The normal limit distribution of the number of false solutions of a system of nonlinear random equations in the field GF(2)

The theorem on a normal limit (n→∞) distribution of the number of false solutions of a beforehand consistent system of nonlinear random equations in the field GF(2) with independent coefficients is proved. In particular, we assume that each equation has coefficients that take values 0 and 1 with e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2006
Hauptverfasser: Masol, V.I., Slobodyan, S.Y.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2006
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/4447
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The normal limit distribution of the number of false solutions of a system of nonlinear random equations in the field GF(2) / V.I. Masol, S.Y. Slobodyan // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 1-2. — С. 116–126. — Бібліогр.: 3 назв.— англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The theorem on a normal limit (n→∞) distribution of the number of false solutions of a beforehand consistent system of nonlinear random equations in the field GF(2) with independent coefficients is proved. In particular, we assume that each equation has coefficients that take values 0 and 1 with equal probability; the system has a solution where the number of ones equals [ρn], ρ = const, 0 < ρ < 1.