – Cambridge: The Royal Society of Chemistry, 2008. 2. Böhmer V. // Angew. Chem. Int. Ed. Engl. – 1995. – Vol. 34. – P. 713-745. Fig. 4. VMD plots of the most favorable conformation of complex 6, (a) side view, (b) top view. Fig. 5. VMD plot of adduct 7 structure (conformation with the lowest total energy). Журнал органічної та фармацевтичної хімії. – 2012. – Т. 10, вип. 4 (40) 64 3. Lumetta G.J., Rogers R.D., Gopalan A.S. Calixarenes for Separations, Washington: American Chemical Society, 2000. 4. Mandolini L., Ungaro R. Singapore: Calixarenes in Action, Imperial College Press, 2000. 5. Asfari Z., Böhmer V., Harrowfield J., Vicens J. Calixarenes. Dordrecht: Kluwer Academic Publishers, 2001. 6. Rodik R.V., Boyko V.I., Kalchenko V.I. // Curr. Med. Chem. – 2009. – Vol. 16. – P. 1630-1655. 7. De Fatima A., Fernandes S.A., Sabino A.A. // Curr. Drug Discovery Technol. – 2009. – Vol. 6. – P. 151-170. 8. Sansone F., Segura M., Ungaro R. Calixarenes in Bioorganic and Biomimetic Chemistry. In: Asfari M.-Z., Böhmer V., Harrowfield J., Vicens J. (eds.) Calixarenes 2001. Dordrecht: Kluwer Academic Publishers, 2001. 9. Casnati A., Sansone F., Ungaro U. // Acc. Chem. Res. – 2003. – Vol. 36. – P. 246-254. 10. Da Silva E., Lazar A.N., Coleman A.W. // J. Drug. Sci. Tech. – 2004. – Vol. 14, №1. – P. 3-20. 11. Perret F., Lazar A.N., Coleman A.W. // Chem. Commun. – 2006. – P. 2425-2438. 12. Coleman A.W., Perret F., Moussa A. et al. // Curr. Chem. – 2007. – Vol. 277. – P. 31-88. 13. Yakovenko A.V., Boyko V.I., Kalchenko V.I. et al. // J. Org. Chem. Vol. – 2007. – Vol. 72. – P. 3223-3231. 14. Douteau-Guevel N., Perret F., Coleman A.W. et al. // J. Chem. Soc., Perkin Trans. 2. – 2002. – P. 524-532. 15. Douteau-Guevel N., Coleman A.W., Morel J.-P., Morel-Defrosters N. // J. Chem. Soc. Perkin Trans. 2. – 1999. – P. 629-633. 16. Perret F., Lazar A.N., Coleman A.W. // Chem. Commun. – 2006. – P. 2425-2438. 17. Sansone F., Barboso S., Casnati A. et al. // Tetrahedron Lett. – 1999. – Vol. 40. – P. 4741-4744. 18. Mutihac L., Buschmann H.-J., Diacu E. // Desalination. – 2002. – Vol. 148. – P. 253-256. 19. Okada Y., Kasai Y., Nishimura J. // Tetrahedron Lett. – 1995. – Vol. 36. – P. 555-558. 20. Durmaz M., Alpaydin S., Sirit A., Yilmaz M. // Tetrahedron Asymmetry. – 2007. – Vol. 18. – P. 900-905. 21. Kalchenko О.І., Kalchenko V.І. // J. Оrg. Pharm. Chim. – 2011. – Vol. 9. – P. 21-36. 22. Kalchenko O., Poznanski J., Marcinowicz A. et al. // J. Phys. Org. Chem. – 2003. – Vol. 16. – P. 246-252. 23. Kalchenko O., Marcinowicz A., Poznanski J. et al. // J. Phys. Org. Chem. – 2005. – Vol. 18. – P. 578-585. 24. Vеklich Т.О., Kоstеrіn S.О., Chеrеnоk S.О. et al. // Ukr. Biochim. Zh. – 2006. – Vol. 78. – P. 70-86. 25. Kalchenko O.I., Lipkowski J., Kalchenko V.I. et al. // J. Chrom. Sci. – 1998. – Vol. 36. – P. 269-273. 26. Boyko V.I., Podoprigorina A.A., Yakovenko A.V. et al. // J. Incl. Phenom. – 2004. – Vol. 50. - P. 193-197. 27. Ahlrichs R., Bär M., Häser M. et al. // Chem. Phys. Lett. – 1989. – Vol. 162. – P. 165-169. 28. TURBOMOLE V 6.0. 2009, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, P. 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com. 29. Dunlap B.I., Conolly J.W., Sabin J.R. // J. Chem. Phys. – 1979. – Vol. 71. – P. 3396-3402. 30. Vahtras O., Almlöf J., Feyereisen M.W. // Chem. Phys. Lett. – 1993. – Vol. 213. – P. 514-518. 31. Eichkorn K., Treutler O., Öhm H. et al. // Chem. Phys. Lett. – 1995. – Vol. 240. – P. 283-289. 32. Grimme S. // J. Comput. Chem. – 2004. – Vol. 25. – P. 1463-1473. 33. Grimme S., Antony J., Schwabe T., Mück-Lichtenfeld C. // Org. Biomol. Chem. – 2007. – Vol. 5. – P. 741-758. 34. Schäfer A., Huber C., Ahlrichs R. // J. Chem. Phys. – 1994. – Vol. 100. – P. 5829-5835. 35. Klamt A., Schüürmann G. // J. Chem. Soc. Perkin Trans. 2. – 1993. – P. 799-805. 36. VMD for WIN-32, Version 1.8.6 (April, 7, 2007). 37. Humpfrey W., Dalke A., Schulten K. // J. Mol. Graphics. – 1996. – Vol. 14. – P. 33-38. Надійшла до редакції 10.04.2012 р.