The Molecular Structure and Chromatographic Parameters of Calix[4]аrеnehydroxymethylphosphonic Acids
The basic chromatographic characteristics (retention time, tR, capacity factors, k’, and coeffi cients of asymmetry peaks, KS) of the number of biologically signifi cant calix[4]аrenehydroxymethylphosphonic acids and their sodium salts have been obtained in a reversed-phase high-performance liquid c...
Gespeichert in:
Datum: | 2012 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут органічної хімії НАН України
2012
|
Schriftenreihe: | Журнал органічної та фармацевтичної хімії |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/42066 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | The Molecular Structure and Chromatographic Parameters of Calix[4]аrеnehydroxymethylphosphonic Acids / O.I. Kalchenko, S.O. Cherenok, O.B. Rozhenko, O.A. Yushchenko, V.I. Kalchenko // Журнал органічної та фармацевтичної хімії. — 2012. — Т. 10, вип. 4(40). — С. 59-64. — Бібліогр.: 37 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-42066 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-420662013-03-08T03:07:27Z The Molecular Structure and Chromatographic Parameters of Calix[4]аrеnehydroxymethylphosphonic Acids Kalchenko, O.I. Cherenok, S.O. Rozhenko, O.B. Yushchenko, O.A. Kalchenko, V.I. The basic chromatographic characteristics (retention time, tR, capacity factors, k’, and coeffi cients of asymmetry peaks, KS) of the number of biologically signifi cant calix[4]аrenehydroxymethylphosphonic acids and their sodium salts have been obtained in a reversed-phase high-performance liquid chromatography (RP HPLC) on Zorbax CN. The structure of calix[4]аrenehydroxymethylphosphonic acids have been studied by the molecular modeling method (TURBOMOLE program). The relationship between the structure and chromatographic characteristics of the calix[4]аrenes, as well as their sorption mechanism on the column surface have been discussed. Основні хроматографічні характеристики (часи утримання tR коефіцієнти ємкості к', коефіцієнти асиметрії піків КS) низки біологічно значимих калікс[4]аренгідроксиметилфосфонових кислот та їх натрієвих солей були визначені методом обернено-фазної високоефективної рідинної хроматографії (ОФ ВЕРХ) при застосуванні хроматографічної насадки Zorbax CN. Будову калікс[4]аренгідроксиметилфосфонових кислот було досліджено методом молекулярного моделювання (програмний пакет TURBOMOLE). Обговорено взаємозв'язок між будовою, хроматографічною поведінкою та механізмом сорбції каліксаренів поверхнею хроматографічної насадки. Основные хроматографические характеристики (времена удерживания коэффициенты емкости к', коэффициенты асимметрии пиков КS) серии биологически значимых каликс[4]аренгидроксиметилфосфоновых кислот и их натриевых солей определены методом обращенно-фазной высокоэффективной жидкостной хроматографии (ОФ ВЭЖХ) при использовании хроматографической насадки Zorbax CN. Строение каликс[4]аренгидроксиметилфосфоновых кислот исследовано методом молекулярного моделирования (программный пакет TURBOMOLE). Обсуждена взаимосвязь между строением и хроматографическим поведением и механизмом сорбции каликсаренов поверхностью хроматографической насадки. 2012 Article The Molecular Structure and Chromatographic Parameters of Calix[4]аrеnehydroxymethylphosphonic Acids / O.I. Kalchenko, S.O. Cherenok, O.B. Rozhenko, O.A. Yushchenko, V.I. Kalchenko // Журнал органічної та фармацевтичної хімії. — 2012. — Т. 10, вип. 4(40). — С. 59-64. — Бібліогр.: 37 назв. — англ. 0533-1153 http://dspace.nbuv.gov.ua/handle/123456789/42066 547.03+547.562 en Журнал органічної та фармацевтичної хімії Інститут органічної хімії НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The basic chromatographic characteristics (retention time, tR, capacity factors, k’, and coeffi cients of asymmetry peaks, KS) of the number of biologically signifi cant calix[4]аrenehydroxymethylphosphonic acids and their sodium salts have been obtained in a reversed-phase high-performance liquid chromatography (RP HPLC) on Zorbax CN. The structure of calix[4]аrenehydroxymethylphosphonic acids have been studied by the molecular modeling method (TURBOMOLE program). The relationship between the structure and chromatographic characteristics of the calix[4]аrenes, as well as their sorption mechanism on the column surface have been discussed. |
format |
Article |
author |
Kalchenko, O.I. Cherenok, S.O. Rozhenko, O.B. Yushchenko, O.A. Kalchenko, V.I. |
spellingShingle |
Kalchenko, O.I. Cherenok, S.O. Rozhenko, O.B. Yushchenko, O.A. Kalchenko, V.I. The Molecular Structure and Chromatographic Parameters of Calix[4]аrеnehydroxymethylphosphonic Acids Журнал органічної та фармацевтичної хімії |
author_facet |
Kalchenko, O.I. Cherenok, S.O. Rozhenko, O.B. Yushchenko, O.A. Kalchenko, V.I. |
author_sort |
Kalchenko, O.I. |
title |
The Molecular Structure and Chromatographic Parameters of Calix[4]аrеnehydroxymethylphosphonic Acids |
title_short |
The Molecular Structure and Chromatographic Parameters of Calix[4]аrеnehydroxymethylphosphonic Acids |
title_full |
The Molecular Structure and Chromatographic Parameters of Calix[4]аrеnehydroxymethylphosphonic Acids |
title_fullStr |
The Molecular Structure and Chromatographic Parameters of Calix[4]аrеnehydroxymethylphosphonic Acids |
title_full_unstemmed |
The Molecular Structure and Chromatographic Parameters of Calix[4]аrеnehydroxymethylphosphonic Acids |
title_sort |
molecular structure and chromatographic parameters of calix[4]аrеnehydroxymethylphosphonic acids |
publisher |
Інститут органічної хімії НАН України |
publishDate |
2012 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/42066 |
citation_txt |
The Molecular Structure and Chromatographic Parameters of Calix[4]аrеnehydroxymethylphosphonic Acids / O.I. Kalchenko, S.O. Cherenok, O.B. Rozhenko, O.A. Yushchenko, V.I. Kalchenko // Журнал органічної та фармацевтичної хімії. — 2012. — Т. 10, вип. 4(40). — С. 59-64. — Бібліогр.: 37 назв. — англ. |
series |
Журнал органічної та фармацевтичної хімії |
work_keys_str_mv |
AT kalchenkooi themolecularstructureandchromatographicparametersofcalix4arenehydroxymethylphosphonicacids AT cherenokso themolecularstructureandchromatographicparametersofcalix4arenehydroxymethylphosphonicacids AT rozhenkoob themolecularstructureandchromatographicparametersofcalix4arenehydroxymethylphosphonicacids AT yushchenkooa themolecularstructureandchromatographicparametersofcalix4arenehydroxymethylphosphonicacids AT kalchenkovi themolecularstructureandchromatographicparametersofcalix4arenehydroxymethylphosphonicacids AT kalchenkooi molecularstructureandchromatographicparametersofcalix4arenehydroxymethylphosphonicacids AT cherenokso molecularstructureandchromatographicparametersofcalix4arenehydroxymethylphosphonicacids AT rozhenkoob molecularstructureandchromatographicparametersofcalix4arenehydroxymethylphosphonicacids AT yushchenkooa molecularstructureandchromatographicparametersofcalix4arenehydroxymethylphosphonicacids AT kalchenkovi molecularstructureandchromatographicparametersofcalix4arenehydroxymethylphosphonicacids |
first_indexed |
2025-07-04T00:30:55Z |
last_indexed |
2025-07-04T00:30:55Z |
_version_ |
1836674246377472000 |
fulltext |
Журнал органічної та фармацевтичної хімії. – 2012. – Т. 10, вип. 4 (40)
59
УДК 547.03+547.562
THE MOLECULAR STRUCTURE AND
CHROMATOGRAPHIC PARAMETERS OF CALIX�4�
АRЕNEHYDROXYMETHYLPHOSPHONIC ACIDS
O.I.Kalchenko, S.O.Cherenok, O.B.Rozhenko, O.A.Yushchenko, V.I.Kalchenko
Institute of Organic Chemistry National Academy of Sciences of Ukraine
02660, Murmanska str. 5, Kyiv. E-mail: vik@ioch.kiev.ua
Key words: liquid chromatography; calix[4]аrеnehydroxymethylphosphonic acids; chromatographic
characteristics
The basic chromatographic characteristics (retention time, tR, capacity factors, k’, and coef-
fi cients of asymmetry peaks, KS) of the number of biologically signifi cant calix[4]аrеnehyd-
roxymethylphosphonic acids and their sodium salts have been obtained in a reversed-phase
high-performance liquid chromatography (RP HPLC) on Zorbax CN. The structure of calix[4]
аrеnehydroxymethylphosphonic acids have been studied by the molecular modeling method
(TURBOMOLE program). The relationship between the structure and chromatographic char-
acteristics of the calix[4]аrеnes, as well as their sorption mechanism on the column surface
have been discussed.
MOЛЕКУЛЯРНА БУДОВА ТA ХРОМАТОГРАФІЧНІ ХАРАКТЕРИСТИКИ КАЛІКС[4]АРЕНГІД-
РОКСИМЕТИЛФОСФОНОВИХ КИСЛОТ
O.I.Kaльчeнкo, С.O.Черенок, O.B.Роженко, O.A.Ющенкo, В.I.Kaльчeнкo
Основні хроматографічні характеристики (часи утримання tR, коефіцієнти ємкості
k’, коефіцієнти асиметрії піків KS) низки біологічно значимих калікс[4]аренгідроксиме-
тилфосфонових кислот та їх натрієвих солей були визначені методом обернено-фаз-
ної високоефективної рідинної хроматографії (ОФ ВЕРХ) при застосуванні хромато-
графічної насадки Zorbax CN. Будову калікс[4]аренгідроксиметилфосфонових кислот
було досліджено методом молекулярного моделювання (програмний пакет TURBOMOLE).
Обговорено взаємозв’язок між будовою, хроматографічною поведінкою та механізмом
сорбції каліксаренів поверхнею хроматографічної насадки.
MOЛЕКУЛЯРНОЕ СТРОЕНИЕ И ХРОМАТОГРАФИЧЕСКИЕ ХАРАКТЕРИСТИКИ КАЛИКС[4]АРЕН-
ГИДРОКСИМЕТИЛ-ФОСФОНОВЫХ КИСЛОТ
O.И.Kaльчeнкo, С.А.Черенок, А.Б.Роженко, А.A.Ющенкo, В.И.Kaльчeнкo
Основные хроматографические характеристики (времена удерживания tR, коэффици-
енты емкости k’, коэффициенты асимметрии пиков KS) серии биологически значи-
мых каликс[4]аренгидроксиметилфосфоновых кислот и их натриевых солей опреде-
лены методом обращенно-фазной высокоэффективной жидкостной хроматографии
(ОФ ВЭЖХ) при использовании хроматографической насадки Zorbax CN. Строение ка-
ликс[4]аренгидроксиметилфосфоновых кислот исследовано методом молекулярно-
го моделирования (программный пакет TURBOMOLE). Обсуждена взаимосвязь между
строением и хроматографическим поведением и механизмом сорбции каликсаренов
поверхностью хроматографической насадки.
Calixarenes [1] are macrocyclic compounds with
cone shaped structure which can be synthesized by the
cyclocondensation of para-substituted phenols with
formaldehyde. These compounds due to the ability
to the selective formation of host-guest supramo-
lecular complexes with substrates (cations, anions,
organic molecules, biopolymers) are widely used in
chemistry, physics, and biology [1-5].
Due to the ability to simulate the substrate-re-
ceptor interactions with biomolecules, calixarenes
are objects of biomedical research [6, 7]. Calixarenes
contained preorganized bio-af!ine groups are able
to recognize and bind in supramolecular complexes
different biologically active molecules such as amino
acids, dipeptides, proteins, choline and acetylcholine,
carbohydrates, ribo!lavin, vitamin B12, nucleotides, nuc-
leosides and short DNA fragments [8-20]. The ca-
lixarenes substrate-receptor interactions in water
solutions can be investigated by HPLC method [21].
The aim of this work is determination of the HPLC
chromatographic characteristics of calix[4]аrеnehyd-
roxymethylphosphonic acids 1а-4а, their sodium salts
1b-4b as well as modeling tetrapropoxycalixarene 5
(Scheme) and investigation of relationship of these
characteristics with molecular structure of the calix-
arenes.
The calix[4]аrеnehydroxymethylphosphonic acids
form host-guest inclusion complexes with amino acids
Журнал органічної та фармацевтичної хімії. – 2012. – Т. 10, вип. 4 (40)
60
and dipeptides [22, 23]. They are also selective mo-
dulators of calcium metabolism in cells [24] and inhi-
bitors of proteintyrozynphosphataze [25]. Thus, the
chromatographic characteristics of the acids may be
useful for determination of the binding constants of
their supramolecular complexes with the biomole-
cules in water solutions [26] as well as for their phar-
macological investigations by the HPLC method.
Experimental
HPLC analysis. The solvents were obtained from
Acros Organics. Calix[4]аrеnehydroxymethylphospho-
nic acids 1а-4a (Scheme 1) were synthesized by the
reaction of the corresponding formylcalixarenes with
sodium salts of dialkylphosphites and the next deal-
kylation of the esters formed by the consecutive treat-
ment with trimethylbromosilan and methanol accor-
ding to [25]. Sodium salts of calix[4]аrеnehydroxy-
methylphosphonic acids 1b-4b were obtained by ad-
dition of an equivalent quantity of sodium methylate
to methanol solution of the acids. Unsubstituted at
the upper rim tetrapropoxycalixarene 5 was synthe-
sized by the method [26].
HPLC analysis was performed using the high pres-
sure liquid chromatographic system Hitachi. The co-
lumn (250 × 4,6 mm i.d.) was packed with Zorbax CN.
The mobile phase THF/Н2O (90/10 v/v) was utilized
for calix[4]аrеnehydroxymethylphosphonic acids 1а-
4a and tetrapropoxycalixarene 5. The mobile phase
Н2O/MeCN (99/1 v/v) was used for sodium salts 1b-
4b. Flow rate of the both mobile phases was 0.8 ml/min.
Chromatographic samples were prepared in the sol-
vents identical to the mobile phases. Concentration of
the calixarenes in samples for the analysis was 10-3-
10-4 M, the samples volume was 20 mkl. Each of the
samples were analyzed three times. Wave length of
UV detector was 254 nm. All chromatograms were
obtained at temperature 26oC.
Molecular modelling. All the structures were $irst
optimized using TURBOMOLE (version 6.02) program
packet [27, 28] in order to utilize advantages of the
Resolution Identity (RI) [29] algorithm implement-
ed in the TURBOMOLE program packet. B97-D func-
tional [32, 33] and standard triple-zeta basis sets
(TZVP) [34] were used. The basis sets were con-
tracted as (14s9p)/[5s4p] → {73211/6111} for Si,
(11s6p)/[5s3p] → {62111/411} for C, N, O and (5s)/
[3s] → {311} for H. One set of ($ive) d-functions was
added for every heavy atom and one set of p-func-
tions was used for hydrogen atoms. In order to $ind
conformers with the lowest total energies optimized
structures were modi$ied. Maximal number of hyd-
rogen bonds under condition of minimal steric in-
teractions between the guest and the host has been
chosen as criteria for modi$ication. After modi$ica-
tion the structures were fully optimized again and
the resulted total energy was compared with that
before modification. The procedure was repeated
until no total energy lowering was observed. For the
structure with the lowest total energy vibrational
analysis was performed computing analytically $irst
and second order derivatives. No imaginary frequen-
cies were found for 3a, complex 6 and complex 7.
Solvent effects (H2O) were modeled using COSMO
[35] procedure. Corrected and uncorrected total en-
ergy values and relative energy magnitudes are list-
ed in Table 1. The DЕ values were calculated as a dif-
ference between the total energy magnitudes for the
adduct and free host and guest structures corrected
on zero point energy correction (ZPE). DG values
were derived from the total energy magnitudes cor-
rected on chemical potential (ch. pot.), computed for
standard conditions (Т= 298.15К, р= 0.1 МРа). VMD
program packet [36] was used for graphical repre-
sentation of the structures.
Chromatographic characteristics determina-
tion. The most suitable eluents for chromatographic
analysis of acids 1а-4а and calixarene 5 was THF/
H2O mixture (90/10 v/v), and for sodium salts 1b-
4b – H2O/MeCN mixture (99/1 v/v). The main chro-
matographic parameters of calixarenes 1-5 – reten-
tion times tR, retention volumes VR, capacity factors
k’, and peak asymmetry coef$icients KS are given in
Table 1.
Results and Discussion. The retention times of
calixarene 5 and calix[4]аrеne-hydroxymethylphos-
phonic acids 1а-4а are within 3.34-6.55 min. The
сhanging of calix[4]аrеnehydroxymethylphosphonic
Scheme
Журнал органічної та фармацевтичної хімії. – 2012. – Т. 10, вип. 4 (40)
61
acids 1а-4а to their salts 1b-4b insigni�icantly chan-
ges their retention time (3.14-12.37 min), with the
exception of calixarene 4 (6.55 min for the acid and
12.37 min for the salt). The retention volume VR and
capacity factor k’ are increased as well. Calixarene
peaks are characterized by reasonable values of the
asymmetry coefficients within 0.71-2.0. Thus, for
the acids and their salts the increasing of the number
of propyl groups at the lower rim and phosphoryl
groups at the upper rim of the macrocycle leads to
the increasing of the retention parameters – tR, VR
and k’. For the acids 1а-4а the inverse dependence
of capacity factors k’ from the molecule lipophilicity
parameter log P calculated by the software package
Hyper Chem, 8 is observed (Fig. 1).
Calixarenes 1-4 adsorb on the Zorbax CN sur-
face, covered by cyanoalkyl groups, mainly by the
upper rim of the macrocycle. This is con�irmed by
the greater retention time of tetrapropoxycalixare-
ne-bis-phosphonic acid 4a (6.55 min) and its salt 4b
(12.37 min) comparatively with unsubstituted at the
upper rim model tetrapropoxycalixarene 5 (3.12 min)
(Table 1).
To determine a nature of the adsorption the mo-
lecular structure of the calixarenes was studied. Con-
formation of macrocyclic skeleton of the calixarenes
is con�irmed by the 1H NMR and quantum-chemical
calculations methods. In the NMR spectra of dipro-
poxycalixarenes 1, 3 signals of ArCH2Ar methylene
groups are observed as two doublets of axial and
equatorial protons of the spin system AB (2JHH = 13 Hz)
with the differences between their chemical shifts
∆δ 0.85-0.90 ppm. This indicates that calixarenes 1,
3 exist in the !lattened cone conformation with C2ν
symmetry of the macrocyclic skeleton. The !lattened
cone conformation is stereochemically rigid due to
the intramolecular hydrogen bonds OH···OPr at the
lower rim of the macrocycle. At the same time, the
Таble 1
Retention times tR, retention volumes VR, capacity factors k’, and peak asymmetry
coe� cients KS of calixarenes 1-5
Calixarene,
№
Retention time,
tR, min
Retention volume,
VR, ml
Capacity factor, k’
Peak asymmetry
coe� cient, KS
1a 3.34 2.67 1.30 1.00
1b 3.14 2.51 1.17 0.71
2a 4.16 3.33 1.87 1.50
2b 4.74 3.79 2.27 0.93
3a 5.35 4.28 2.69 1.30
3b 5.42 4.34 2.74 0.81
4a 6.55 5.24 3.52 2.00
4b 12.37 9.90 7.53 1.89
5 3.12 2.50 1.15 1.00
Fig.1. Correlation of capacity factors k’ with lipophilicity log P of calixarenes 1а-3а, 5.
Fig. 2. Conformational transitions fl attened cone - fl attened cone in tetrapropoxycalixarenes 4, 5.
Журнал органічної та фармацевтичної хімії. – 2012. – Т. 10, вип. 4 (40)
62
difference between chemical shifts of the axial and
equatorial protons ∆δ for tetrapropoxycalixarenes 4
and 5 consists 1.1-1.2 ppm which corresponds to the
stereochemically mobile regular cone conformation
with С4v symmetry of the skeleton [2]. Rapid in the
NMR scale lattened cone – lattened cone transitions
take place for the tetrapropoxycalyxarenes (Fig. 2)
[2]. Tripropoxycalixarene 2 occupies an intermedi-
ate position between these two conformations (∆d
1.01 ppm).
Quantum-chemical calculations for calixarene 3а
structure were carried out at the DFT approxima-
tion. For geometry optimization, the modern DFT-
functional Grimme B97-D was used [37]. This takes
into account effects of electronic dispersion (for ex-
ample, van der Waals interactions), which is of im-
portance for molecular complexes. The most stable
conformation for 3а (Fig. 3) is lattened cone where
the aromatic fragments substituted with phosphoryl
groups lay closer to the main plane of the molecule
formed by methylene groups of their macrocyclic
skeleton. Unsubstituted aromatic fragments are ap-
proximately perpendicular to this plane. Hydroxyl
group of CH-O-H moiety and one of the hydroxyl
groups of P-OH fragment form hydrogen bonds with
oxygen of P=O groups. Hydroxyl group of remaining
P-OH fragment interacts with the aromatic π-system.
In order to elucidate in#luence of the calixarene na-
ture on sorption processes we have calculated the struc-
ture of the host-guest complex for compound 3а with
4-(trimethylsilyl)butyronitrile Me3SiCH2CH2CH2CN
(complex 6), and 4-(trisiloxysilil)butyronitrile
(H3SiO)3SiCH2CH2CH2CN (complex 7). These com-
pounds model binding sites of calixarenes on the of
Table 2
The calculated values of total energies (E), total energies, taking into account amendments
to the � uctuations at 0K (E + ZPE), chemical potential (E + h.p.) and relative energy
of adduct formation (∆E and ∆G)
Structure Е, Hartree
ZPE (х.п.)а,
Hartree
Hartree ν, см-1 ∆Е (∆G)а,
kcal / mol
3а -2981.954273
-2982.004634б
0.718895
0.623782
-
-2981.235378
-2981.330491
-
9.9 0.00
0.00
0.00
6 -3601.910628
-3601.960179б
0.919571
0.807206
-
-3600.991058
-3601.103422
-
6.6 -16.11
0.02
-9.63
7 -4581.938440
-4581.993561б
0.904090
0.786235
-4581.034349
-4581.152204
-
14.5 -21.33
0.14
-19.07
Me3Si(CH2)3CN -619.928202
-619.940194б
0.198196
0.155239
-
-619.730006
-619.772963
-
23.3 -
-
-
(H3SiО)3Si(CH2)3CN -1599.944531
-1599.958538б
0.179548
0.122601
-
-1599.764983
-1599.821929
-
17.9 -
-
-
а Value ch. pot., E+ ch. pot. and ∆G are shown in italics. b Value of total and relative energies, calculated with the COSMO procedure for wаter
as solvent (ε = 78.39), uncorrected.
Fig. 3. The most favorable conformation calixarene 3а (a – side view, b – top view).
Журнал органічної та фармацевтичної хімії. – 2012. – Т. 10, вип. 4 (40)
63
Zorbax CN surface. In 6 (Fig. 4) hydrogen bonds P-O
H∙∙∙NC and P=O∙∙∙H2CCN with two calixarenes phos-
phonic residues are formed without including the
guest molecule into the host cavity.
The reaction of the complex formation is exo-
thermic (∆E = -16.1 kcal/mol). However, the transi-
tion relative free Gibbs energy values (∆G) decreases
exothermicity reaction to zero (Table 2), due to de-
creasing entropy by formation of guest-host adduct.
Consideration of the solvent in"luence (water) using
of the empirical COSMO procedure reduces the ∆E
value to -9.6 kcal/mol.
So, in polar solvent the binding ef"iciency of 3а
calixarene towards 4-(trimethylsilyl)butyronitrile is
low. 4-(Trisiloxysilyl)butyronitrile better mimics the
Zorbax CN silica gel surface. The theoretically cal-
culated complex 3a with this guest molecule (7, Fig.
5) is additionally stabilized by two hydrogen bonds
PO-H∙∙∙OSi, so values of the calculated exothermic
DE reaction energy increases to -21.3 kcal/mol
(-19.1 kcal/mol in water). However the entropy ef-
fect reduces the exothermic Gibbs free energy of the
reaction to zero (+0.1 kcal/mol). This corresponds
to a dynamic equilibrium of the complex 7 with mol-
ecules 3a and 4-(trisiloxysilyl)butyronitrile.
However, it is noteworthy that in the Zorbax CN
silica gel the butyronitrile moiety is covalently bound
to the polysilicate matrix, and has a much lower num-
ber of degrees of freedom compared with model com-
pound 7. Therefore, from point of view of entropy the
guest-host interaction will be more favorable and the
reaction can become exothermic. In addition, in the
real chromatographic processes interactions of the
calixarene host with residual silanol groups Si-OH of
Zorbax CN should not be neglected as well.
Conclusion
Analyzing the data obtained one can conclude
that the cone shaped calix[4]аrеne hyd roxy me thyl-
phosphonic acids and their sodium salts in condi-
tions of the high-performance liquid chromatogra-
phy adsorb on Zorbax CN support by the upper rim
of the macrocycle forming the hydrogen bonds with
cyanoalkyl groups at the support surface. The calix-
arenes are registered as sharp peaks with the reten-
tion time within 3.14-12.37 min and can be analyzed
by HPLC method in aqueous solutions, including bio-
logical "luids during bio-medical investigations.
Acknowledgement
This work was partially supported by the State
Fund for Fundamental Researches of Ukraine (con-
tract F40/78-2011). The authors are grateful to Pro-
fessor Uwe Manthe, Department of Chemistry, Uni-
versity of Bielefeld (Germany) for providing the ac-
cess to the TURBOMOLE software package and com-
puter cluster.
References
1. Gutsche C.D. Calixarenes: an introduction, Monographs in Supramolecular Chemistry. – Cambridge: The
Royal Society of Chemistry, 2008.
2. Böhmer V. // Angew. Chem. Int. Ed. Engl. – 1995. – Vol. 34. – P. 713-745.
Fig. 4. VMD plots of the most favorable conformation of complex 6, (a) side view, (b) top view.
Fig. 5. VMD plot of adduct 7 structure (conformation with
the lowest total energy).
Журнал органічної та фармацевтичної хімії. – 2012. – Т. 10, вип. 4 (40)
64
3. Lumetta G.J., Rogers R.D., Gopalan A.S. Calixarenes for Separations, Washington: American Chemical
Society, 2000.
4. Mandolini L., Ungaro R. Singapore: Calixarenes in Action, Imperial College Press, 2000.
5. Asfari Z., Böhmer V., Harrowfield J., Vicens J. Calixarenes. Dordrecht: Kluwer Academic Publishers, 2001.
6. Rodik R.V., Boyko V.I., Kalchenko V.I. // Curr. Med. Chem. – 2009. – Vol. 16. – P. 1630-1655.
7. De Fatima A., Fernandes S.A., Sabino A.A. // Curr. Drug Discovery Technol. – 2009. – Vol. 6. – P. 151-170.
8. Sansone F., Segura M., Ungaro R. Calixarenes in Bioorganic and Biomimetic Chemistry. In: Asfari M.-Z.,
Böhmer V., Harrowfield J., Vicens J. (eds.) Calixarenes 2001. Dordrecht: Kluwer Academic Publishers, 2001.
9. Casnati A., Sansone F., Ungaro U. // Acc. Chem. Res. – 2003. – Vol. 36. – P. 246-254.
10. Da Silva E., Lazar A.N., Coleman A.W. // J. Drug. Sci. Tech. – 2004. – Vol. 14, №1. – P. 3-20.
11. Perret F., Lazar A.N., Coleman A.W. // Chem. Commun. – 2006. – P. 2425-2438.
12. Coleman A.W., Perret F., Moussa A. et al. // Curr. Chem. – 2007. – Vol. 277. – P. 31-88.
13. Yakovenko A.V., Boyko V.I., Kalchenko V.I. et al. // J. Org. Chem. Vol. – 2007. – Vol. 72. – P. 3223-3231.
14. Douteau-Guevel N., Perret F., Coleman A.W. et al. // J. Chem. Soc., Perkin Trans. 2. – 2002. – P. 524-532.
15. Douteau-Guevel N., Coleman A.W., Morel J.-P., Morel-Defrosters N. // J. Chem. Soc. Perkin Trans. 2. – 1999. –
P. 629-633.
16. Perret F., Lazar A.N., Coleman A.W. // Chem. Commun. – 2006. – P. 2425-2438.
17. Sansone F., Barboso S., Casnati A. et al. // Tetrahedron Lett. – 1999. – Vol. 40. – P. 4741-4744.
18. Mutihac L., Buschmann H.-J., Diacu E. // Desalination. – 2002. – Vol. 148. – P. 253-256.
19. Okada Y., Kasai Y., Nishimura J. // Tetrahedron Lett. – 1995. – Vol. 36. – P. 555-558.
20. Durmaz M., Alpaydin S., Sirit A., Yilmaz M. // Tetrahedron Asymmetry. – 2007. – Vol. 18. – P. 900-905.
21. Kalchenko О.І., Kalchenko V.І. // J. Оrg. Pharm. Chim. – 2011. – Vol. 9. – P. 21-36.
22. Kalchenko O., Poznanski J., Marcinowicz A. et al. // J. Phys. Org. Chem. – 2003. – Vol. 16. – P. 246-252.
23. Kalchenko O., Marcinowicz A., Poznanski J. et al. // J. Phys. Org. Chem. – 2005. – Vol. 18. – P. 578-585.
24. Vеklich Т.О., Kоstеrіn S.О., Chеrеnоk S.О. et al. // Ukr. Biochim. Zh. – 2006. – Vol. 78. – P. 70-86.
25. Kalchenko O.I., Lipkowski J., Kalchenko V.I. et al. // J. Chrom. Sci. – 1998. – Vol. 36. – P. 269-273.
26. Boyko V.I., Podoprigorina A.A., Yakovenko A.V. et al. // J. Incl. Phenom. – 2004. – Vol. 50. - P. 193-197.
27. Ahlrichs R., Bär M., Häser M. et al. // Chem. Phys. Lett. – 1989. – Vol. 162. – P. 165-169.
28. TURBOMOLE V 6.0. 2009, a development of University of Karlsruhe and Forschungszentrum Karlsruhe
GmbH, P. 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.
29. Dunlap B.I., Conolly J.W., Sabin J.R. // J. Chem. Phys. – 1979. – Vol. 71. – P. 3396-3402.
30. Vahtras O., Almlöf J., Feyereisen M.W. // Chem. Phys. Lett. – 1993. – Vol. 213. – P. 514-518.
31. Eichkorn K., Treutler O., Öhm H. et al. // Chem. Phys. Lett. – 1995. – Vol. 240. – P. 283-289.
32. Grimme S. // J. Comput. Chem. – 2004. – Vol. 25. – P. 1463-1473.
33. Grimme S., Antony J., Schwabe T., Mück-Lichtenfeld C. // Org. Biomol. Chem. – 2007. – Vol. 5. – P. 741-758.
34. Schäfer A., Huber C., Ahlrichs R. // J. Chem. Phys. – 1994. – Vol. 100. – P. 5829-5835.
35. Klamt A., Schüürmann G. // J. Chem. Soc. Perkin Trans. 2. – 1993. – P. 799-805.
36. VMD for WIN-32, Version 1.8.6 (April, 7, 2007).
37. Humpfrey W., Dalke A., Schulten K. // J. Mol. Graphics. – 1996. – Vol. 14. – P. 33-38.
Надійшла до редакції 10.04.2012 р.
|