Poisson estimates of the distribution of the rank of a random matrix over the field GF(2)

The estimates of the rate of convergence of the distribution of the rank of a random matrix over the field GF(2) and the Poisson distribution with the parameter depending on both the matrix sizes and distributions of its elements are found.

Gespeichert in:
Bibliographische Detailangaben
Datum:2006
Hauptverfasser: Masol, V.I., Popereshnyak, S.V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2006
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/4446
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Poisson estimates of the distribution of the rank of a random matrix over the field GF(2) / V.I. Masol, S.V. Popereshnyak // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 1-2. — С. 106–115. — Бібліогр.: 5 назв.— англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-4446
record_format dspace
spelling irk-123456789-44462009-11-11T12:00:37Z Poisson estimates of the distribution of the rank of a random matrix over the field GF(2) Masol, V.I. Popereshnyak, S.V. The estimates of the rate of convergence of the distribution of the rank of a random matrix over the field GF(2) and the Poisson distribution with the parameter depending on both the matrix sizes and distributions of its elements are found. 2006 Article Poisson estimates of the distribution of the rank of a random matrix over the field GF(2) / V.I. Masol, S.V. Popereshnyak // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 1-2. — С. 106–115. — Бібліогр.: 5 назв.— англ. 0321-3900 http://dspace.nbuv.gov.ua/handle/123456789/4446 519.21 en Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The estimates of the rate of convergence of the distribution of the rank of a random matrix over the field GF(2) and the Poisson distribution with the parameter depending on both the matrix sizes and distributions of its elements are found.
format Article
author Masol, V.I.
Popereshnyak, S.V.
spellingShingle Masol, V.I.
Popereshnyak, S.V.
Poisson estimates of the distribution of the rank of a random matrix over the field GF(2)
author_facet Masol, V.I.
Popereshnyak, S.V.
author_sort Masol, V.I.
title Poisson estimates of the distribution of the rank of a random matrix over the field GF(2)
title_short Poisson estimates of the distribution of the rank of a random matrix over the field GF(2)
title_full Poisson estimates of the distribution of the rank of a random matrix over the field GF(2)
title_fullStr Poisson estimates of the distribution of the rank of a random matrix over the field GF(2)
title_full_unstemmed Poisson estimates of the distribution of the rank of a random matrix over the field GF(2)
title_sort poisson estimates of the distribution of the rank of a random matrix over the field gf(2)
publisher Інститут математики НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/4446
citation_txt Poisson estimates of the distribution of the rank of a random matrix over the field GF(2) / V.I. Masol, S.V. Popereshnyak // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 1-2. — С. 106–115. — Бібліогр.: 5 назв.— англ.
work_keys_str_mv AT masolvi poissonestimatesofthedistributionoftherankofarandommatrixoverthefieldgf2
AT popereshnyaksv poissonestimatesofthedistributionoftherankofarandommatrixoverthefieldgf2
first_indexed 2025-07-02T07:41:22Z
last_indexed 2025-07-02T07:41:22Z
_version_ 1836520133895389184
fulltext Theory of Stochastic Processes Vol. 12 (28), no. 1–2, 2006, pp. 106–115 UDC 519.21 VOLODYMYR I. MASOL AND SVITLANA V. POPERESHNYAK POISSON ESTIMATES OF THE DISTRIBUTION OF THE RANK OF A RANDOM MATRIX OVER THE FIELD GF (2) The estimates of the rate of convergence of the distribution of the rank of a ran- dom matrix over the field GF (2) and the Poisson distribution with the parameter depending on both the matrix sizes and distributions of its elements are found. Introducton A matrix A over the field GF (2) consisting of two elements is called a sparse Boolean matrix if the probability of the occurrence of 1 in its positions (i, j) equals 1 n (lnn + xij), where |xij | ≤ c, c = const, i = 1, T , j = 1, n, T/n/ is the number of rows/columns/ of the matrix A. In works [1], [2], using different methods, the limit Poisson distribution of the rank r(A) of a random sparse Boolean matrix A was established when T = T (n) and n → ∞. For finite values of the parameters T and n, the distribution of the rank r(A) can be presented in terms of the factorial moments of the random variable r(A), as stated in [3]. The asymptotics of these moments under certain conditions, in particular, if xij = xi, i = 1, T , j = 1, n as n → ∞, is given in ([4], Theorem 4). The question on the rate of convergence of the distribution of the rank of a matrix A to the Poisson distribution with a properly chosen parameter has not been examined yet. The suggested paper is devoted to the investigation of the mentioned issue. The proof of our main result (Theorem 1) is based on the theorem on the rate of con- vergence in a Poisson scheme given in [5, p.67]. It should also be noted that, in contrast with works [1], [2], the present paper considers a random matrix A, the distributions of elements in which can depend on their (elements) positions. The Main Result Let the elements of a T × n matrix A = ‖aij‖, i = 1, T , j = 1, n be the independent random variables that take values in the field GF (2) and have the distribution (1) P {aij = 1} = 1 − P {aij = 0} = lnn + xij n , where (2) |xij | ≤ c, c = const, i = 1, T , j = 1, n. Let us assume that the matrix A has at least n0 columns so that it is correct to determine a distribution by formula (1) for n ≥ n0. We denote, by r (A), the rank of the 2000 AMS Mathematics Subject Classification. Primary 60C05. Key words and phrases. Random matrix over the field GF (2), rank of a matrix, Poisson distribution, rate of convergence. 106 ESTIMATES OF THE DISTRIBUTION OF THE RANK OF A RANDOM MATRIX 107 matrix A and put λ equal (3) λ = 1 n T∑ i=1 exp ⎧⎨ ⎩− 1 n n∑ j=1 xij ⎫⎬ ⎭. Theorem 1. Let conditions (1) and (2) be satisfied, and (4) T n ≤ 1 − log2 lnn (lnn)q , q = const , 0 < q < 1, (5) lim n→∞ T n > 0. Then, for k, k=0, 1, 2 . . . ,∣∣∣∣P {r (A) = T − k} − e−λ · λk k! ∣∣∣∣ ≤ 2 (1 + δ) c(n, k) ln4 n n (ln lnn)2 , where 1 < limn→∞ c (n, k) ≤ limn→∞ c (n, k) ≤ eec , δ > 0, δ = const. Remark. The explicit form of the coefficient c(n, k) is given by equality (30). Auxiliary Statements By ξn,T , we denote the number of zero rows of the matrix A. Lemma 1. When conditions (1) and (2) hold, the distribution of the random variable ξn,T satisfies the inequality (6) ∣∣∣∣P {ξn,T = k} − e−λ · λk k! ∣∣∣∣ ≤ Q(n, k), where Q(n, k) = ln2 n n c1(n, k) and 0 < limn→∞ c1 (n, k) ≤ limn→∞ c1 (n, k) ≤ e−1 if k = 0, 0 < limn→∞ c1 (n, k) ≤ limn→∞ c1 (n, k) ≤ eck 2k! max (k, ec) if k ≥ 1. Proof. The probability p (i) n that the row i of the matrix A consists of zeros exclusively is, obviously, equal to p(i) n = n∏ j=1 ( 1 − lnn + xij n ) , i = 1, T . Let us put a = p (1) n + p (2) n + . . . + p (n) n . According to the Poisson theorem [5, p. 67], we get the inequality for arbitrary k = 0, 1, 2, . . . (7) ∣∣∣∣P {ξn,T = k} − e−a · ak k! ∣∣∣∣ ≤ T∑ i=1 ( p(i) n )2 . Applying the inequality p (i) n ≤ 1 n exp { − 1 n ∑n j=1 xij } to the right-hand side of (7), we obtain (8) ∣∣∣∣P {ξn,T = k} − e−a · ak k! ∣∣∣∣ ≤ 1 n2 T∑ i=1 exp ⎧⎨ ⎩− 2 n n∑ j=1 pij ⎫⎬ ⎭. Since λ (1 − γn) ≤ a ≤ λ, 108 VOLODYMYR I. MASOL AND SVITLANA V. POPERESHNYAK where γn = ( ln2 n 2n ) (1−c(ln n)−1)2 1−(ln n−c)n−1 , we get −λk+1e−λγn ( 1 + λγn 2 eλγn ) ≤ λke−λ − ake−a ≤ λke−λkγn. Hence, (9) ∣∣λke−λ − ake−a ∣∣ ≤ λke−λγn max { k, λ ( 1 + λγn 2 eλγn )} . Combining ratios (8) and (9) leads to∣∣∣∣P {ξn,T = k} − e−λ · λk k! ∣∣∣∣ ≤ Q(n, k), where (10) Q (n, k) = ln2 n n c1(n, k), c1 (n, k) = 1 n ln2 n T∑ i=1 exp ⎧⎨ ⎩− 2 n n∑ j=1 pij ⎫⎬ ⎭+ + λke−λ 2 k! ( 1 − c (lnn)−1 )2 1 − (lnn − c)n−1 max { k, λ ( 1 + λγn 2 eλγn )} , 0 < limn→∞ c1 (n, k) ≤ limn→∞ c1 (n, k) ≤ e−1 for k=0, 0 < limn→∞ c1 (n, k) ≤ limn→∞ c1 (n, k) ≤ eck 2k! max (k, ec) for k ≥ 1. Lemma 1 is proved. By S1 (A), we denote the maximum number of independent critical sets of the matrix A (see [2, p. 147]), each containing at least one non-zero row. Lemma 2. If condition (1) is satisfied, the expectation of the random variable S1 (A) equals MS1 (A) = T∑ k=0 ∑ 1≤i1<···<ik≤T 1 2n n∏ j=1 ( 1 + k∏ s=1 ( 1 − 2 (lnn + xisj) n )) − − T∑ k=0 ∑ 1≤i1<···<ik≤T k∏ s=1 n∏ j=1 ( 1 − lnn + xisj n ) . Proof. Let us take into account that the probability that the number of successes in a series of k independent trails, with the probability of a success pi, i = 1, k being an even number, equals 1 2 + 1 2 k∏ i=1 (1 − 2pi). (It is not difficult to verify it using induction on the parameter k ≥ 1). Hence, the probability that k rows constitute a critical set can be presented by the expression 1 2n n∏ j=1 ( 1 + k∏ i=1 ( 1 − 2 (lnn + xij) n )) . ESTIMATES OF THE DISTRIBUTION OF THE RANK OF A RANDOM MATRIX 109 Note that the probability that there is no single 1 in k rows equals k∏ i=1 n∏ j=1 ( 1 − lnn + xij n ) . Now it is not difficult to complete the proof of Lemma 2. Let us put f(n) = [ (ln lnn)−1 (1 + δ1) lnn ] , δ1 = const, δ1 > 0, μ (n) = ∑f(n) k=0 ∑ 1≤i1<···<ik≤T exp { −∑k s=1 ∑n j=1 lnn+xisj n } . Lemma 3. If conditions (1), (2), and (4) are satisfied, and (11) T ≤ n, then (12) 1 < lim n→∞ μ(n) ≤ lim n→∞ μ(n) ≤ eec . Proof. Let us estimate μ (n) from above. The sum μ (n) can be presented as (13) μ (n) = θ1(n) − θ2(n), where θ1(n) = ∑T k=0 ∑ 1≤i1<···<ik≤T exp { −∑k s=1 ∑n j=1 ln n+xisj n } , θ2(n) = ∑T k=f(n)+ 1 ∑ 1≤i1<···<ik≤T exp { −∑k s=1 ∑n j=1 ln n+xisj n } . Then θ1(n) can be estimated in such a way: (14) θ1(n) ≤ eλ. Since θ2(n) ≥ 0, relations (13) and (14) imply (15) μ (n) ≤ eλ. Let us estimate μ (n) from below. Since θ1(n) ≥ eλ exp ⎧⎨ ⎩− 1 2n2 T∑ i=1 exp ⎛ ⎝− 2 n n∑ j=1 xij ⎞ ⎠ ⎫⎬ ⎭ , we get μ (n) ≥ eλ exp ⎧⎨ ⎩− 1 2n2 T∑ i=1 exp ⎛ ⎝− 2 n n∑ j=1 xij ⎞ ⎠ ⎫⎬ ⎭− θ2(n). From the last inequality and (15), it follows that (16) eλ exp ⎧⎨ ⎩− 1 2n2 T∑ i=1 exp ⎛ ⎝− 2 n n∑ j=1 xij ⎞ ⎠ ⎫⎬ ⎭− θ2(n) ≤ μ (n) ≤ eλ. To analyze θ2(n), it is necessary to take into account conditions (2) and (11), that is (17) θ2(n) → 0 as n → ∞. Letting n → ∞ in inequality (16) and taking into account (17) and conditions (2), (5), and (11), we obtain (12). Lemma 3 is proved. Let us set the following Γ(n) = u ( 1 + u(1+δ1) 2 eu(1+δ1) ) , u = ln4 n n(ln ln n)2 . 110 VOLODYMYR I. MASOL AND SVITLANA V. POPERESHNYAK Lemma 4. If conditions (1) and (2) are satisfied, then we have (18) f(n)∑ k=0 ∑ 1≤i1<....<ik≤T 1 2n n∏ j=1 ( 1 + k∏ s=1 ( 1 − 2 (lnn + xisj) n )) ≤ ≤ μ (n) + μ (n) (1 + δ)Γ (n) . Proof. The left-hand side of relation (18) can be estimated as f(n)∑ k=0 ∑ 1≤i1<···<ik≤T 1 2n n∏ j=1 ( 1 + k∏ s=1 ( 1 − 2 (lnn + xisj) n )) ≤ ≤ f(n)∑ k=0 ∑ 1≤i1<···<ik≤T n∏ j=1 ⎛ ⎝1 − k∑ s=1 (lnn + xisj) n + ( k∑ s=1 (lnn + xisj) n )2 ⎞ ⎠. By (2), the last inequality leads to (19) f(n)∑ k=0 ∑ 1≤i1<···<ik≤T 1 2n n∏ j=1 ( 1 + k∏ s=1 ( 1 − 2 (lnn + xisj) n )) ≤ ≤ μ(n) · exp { f2 (n) (lnn + c)2 n } . Further, we obtain (20) exp { f2 (n) (lnn + c)2 n } ≤ 1 + u (1 + δ) ( 1 + u 2 (1 + δ) exp {u (1 + δ)} ) . Relations (19) and (20) give, obviously, (18). Lemma 4 is proved. Lemma 5. If conditions (1), (2), (5), and (11) are satisfied, then f(n)∑ k=0 ∑ 1≤i1<···<ik≤T k∏ s=1 n∏ j=1 ( 1 − lnn + xisj n ) ≥μ (n) − c2 (n) ln3 n n · ln lnn , where (1+δ1) 2 < limn→∞ c2 (n) ≤ limn→∞ c2 (n) ≤ eec 2 (1 + δ1) . Proof. With the help of relation (2), we find the following inequalities: f(n)∑ k=0 ∑ 1≤i1<···<ik≤T k∏ s=1 n∏ j=1 ( 1 − lnn + xisj n ) ≥ ≥ μ(n) · exp { −f(n) 2n (ln n + c)2 · 1 1 − ln n+c n } . Therefore, using the notations introduced earlier, we come to f(n)∑ k=0 ∑ 1≤i1<···<ik≤T k∏ s=1 n∏ j=1 ( 1 − lnn + xisj n ) ≥μ(n) − c2(n) · ln3 n n · ln lnn , where c2(n) = μ(n) 2 (1 + δ1) ( 1 + c lnn )2 1 1 − ln n+c n . Taking into account (12), we get (1+δ1) 2 < limn→∞ c2(n) ≤ limn→∞ c2(n) ≤ 1 2eec (1 + δ1) as n → ∞. ESTIMATES OF THE DISTRIBUTION OF THE RANK OF A RANDOM MATRIX 111 Lemma 5 is proved. Lemma 6. If conditions (1), (2), (5), and (11) are satisfied, then ∑ k: n 2 (1− 1 ln n)<k≤ n 2 (1+ 1 ln n ) k−integer ( n k ) 1 2n T∑ l=f(n) ( T l )(( 1 − 2 (lnn − c) n )k )l ≤ ≤ ( c3(n) f(n) )f(n) · 1√ f(n) · c4(n), where 0 < limn→∞ c3(n) ≤ limn→∞ c3(n) ≤ e2+c, limn→∞ c4(n) = (2π)− 1/2. Proof. For (n/2) ( 1 − 1/lnn ) < k ≤ (n/2) ( 1 + 1/lnn ) , we find ( 1 − 2 (lnn − c) n )k ≤ e−2k(ln n−c)n−1 ≤ 1 n ec+1− c ln n . Using the obtained estimation, we establish that ∑ k: n 2 (1− 1 ln n)<k≤ n 2 (1+ 1 ln n ) k−integer ( n k ) 1 2n T∑ l=f(n) ( T l )(( 1 − 2 (lnn − c) n )k )l ≤ ∑ k: n 2 (1− 1 ln n )<k≤ n 2 (1 + 1 ln n ) k−integer ( n k ) 1 2n T∑ l=f(n) ( T l )( 1 n ec+1− c ln n )l ≤ T∑ l=f(n) ( T n )l (ec+1− c ln n )l l! . Applying the Stirling formula, we get T∑ l=f(n) ( T n )l (ec+1− c ln n )l l! ≤ ( c3(n) f(n) )f(n) · 1√ f(n) · c4(n), where c3(n) = T n · e2+c− c ln n , c4(n) = 1√ 2π · ( 1 − c3(n) f(n) )−1 ; taking into account (5) and (11), we find the following expressions: 0 < limn→∞ c3(n) ≤ limn→∞ c3(n) ≤ e2+c, limn→∞ c4(n) = (2π)−1/2 Lemma 6 is proved. Lemma 7. If conditions (1), (2), (4), and (5) are satisfied, then T∑ k=f(n) + 1 ∑ 1≤i1<···<ik≤T 1 2n n∏ j=1 ( 1 + k∏ s=1 ( 1 − 2 (lnn + xisj) n )) ≤ c5(n) · (lnn) − n·c6(n) (ln n)q + + ( c3(n) f(n) )f(n) · 1√ f(n) · c4(n) + c7(n) · exp { − n 2 ln2 n c8(n) } , where limn→∞ c5(n) = (2π)−1/2, limn→∞ c6(n) = 1 − q, limn→∞ c8(n) = 1, √ 2 π < limn→∞ c7(n) ≤ limn→∞ c7(n) ≤ ec+1+ec−1√ 2π . Proof. Denote S = ∑T k=f(n) ∑ +1 1≤i1<···<ik≤T 1 2n ∏n j=1 ( 1 + ∏k s=1 ( 1 − 2(ln n+xisj) n )) . With the help of condition (2), we find that, for n ≥ n0, 0 ≤ S ≤ σ, 112 VOLODYMYR I. MASOL AND SVITLANA V. POPERESHNYAK where σ = ∑T k=f(n) ( T k ) 1 2n ( 1 + ( 1 − 2(ln n−c) n )k )n . Using elementary transformations, we can obtain the following presentation for the sum σ: σ = n∑ k=0 Ak (f (n)), where Ak (f(n)) = ( n k ) 1 2n ∑T l=f(n) ( T l )( 1 − 2(ln n−c) n )kl . Using this presentation, we obtain the inequality σ ≤ S1 + S2 + S3 + S4, where S1 = ∑ 0≤k≤k1 Ak(0), S2 = ∑ k1<k≤k2 Ak(0), S3 = ∑ k2<k≤k3 Ak(f(n)), S4 = = ∑ k3<k≤n Ak(0), k1 = [ n (lnn)q ] , k2 = [ n 2 ( 1 − 1 lnn )] , k3 = [ n 2 ( 1 + 1 lnn )] . Let us proceed to the estimations of the sum S1. We have S1 ≤ (1 + k1) · 2T−n · nk1 k1! . With the help of the Stirling formula and (4), we come to the relation (21) S1 ≤ c5(n) · (lnn) − n·c6(n) (ln n)q , where c6(n) = 1− q − 1 ln ln n ( 1 − ln ( 1 − (ln n)q n ) + 1 2n (lnn)1+q − q(ln n)q ln ln n 2n ) , c5(n) = 1√ 2π · (1 + k−1 1 ) and limn→∞ c5(n) = (2π)−1/2, limn→∞ c6(n) = 1 − q. Let us proceed to the estimation of the sum S2. Taking into consideration that Ak(0) is a non-decreasing function with the parameter k to be in the scope k1 < k ≤ k2, we get S2 ≤ n 2 Ak2 (0) = n 2 ( n k2 ) 1 2n θ3(n), where θ3(n) = ( 1 + ( 1 − 2(ln n−c) n )k2 )T . It is obvious that θ3(n) satisfies the inequality (22) θ3(n) ≤ ( 1 + exp { −2k2 (lnn − c) n })T ≤ ( 1 + 1 n ec+1− c ln n + 2 ln n−c n )T ≤ c9(n), where c9(n) = exp { T n ec+1− c ln n +2 ln n−c n } . Then (23) S2 ≤ 1√ 2π ( 1 − 1 ln2 n ) · exp { − n 2 ln2 n ( 1 − 1 2 ln n − 1 2 ln2 n − ln3 n n )} · c9(n). Using condition (5) and relation (11) [it follows directly from (4)], we have 1 < lim n→∞ c9(n) ≤ lim n→∞ c9(n) ≤ e1+c. To estimate the sum S4, we use the following expression: S4 ≤ n 2 Ak3(0) = n 2 ( n k3 ) 1 2n ( 1 + ( 1 − 2 (lnn − c) n )k3 )T . ESTIMATES OF THE DISTRIBUTION OF THE RANK OF A RANDOM MATRIX 113 Hence, (24) S4 ≤ 1√ 2π ( 1 − 1 ln2 n ) · exp { − n 2 ln2 n ( 1 − 1 2 lnn − 1 2 ln2 n − ln3 n n )} · c10(n), where c10(n) = exp { T n ec−1+ c ln n } . From condition (5) and relation (11), it follows that 1 < lim n→∞ c10(n) ≤ lim n→∞ c10(n) ≤ ec−1. Inequalities (23) and (24) result in (25) S2 + S4 ≤ 1√ 2π ( 1 − 1 ln2 n ) · exp { − n 2 ln2 n ( 1 − 1 2 lnn − 1 2 ln2 n − ln3 n n )} × × (c9(n) + c10(n)) ≤ c7(n) · exp { − n 2 ln2 n c8(n) } , where c8(n) = ( 1 − 1 2 ln n − 1 2 ln2 n − ln3 n n ) , c7 (n) = 1 2π(1− 1 ln2 n ) · (c9(n) + c10(n), )√ 2 π < limn→∞ c7(n) ≤ limn→∞ c7(n) ≤ ec+1+ec−1√ 2π , and limn→∞ c8(n) = 1. Combining estimates (21), (25), and the estimate for the sum S3 found in Lemma 6, we obtain Lemma 7. We now denote the maximum number of independent critical sets of the matrix A by S (A). Lemma 8. If conditions (1) and (2) are satisfied, then, for k, k = 0, 1, 2, . . . ,∣∣∣∣P {S (A) = k} − e−λ · λk k! ∣∣∣∣ ≤ 2MS1 (A) + Q (n, k) , where MS1 (A)is found in Lemma 2, while Q (n, k) in Lemma 1. Proof. Taking into account Lemma 1, we get the following relation:∣∣∣∣P {S (A) = k} − e−λ · λk k! ∣∣∣∣ ≤ |P {S (A) = k} − P {ξn,T (A) = k}| + Q (n, k) = = |P {S1 (A) + ξn,T (A) = k} − P {ξn,T (A) = k}| + Q (n, k) . Applying the relations P {S1(A) + ξn, T = k} = k∑ l=0 P {S1 (A) = l, ξn, T = k − l}, |P {S1 (A) = 0, ξn, T = k} − P { ξn, T = k} | ≤ P {S1 (A) ≥ 1} together with Chebyshev inequality, we find∣∣∣∣P {S (A) = k} − e−λ · λk k! ∣∣∣∣ ≤ 2P {S1 (A) ≥ 1} + Q (n, k) ≤ 2MS1(A) + Q (n, k) . Lemma 8 is proved. The proof of Theorem 1 To estimate MS1(A), we introduce the notation Δ 1 (k) = ∑ 1≤i1<···<ik≤T 1 2n n∏ j=1 ( 1 + k∏ s=1 ( 1 − 2 (lnn + xisj) n )) , 114 VOLODYMYR I. MASOL AND SVITLANA V. POPERESHNYAK Δ 2 (k) = ∑ 1≤i1<···<ik≤T k∏ s=1 n∏ j=1 ( 1 − lnn + xisj n ) for k ≥ 0. With the help of Lemma 2, MS1(A) can be presented as MS1(A) = f(n)∑ k=0 Δ1 (k) + T∑ k=f(n)+1 Δ1 (k) − ⎛ ⎝f(n)∑ k=0 Δ2 (k) + T∑ k=f(n)+1 Δ2 (k) ⎞ ⎠ . This leads to MS1(A) ≤ f(n)∑ k=0 Δ1 (k) + T∑ k=f(n)+1 Δ1 (k) − f(n)∑ k=0 Δ2 (k) . From Lemmas 4 and 5, it follows that (26) f(n)∑ k=0 Δ1 (k) − f(n)∑ k=0 Δ2 (k) ≤ ≤ μ (n) + μ (n) (1 + δ)Γ (n) − ( μ (n) − c2 (n) ln3 n n · ln lnn ) = = μ (n) (1 + δ)Γ (n) + c2 (n) ln3 n n · ln ln n . Combining (26) with the estimate for the sum ∑T k=f(n)+1 Δ1 (k) obtained in Lemma 7, we establish the inequality (27) MS1(A) ≤ μ (n) (1 + δ) Γ (n) + F (n), where (28) F (n) = c2 (n) ln3 n n · ln lnn + c5(n) · (lnn) − n·c6(n) (ln n)q + + ( c3(n) f(n) )f(n) 1√ f(n) c4(n) + c7(n) exp { − n 2 ln2 n c8(n) } . According to (27) and Lemma 8,∣∣∣∣P {S (A) = k} − e−λ · λk k! ∣∣∣∣ ≤ 2 (μ (n) (1 + δ) Γ (n) + F (n)) + Q(n, k). Using the explicit expression for Γ(n), we can write∣∣∣∣P {S (A) = k} − e−λ · λk k! ∣∣∣∣ ≤ 2 (1 + δ) c11(n)u + 2F (n) + Q (n, k) , where (29) c11(n) = μ(n) + μ(n) u 2 (1 + δ) exp {u (1 + δ)} , The last inequality and the relation r(A) + s(A) = T (see [2, p. 148]) imply∣∣∣∣P {r (A) = T − k} − e−λ · λk k! ∣∣∣∣ ≤ 2 (1 + δ) c(n, k) ln4 n n (ln lnn)2 , where (30) c(n, k) = c11(n) + F (n) (1 + δ)u + Q(n, k) 2u(1 + δ) , ESTIMATES OF THE DISTRIBUTION OF THE RANK OF A RANDOM MATRIX 115 c11(n), F (n), and Q(n, k) are determined in equalities (29), (28), and (10). Limited distribution of the rank of a sparse random Boolean matrix Theorem 2. I. Let the conditions of Theorem 1 hold and (31) λ → λ0 if n → ∞. Then 0 < λ0 < ∞, and, for a fixed k, k = 0, 1, 2, . . . , (32) P {r(A) = T − k} → e−λ0 λk 0 k! , n → ∞. II. If conditions (1), (2), (4), and (31) are satisfied, and λ0 > 0, then λ0 < ∞, and relation (32) holds true. Theorem 1 makes it not difficult to prove Theorem 2. Corollary. If condition (1) holds for xij = x, i = 1, T , j = 1, n, where x is a fixed number, and T n → α as n → ∞, where 0 < α < 1, then relation (32) holds for λ0 = αe−x. To prove the corollary, it is enough to note that the conditions of the corollary imply immediately the conditions of the first (or the second) part of Theorem 2. Remark 2. The result of the above-mentioned corollary was obtained, in particular, in ([1], Theorem 1) and in ([2], Theorem 3.3.1). Conclusions In the paper, the rate of convergence of the distribution of the rank of a sparse Boolean matrix to the Poisson distribution (Theorem 1) has been found. Theorem 1 implies Theorem 2 that generalizes the known result on the limit distribution of the rank of the mentioned matrix in case where the distributions of its elements depend on their positions, and the ratio of the number of rows to the number of columns does not exceed 1 − γ(n), where γ(n) tends slowly to zero and takes only positive values. Bibliography 1. G.V. Balakin, Distribution of the rank of random matrices over a finite field XIII (1968), no. 4, Probability theory and its application, 631-641. (in Russian) 2. V.F. Kolchin, Random Graphs, Fizmatlit, Moscow, 2004, pp. 256. (in Russian) 3. V.I. Masol, Moments of the number of solutions of a system of random Boolean equations, Random Oper. and Stoch. Equations. 1 (1993), no. 2, 171-179. 4. V.I. Masol, Theorems of invariance for systems of random Boolean equations (1993), Sixth Intern. Vilnius Conf. of Probability Theory and Math. Statist.: Abstr. of Communic., Vilnius, 19-20. 5. B.A. Sevastyanov, Course of the Theory of Probability and Mathematical Statistics, Nauka, Moscow, 1982, pp. 256. (in Russian) E-mail : vimasol@ukr.net E-mail : Popereshnyak sv@mail.ru