Some properties of weight functions in tauberian theorems

The rate of convergence for weight functions series in Tauberian theorems is obtained. Numerical results demonstrate required rate of convergence. Some asymptotic properties of hypergeometric functions are obtained as auxiliary results.

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Olenko, A., Klykavka, B.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/4462
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Some properties of weight functions in tauberian theorems / A. Olenko, B. Klykavka // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 3-4. — С. 123–136. — Бібліогр.: 17 назв.— англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-4462
record_format dspace
spelling irk-123456789-44622009-11-12T12:00:32Z Some properties of weight functions in tauberian theorems Olenko, A. Klykavka, B. The rate of convergence for weight functions series in Tauberian theorems is obtained. Numerical results demonstrate required rate of convergence. Some asymptotic properties of hypergeometric functions are obtained as auxiliary results. 2006 Article Some properties of weight functions in tauberian theorems / A. Olenko, B. Klykavka // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 3-4. — С. 123–136. — Бібліогр.: 17 назв.— англ. 0321-3900 http://dspace.nbuv.gov.ua/handle/123456789/4462 en Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The rate of convergence for weight functions series in Tauberian theorems is obtained. Numerical results demonstrate required rate of convergence. Some asymptotic properties of hypergeometric functions are obtained as auxiliary results.
format Article
author Olenko, A.
Klykavka, B.
spellingShingle Olenko, A.
Klykavka, B.
Some properties of weight functions in tauberian theorems
author_facet Olenko, A.
Klykavka, B.
author_sort Olenko, A.
title Some properties of weight functions in tauberian theorems
title_short Some properties of weight functions in tauberian theorems
title_full Some properties of weight functions in tauberian theorems
title_fullStr Some properties of weight functions in tauberian theorems
title_full_unstemmed Some properties of weight functions in tauberian theorems
title_sort some properties of weight functions in tauberian theorems
publisher Інститут математики НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/4462
citation_txt Some properties of weight functions in tauberian theorems / A. Olenko, B. Klykavka // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 3-4. — С. 123–136. — Бібліогр.: 17 назв.— англ.
work_keys_str_mv AT olenkoa somepropertiesofweightfunctionsintauberiantheorems
AT klykavkab somepropertiesofweightfunctionsintauberiantheorems
first_indexed 2025-07-02T07:42:05Z
last_indexed 2025-07-02T07:42:05Z
_version_ 1836520178924388352
fulltext Theory of Stochastic Processes Vol. 12 (28), no. 3–4, 2006, pp. 123–136 ANDRIY OLENKO AND BORIS KLYKAVKA SOME PROPERTIES OF WEIGHT FUNCTIONS IN TAUBERIAN THEOREMS. I The rate of convergence for weight functions series in Tauberian theo- rems is obtained. Numerical results demonstrate required rate of con- vergence. Some asymptotic properties of hypergeometric functions are obtained as auxiliary results. 1. Introduction In numerous problems in actuarial and financial mathematics asymptotic behavior of random processes, fields, and limit theorems for some their functionals are of great importance. Abelian and Tauberian theorems find numerous applications in obtaining various asymptotic properties of random processes and fields. The majority results of such type (see, for example, [1]-[4]) describe relations between asymptotic behavior of spectral and cor- relation characteristics at the infinity and in zero. Such relations do not always exist for long memory random processes and fields. A new approach based on the idea of studying relations between behavior of a spectral func- tion in zero and some functional of random field at the infinity was proposed in [5, 6]. In comparison with classical Tauberian theorems this functional is used as an equivalent of a correlational function. Representation of the functional was given in terms of the variance of spherical averages of random field. It also can be calculated as some integral of the correlation function. In [7], [8] similar investigations were continued. New results on relations between local behavior of spectral functions in arbitrary point (not nec- essarily zero) and asymptotics of some functionals of random fields were obtained. Representations of these functionals were derived in terms of the variance of weighted averages of random fields. Various properties of weight functions in such representations were discussed in [7]-[10]. This paper con- tinues the investigations. Let Rn, n ≥ 2 be an n−dimentional Euclidean space, ξ(t), t ∈ Rn be a real measurable mean-square continuous homogeneous isotropic random field (see, for example, [11]) with zero mean and the correlation function Bn(r) = Bn(|t|) = Eξ(0)ξ(t), t ∈ Rn. 2000 Mathematics Subject Classification. Primary 60G60, 62E20, 40E05, 26A12, 44A15, 33C05. Key words and phrases. Tauberian theorems, random fields, correlation function, spec- tral function, weight function, speed of convergence, OR, asymptotics. 123 124 ANDRIY OLENKO AND BORIS KLYKAVKA It is known that there exists a bounded nondecreasing function Φ(x), x ≥ 0, which is called spectral function of the field ξ(t), t ∈ Rn (see [11]), such that Bn(r) has the representation Bn(r) = 2 n−2 2 Γ (n 2 )∫ ∞ 0 Jn−2 2 (rx) (rx) n−2 2 dΦ(x), where Jν(z) is a Bessel function of the first kind, ν > −1 2 (see [12]). Let b̃a(r) := (2π)n ∫ ∞ 0 J2 n 2 (rx) (rx)n dΦa(x), where for arbitrary a ∈ [0, +∞) Φa(λ) := { Φ(a + λ) − Φ(a − λ), 0 ≤ λ < a; Φ(a + λ), λ ≥ a. In [8], it was shown the existence of a real-valued function fr,a(|t|), for which b̃a(r) = D [∫ Rn fr,a(|t|)ξ(t)dt ] . The function can be defined by the formula (1) fr,a(|t|) = 1 |t|n 2 −1 ∫ ∞ 0 λn/2 Jn 2 (r(λ − a)) (r(λ − a))n/2 Jn 2 −1(|t|λ)︸ ︷︷ ︸ F (λ) dλ, |t| �= r. 2. Problem to investigate In the following C denotes a constant, exact value of which is not impor- tant and which may be different in different places. By asymptotic properties of the Bessel function (see §7.21, [12]) (2) Jν(z) ∼ √ 2 πz cos ( z − π 2 ν − π 4 ) , z → ∞ it follows that the integrand F (λ) in the definition (1) of fr,a(|t|) has the asymptotic behavior F (λ) ∼ C λ cos ( r(λ − a) − πn 4 − π 4 ) cos ( |t|λ − π 2 (n 2 − 1 ) − π 4 ) ∼ C λ ( cos ( (r + |t|)λ − ra − πn 2 ) − sin ((r − |t|)λ − ra) ) , λ → ∞. Hence, the integral in the representation of the function fr,a(|t|) converges conditionally. Therefore there arise various problems of studying properties of the func- tion fr,a(|t|) and calculating its values with a given accuracy. SOME PROPERTIES OF WEIGHT FUNCTIONS 125 To calculate the integral (1) well known standard approach implies an application of the Poisson formula (§3.3, [12]) Jν(z) = (z/2)ν Γ(ν + 1/2)Γ(1/2) ∫ 1 −1 (1 − x2)ν−1/2 cos(zx)dx. Then the function fr,a(|t|) can be rewritten as fr,a(|t|)= 1 2 n 2 Γ(n+1 2 ) √ π |t| n 2 −1 ∫ ∞ 0 λ n 2 J n 2 −1(|t|λ) ∫ 1 −1 (1−x2) n−1 2 cos(r(λ−a)x)dxdλ. Changing the order of integration we obtain fr,a(|t|)= 1 2 n 2 Γ(n+1 2 )√π |t| n 2 −1 (∫ 1 −1 (1−x2) n−1 2 cos(rax) ∫ ∞ 0 λ n 2 J n 2 −1(|t|λ) cos(rλx)dλdx+ + ∫ 1 −1 (1−x2) n−1 2 sin(rax) ∫ ∞ 0 λ n 2 J n 2 −1(|t|λ) sin(rλx)dλdx ) . Next step is to calculate the inner integrals. Unfortunately it is not allowed to change the order in our case. By the asymptotic formula (2) the inner integrals with respect to λ, n ∈ N do not converge. That is why we must use another methods to study properties of the function fr,a(|t|) in (1). In [8], it was proposed an efficient approach based on the representation of the function fr,a(|t|) as the series: (3) fr,a(|t|) = ⎧⎪⎪⎨⎪⎪⎩ ( 2 ar3 )n 2 ∑∞ m=0 dm(n, r, a, |t|), |t| < r,( 2 ar|t|2 )n 2 Γ ( n 2 )∑∞ m=0 sm(n, r, a, |t|), |t| > r, where (4) dm(n, r, a, |t|) = (n 2 +m)Cm n+m−1Γ(n+m 2 )J n 2 +m(ra) 2F1 n+m 2 ,−m 2 , n 2 ;( |t| r ) 2 Γ(m 2 +1) , sm(n, r, a, |t|)= r2m+1C2m+1 n+2mΓ(n 2 + m + 1 2 )Jn 2 +2m+1(ra) |t|2m+1Γ(−m − 1 2 )Γ ( n 2 + 2m + 1 ) × (5) ×2F1 ( n 2 + m + 1 2 , m + 3 2 , n 2 + 2m + 2; ( r |t| )2 ) 2F1(a, b, c; z) is a Gauss hypergeometric function (see [13]). The rate of convergence of the series (3) is important for numerical cal- culations. We will study this problem in the paper. 126 ANDRIY OLENKO AND BORIS KLYKAVKA 3. Asymptotic properties of the Gauss hypergeometric function To obtain the rate of convergence we will need some properties of the Gauss hypergeometric function 2F1 in (4) and (5). The function 2F1(a, b, c; z) is defined as (6) 2F1(a, b, c; z) = ∞∑ l=0 (a)l(b)l zl (c)l l! , (a)0 = 1 and (a)l = a(a + 1)...(a + l − 1), if l ∈ N, for arguments values for which the series (6) converges, and as analytical continuation for another arguments values (complex-valued) if such contin- uation exists. Note, that in the cases (4) and (5) the function 2F1 can be correctly defined by (6). Indeed for m = 2k, k ∈ N ∪ 0 : (7) 2F1 ( n 2 + k,−k, n 2 ; ( |t| r )2 ) = k∑ l=0 ( n 2 + k ) l (−k)l( n 2 ) l l! zl becomes a k-degree polynomial. It can be found in §2.1.1, [14] that for a, b �= {0,−1,−2, ...} : (a)l(b)l (c)l l! = Γ(c) Γ(a)Γ(b) la+b−c−1[1 + O(l−1)], and the series (6) converges absolutely for |z| < 1. Therefore, for m �= 2k, k ∈ N ∪ {0}, |t| < r, the function 2F1 ( n+m 2 ,−m 2 , n 2 ; ( |t| r )2 ) is correctly defined by (6). Similarly 2F1 ( n 2 + m + 1 2 , m + 3 2 , n 2 + 2m + 2; ( r |t| )2 ) is also correctly defined by (6), when |t| > r. Let us consider the asymptotic behavior of 2F1 ( n+m 2 ,−m 2 , n 2 ; ( |t| r )2 ) , when m → ∞. In the following we will use Stirling’s formula (see §540, [15]) for the Gamma function Γ(k + 1) ∼ √ 2πkk+1/2e−ke θk k , where θk ∈ (0; 1 12 ). Particularly k! ∼ √ 2πkk+1/2e−ke θk k . To obtain asymptotical formulas we could use Watson’s results (see §2.3.2 [14]) SOME PROPERTIES OF WEIGHT FUNCTIONS 127 2F1 (a + λ, b − λ, c, 1/2 − z/2) = Γ(1 − b + λ)Γ(c) Γ(1/2)Γ(c − b + λ) 2a+b−1(1− e−ξ)−c+1/2× (8) (1 + e−ξ)c−a−b−1/2λ−1/2 ( e(λ−b)ξ + e±iπ(c−1/2)e−(λ+a)ξ ) ( 1 + O(|λ−1|)) , where z ±√ z2 − 1 = e±ξ according to Imz ≷ 0. Let us choose a = c = n 2 , b = 0, λ = m 2 , 1 2 − z 2 = ( |t| r )2 then 2F1 ( n+m 2 ,−m 2 , n 2 ; ( |t| r )2 ) ∼ Γ(m/2+1)Γ(n/2)2n/2−1/2 Γ(n/2+m/2)Γ(1/2)m1/2 × ×( 2|t| r ) 1/2−n/2 |t| r + ( |t| r ) 2−1 1/2−n/2 2−1/2 1−( |t| r ) 2− |t| r ( |t| r ) 2−1 −1/2 × × |t| r + ( |t| r ) 2−1 m/2 +(sin(nπ 2 )±i cos(nπ 2 )) |t| r + ( |t| r ) 2−1 m/2+n/2 = = O ( Γ(m 2 +1) Γ(n 2 + m 2 )m 1 2 ) ∼ O ( Cm m n 2 −1 ) . when m → ∞. Unfortunately the formula (8) is true only if z ∈ C\(−∞, 1) (see [16], [17]). Therefore we cannot use it directly in our case. Nevertheless we will show that the asymptotics O ( Cm m n 2 −1 ) is valid for our parameters case. Lemma 1 For |t| < r : 2F1 ( n + m 2 ,−m 2 , n 2 ; ( |t| r )2 ) = O ( Cm m n 2 − 1 2 ) , m → ∞. Proof. If m = 2k, k ∈ N ∪ {0}, then it follows from (7) ∣∣∣2F1 (n 2 + k,−k, n 2 ; z )∣∣∣ = ∣∣∣∣∣ k∑ l=0 Γ(n 2 + k + l)Γ(n 2 )(−1)lk!zl Γ(n 2 + k)Γ(n 2 + l)(k − l)!l! ∣∣∣∣∣ ≤ (9) ≤ Γ(n 2 ) Γ(n 2 + k) k∑ l=0 C l kz l Γ(n 2 + k + l) Γ(n 2 + l) ≤ Γ(n 2 + 2k)Γ(n 2 ) Γ2(n 2 + k) (1 + z)k, because Γ(n 2 + k + l) Γ(n 2 + l) ≤ Γ(n 2 + 2k) Γ(n 2 + k) , l = 0, k. By Stirling’s formula Γ(n 2 + 2k) Γ2(n 2 + k) ∼ e− n 2 −2k+1 ( n 2 + 2k − 1 )n 2 +2k− 1 2 √ 2πe−n−2k+2 ( n 2 + k − 1 )n+2k−1 = 128 ANDRIY OLENKO AND BORIS KLYKAVKA (10) = e n 2 −12 n 2 +2k− 1 2 ( 1 + n 4 − 1 2 k ) k n 4 −1 2 n 4 − 1 2 k (n 2 +2k− 1 2) √ 2π ( 1 + n 2 −1 k ) k n 2 −1 · n 2 −1 k ·(n+2k−1) · kn+2k−1 k n 2 +2k− 1 2 ∼ 2 n 2 +2k−1 √ πk n 2 − 1 2 . By (9) and (10) we obtain (11) 2F1 ( n 2 + k,−k, n 2 ; ( |t| r )2 ) = O ( Ck k n 2 − 1 2 ) = O ( Cm m n 2 − 1 2 ) , when m = 2k → ∞. Let us show that 2F1 ( n+m 2 ,−m 2 ; n 2 ; ( |t| r )2 ) has the same asymptotics when m is odd. Actually (12) 2F1 ( n+m 2 ,−m 2 ; n 2 ; z ) = [m 2 ]+1∑ l=0 (n 2 + m 2 ) l (−m 2 ) l (n 2 )l l! zl + ∞∑ l=[m 2 ]+2 (n 2 + m 2 ) l (−m 2 ) l (n 2 )l l! zl. For l = 0, ..., [ m 2 ] + 1 :∣∣(n 2 + m 2 ) l (−m 2 ) l ∣∣ = ∣∣(n 2 + m 2 ) · ... · (n 2 + m 2 + l − 1 ) · m 2 · ... · (m 2 − l + 1 )∣∣ ≤∣∣(n 2 + m 2 + 1 2 ) · ... · (n 2 + m 2 + l − 1 2 ) · m+1 2 · ... · (m+1 2 − l + 1 )∣∣ =∣∣(n 2 + m+1 2 ) l (−m+1 2 ) l ∣∣ . Hence (13) ∣∣∣∣∣∣∣ [m 2 ]+1∑ l=0 (n 2 + m 2 ) l (−m 2 ) l (n 2 )l l! zl ∣∣∣∣∣∣∣ ≤ m+1 2∑ l=0 (n 2 + m+1 2 ) l |(−m+1 2 ) l | (n 2 )l l! zl = O ( C m+1 2 (m+1 2 ) n 2 − 1 2 ) , where the last identity follows from (9) and (10) proven for even m. Consider the asymptotics of the second term in (12). ∞∑ l=[m 2 ]+2 (n 2 + m 2 )l(− m 2 )l (n 2 )l l! zl = ∞∑ l=[m 2 ]+2 Γ( n 2 + m 2 +l)Γ(n 2 )·(−m 2 )(−m 2 +1)·...·(−1 2)· 12 ·...·(−m 2 +l−1)zl Γ(n 2 + m 2 )Γ(n 2 +l)Γ(l+1) = (14) ∣∣∣∣ k = l − [ m 2 ] − 1 l = k + m 2 + 1 2 ∣∣∣∣ = (−1)mΓ(m 2 +1)Γ(n 2 )z m 2 +1 2 πΓ(n 2 + m 2 ) ∞∑ k=1 Γ(n 2 +m+ 1 2 +k)Γ(k+ 1 2)zk Γ(n 2 + m 2 + 1 2 +k)Γ(k+ m 2 + 3 2 ) . By Stirling’s formula with θk,j ∈ ( 0, 1 12 ) , j = 1, 4 : ∞∑ k=1 Γ(n 2 +m+ 1 2 +k)Γ(k+ 1 2)zk Γ(n 2 + m 2 + 1 2 +k)Γ(k+ m 2 + 3 2 ) = ∞∑ k=1 e− n 2 −m−k+ 1 2 (n 2 +m+k− 1 2) n 2 +m+k e θk,1 n 2 +m+k− 1 2 e− n 2 −m 2 −k+ 1 2 (n 2 + m 2 +k− 1 2) n 2 + m 2 +k e θk,2 n 2 + m 2 +k− 1 2 × SOME PROPERTIES OF WEIGHT FUNCTIONS 129 e −k+1 2 (k− 1 2) k e θk,3 k− 1 2 e −k−m 2 − 1 2 (k+ m 2 + 1 2) k+ m 2 +1 e θk,4 k+ m 2 +1 zk ≤ C · ∞∑ k=1 (n 2 +m+k− 1 2) n 2 +m+k (k− 1 2) k zk (n 2 + m 2 +k−1 2) n 2 + m 2 +k (k+ m 2 + 1 2) k+ m 2 +1 = = C · ∞∑ k=1 ( 1 + m 2 n 2 + m 2 +k− 1 2 ) n 2 + m 2 +k− 1 2 m 2 · m 2 ·(n 2 + m 2 +k) n 2 + m 2 +k−1 2 ( 1 + m 2 + n 2 −1 k+ m 2 + 1 2 )m 2 zk ( 1 + m 2 +1 k− 1 2 ) k− 1 2 m 2 +1 · m 2 +1 k− 1 2 ·k ( k + m 2 + 1 2 ) := Σ. To estimate the last sum we use: Lemma 2 For all x ∈ (0,∞) : 0 < a ≤ ( 1 + 1 x )x ≤ b < +∞. Proof. The function ( 1 + 1 x )x is positive, continuous and it is not equal to 0 or +∞ for any x ∈ (0; +∞). Moreover lim x→+∞ (1+ 1 x )x = e, lim x→+0 (1+ 1 x )x = 1. The statement of the lemma immediately follows from these properties. � By application of Lemma 2 Σ ≤ C · ∞∑ k=1 b m 2 (n 2 + m 2 +k) n 2 + m 2 +k−1 2 ( 1 + m 2 + n 2 −1 k+ m 2 + 1 2 )m 2 zk a m 2 +1 k− 1 2 ·k ( k + m 2 + 1 2 ) ≤ C · ∞∑ k=1 C m 2 1 C m 2 3 zk C m 2 +1 2 ( k + m 2 + 1 2 ) , because of( 1 + m 2 + n 2 −1 k+ m 2 + 1 2 )m 2 ≤ ( 1 + m 2 + n 2 −1 m 2 + 3 2 )m 2 = ( 2 + n 2 − 5 2 m 2 + 3 2 )m 2 ≤ ( n+3 4 )m 2 . Hence Σ ≤ C m 2 ∞∑ k=1 zk k + m 2 + 1 2 < C m 2 ∞∑ k=1 zk k + 1 . By (14) and Stirling’s formula (15) ∣∣∣∣∣∣∣ ∞∑ l=[m 2 ]+2 (n 2 + m 2 ) l (−m 2 ) l (n 2 )l l! zl ∣∣∣∣∣∣∣ = O ( C m 2 Γ ( m 2 + 1 ) Γ ( n 2 + m 2 ) ) = O ( Cm m n 2 −1 ) , when m → ∞. For odd m by (12), (13) and (15) we obtain 2F1 ( n + m 2 ,−m 2 , n 2 ; ( |t| r )2 ) = O ( Cm m n 2 − 1 2 ) , m → ∞. Statement of Lemma 1 follows from the last asymptotics and (11). � To investigate asymptotic properties of 2F1 ( n 2 + m + 1 2 , m + 3 2 , n 2 + 2m + 2; ( r |t| )2 ) , |t| > r, m → ∞ 130 ANDRIY OLENKO AND BORIS KLYKAVKA we could also use Watson’s results (see §2.3.2 [14])( z 2 − 1 2 )−a−λ 2F1 (a + λ, a − c + 1 + λ, a − b + 1 + 2λ; 2(1 − z)−1) = 2a+bΓ(a − b + 1 + 2λ)Γ ( 1 2 ) λ− 1 2 Γ(a − c + 1 + λ)Γ(c − b + λ) e−(a+λ)ξ(1 − e−ξ)−c+ 1 2× (16) (1 + e−ξ)c−a−b− 1 2 ( 1 + O (|λ|−1 )) , where ξ is defined as in (8). Choosing a = n 2 + 1 2 , b = −1 2 , c = n 2 , λ = m, 2 1 − z = ( r |t| )2 we obtain 2F1 ( n 2 + m + 1 2 , m + 3 2 , n 2 + 2m + 2; ( r |t| )2 ) ∼ ∼ 2 n 2 +1Γ(n 2 + 2m + 2) √ πm− 1 2 Γ ( m + 3 2 ) Γ ( n 2 + 1 2 + m ) O (Cm) ( r |t| )n+1+2m ∼ O(Cm) , when m → ∞. Unfortunately, similarly to the case (8) we cannot apply (16) directly. Nevertheless we will show that the asymptotics O (Cm) is valid for our parameters case. Lemma 3 For |t| > r : 2F1 ( n 2 + m + 1 2 , m + 3 2 , n 2 + 2m + 2; ( r |t| )2 ) = O (Cm) , m → ∞. Proof. By (2) we have 2F1 ( n 2 + m + 1 2 , m + 3 2 , n 2 + 2m + 2; z ) = ∞∑ l=0 ( n 2 + m + 1 2 ) l ( m + 3 2 ) l( n 2 + 2m + 2 ) l l! zl = ∞∑ l=0 Γ ( n 2 + m + l + 1 2 ) Γ ( n 2 + 2m + 2 ) Γ ( m + l + 3 2 ) zl Γ ( n 2 + m + 1 2 ) Γ ( n 2 + 2m + l + 2 ) Γ ( m + 3 2 ) Γ (l + 1) = (17) 1 + Γ ( n 2 + 2m + 2 ) Γ ( n 2 + m + 1 2 ) Γ ( m + 3 2 ) ∞∑ l=1 Γ ( n 2 + m + l + 1 2 ) Γ ( m + l + 3 2 ) zl Γ ( n 2 + 2m + l + 2 ) Γ (l + 1) By Stirling’s formula Γ(n 2 +2m+2) ∼ √ 2π(n 2 +2m+1) n 2 +2m+ 3 2 e− n 2 −2m−1 ∼ √ 2π (2m) n 2 +2m+ 3 2 e−2m, (18) Γ(n 2 +m+ 1 2) ∼ √ 2π(n 2 +m− 1 2) n 2 +me− n 2 −m+ 1 2 ∼ √ 2πm n 2 +me−m, Γ(m+ 3 2) ∼ √ 2π(m+ 1 2) m+1e−m− 1 2 ∼ √ 2πmm+1e−m, when m → ∞. The asymptotic behaviour of the first multiplier in (17) is SOME PROPERTIES OF WEIGHT FUNCTIONS 131 (19) Γ ( n 2 + 2m + 2 ) Γ ( n 2 + m + 1 2 ) Γ ( m + 3 2 ) ∼ 2 n 2 +2m+ 3 2 m 1 2√ 2π . Using Stirling’s formula with θl,j ∈ (0, 1 12 ), j = 1, 4, we transform the series in (17): ∞∑ l=1 Γ(n 2 +m+l+ 1 2)Γ(m+l+ 3 2)zl Γ(n 2 +2m+l+2)Γ(l+1) = = ∞∑ l=1 (n 2 +m+l− 1 2) n 2 +m+l e− n 2 −m−l+ 1 2 e θl,1 n 2 +m+l− 1 2 (m+l+ 1 2) m+l+1 (n 2 +2m+l+1) n 2 +2m+l+ 3 2 e− n 2 −2m−l−1e θl,2 n 2 +2m+l+1 × e−m−l− 1 2 e θl,3 m+l+ 1 2 ll+ 1 2 e−le θl,4 l zl ≤ C ∞∑ l=1 (n 2 +m+l− 1 2) n 2 +m+l (m+l+ 1 2) m+l+1 (n 2 +2m+l+1) n 2 +2m+l+3 2 ll+ 1 2 zl = = C ∞∑ l=1 ( 1 + m+ 1 2 l ) l m+ 1 2 ·(m+ 1 2) zl ( 1 + m+ 3 2 n 2 +m+l− 1 2 ) n 2 +m+l−1 2 m+ 3 2 ·( m+ 3 2)(n 2 +m+l) n 2 +m+l−1 2 (m+l+ 1 2) m+1 l 1 2 (n 2 +2m+l+1) m+ 3 2 = Σ1. By Lemma 2 (20) Σ1 ≤ C ∞∑ l=1 bm+ 1 2 a (m+ 3 2)( n 2 +2m+l) n 2 +m+l− 1 2 · zl l 1 2 ( n 2 + 2m + l + 1 ) 1 2 ≤ C ∞∑ l=1 Cm 1 zl l 1 2 m 1 2 . By (17), (19) and (20), we get 2F1 ( n 2 + m + 1 2 , m + 3 2 , n 2 + 2m + 2; ( r |t| )2 ) = O (Cm) , m → ∞. � 4. Rate of convergence Let us estimate the rate of convergence for the series (3). For this purpose we will study asymptotics of dm(n, r, a, |t|) and sm(n, r, a, |t|), as m → ∞. 4.1 Case |t| < r. Let us consider the expression (3) for |t| < r and investigate asymptotics for multipliers in (4) as m → ∞. Lemma 4 For |t| < r (21) dm(n, r, a, |t|) = O ( Cm mm−n 2 + 1 2 ) , m → ∞. Proof. By Stirling’s formula Cm m+n−1 ∼ (m + n − 1)m+n−1/2e−m−n+1 mm+1/2e−m(n − 1)! ∼ mn−1 (n − 1)! . 132 ANDRIY OLENKO AND BORIS KLYKAVKA For Gamma functions we have Γ (m 2 + 1 ) ∼ √ 2πe− m 2 (m/2) m+1 2 , Γ (m 2 + n 2 ) ∼ √ 2πe− m 2 (m/2) m+n−1 2 . Therefore ( n 2 + m ) Cm n+m−1Γ(n+m 2 ) Γ(m 2 + 1) ∼ mn (n − 1)! (m 2 )n/2−1 . For ν > 0, z > 0 due to a representation of the Bessel function as a series (see §8.1 [12]) it follows that |Jν(z)| = ∣∣∣∑∞ m=0 (−1)m( 1 2 z)ν+2m m!Γ(ν+m+1) ∣∣∣ = ∣∣∣ (z/2)ν Γ(ν+1) ∑∞ m=0 (−1)m(z/2)2m m!(ν+1)(ν+2)...(ν+m) ∣∣∣ ≤ (22) ≤ (z/2)ν Γ(ν + 1) ∞∑ m=0 (z/2)2m m!νm . By Stirling’s formula (23) (z/2)ν Γ(ν + 1) ∞∑ m=0 (z/2)2m m!νm ∼ (z/2)νeν √ 2πνν+1/2 ∞∑ m=0 ( z2 4ν )m m! = e z2 4ν +ν √ 2πν ( z 2ν )ν . For large values of m (24) Jn 2 +m(ra) < 1√ (n+2m)π e (ra)2+(n+2m)2 2n+4m ( ra n+2m )n 2 +m = O ( Cm mm+ n 2 + 1 2 ) . Applying Lemma 1 and all previous asymptotics to (4) we obtain dm(n, r, a, |t|) = O ( Cm mm−n 2 +1 ) , m → ∞. � Consider the series (3) remainder for |t| < r. Theorem 1 For |t| < r (25) ∞∑ m=N dm(n, r, a, |t|) = O ( ∞∑ m=N Cm mm−n 2 +1 ) , N → ∞. For any ε > 0 : (26) ∞∑ m=N dm(n, r, a, |t|) = O ( CN NN(1−ε) ) , N → ∞. Proof. The asymptotic formula (25) is a direct corollary of Lemma 4. The assertion (26) follows from the the chain of estimates ∞∑ m=N Cm mm− n 2 +1 ≤ ∞∑ m=N Cm mm(1−ε) ≤ ∞∑ m=N ( C N1−ε )m = SOME PROPERTIES OF WEIGHT FUNCTIONS 133 = CN N1−ε NN(1−ε)(N1−ε−C) = O ( CN NN(1−ε) ) which is valid for large N. � 4.2 Case |t| > r. Let us consider the expression (3) for |t| > r and investigate asymptotic behavior for multipliers in (5) as m → ∞. Lemma 5 For |t| > r (27) sm(n, r, a, |t|) = O ( Cm m2m−n 2 +2 ) , m → ∞. Proof. By Stirling’s formula C2m+1 n+2m ∼ (n + 2m)n+2m+ 1 2 e2m+1 en+2m(2m + 1)2m+ 3 2 (n − 1)! ∼ (2m)n−1 (n − 1)! , Γ (n/2 + 2m + 1) ∼ √ 2πe−2m(2m) n 2 +2m+ 1 2 . Let us find the asymptotics of (2m + 1)!! : (2m + 1)!! = 2m+1 1 2 ( 1 2 + 1 ) ( 1 2 + 2 ) ... ( 1 2 + m ) = = 2m+1 Γ(1/2+m+1) Γ(1/2) ∼ √ 2(2m + 1)m+1e−m−1/2. Using properties of Gamma functions (see §538, [15]) and Stirling’s formula we obtain Γ(−m− 1 2)=(−1)m+1 √ π 2m+1 (2m+1)!! ∼(−1)m+1 √ π 2 e m+ 1 2 (m+ 1 2) m+1 ∼(−1)m+1 √ π 2 em mm+1 . We will use the formula (23) to study the asymptotics of the Bessel function Jn 2 +2m+1(ra). For large values of m Jn 2 +2m+1(ra) < e (ra)2 2n+8m+4 + n 2 +2m+1 2π(n 2 +2m+1) ( ra n+4m+1 )n 2 +2m+1 = O ( Cm m n 2 +2m+ 3 2 ) . Taking into account (18), all previous asymptotics for (5), and Lemma 3 we obtain sm(n, r, a, |t|) = O ( Cm m2m−n 2 +2 ) , m → ∞. � Consider the series (3) remainder for |t| > r. Theorem 2 For |t| > r (28) ∞∑ m=N sm(n, r, a, |t|) = O ( ∞∑ m=N Cm m2m−n 2 +2 ) , N → ∞ For any ε > 0 : (29) ∞∑ m=N sm(n, r, a, |t|) = O ( CN N2N(1−ε) ) , N → ∞. 134 ANDRIY OLENKO AND BORIS KLYKAVKA Proof. The asymptotic formula (28) is a direct corollary of Lemma 5. The assertion (29) follows from the chain of estimates ∞∑ m=N Cm m2m−n 2 +2 ≤ ∞∑ m=N Cm m2m(1−ε) ≤ ∞∑ m=N ( C N2(1−ε) )m = CNN2(1−ε) N2N(1−ε)(N2(1−ε) − C) = O ( CN N2N(1−ε) ) , which is valid for large N. � 5. Numerical examples In this section we give some numerical examples of our results. Let n = 3. In this case fr,a(|t|) can be written explicitly using functions Si(z), Ci(z) (see §5, [8]). Plots of the function fr,a(|t|) for r = 1, a = 1.2, and a = 15 are shown on Fig.1 and Fig.2. To plot the function we used N = 100 first terms of the series (3). 0.2 0.4 0.6 0.8 1 1.2 1.4 -1 1 2 3 Fig.1. f1,1.2(|t|) 0.2 0.4 0.6 0.8 1 -50 50 100 150 200 250 Fig.2. f1,15(|t|) Comparison of Fig.1 and Fig.2 with corresponding plots from §5 [8] shows their identity. The following table gives some exact numerical values of fr,a(|t|) calculated by formulae from §5 [8] and its approximations f̂N r,a(|t|) by increasing number N of first terms in the series (3). t f1,1.2(t) f̂ 5 1,1.2(t) f̂ 10 1,1.2(t) f̂ 25 1,1.2(t) 0.1 3.3346 3.33328 3.3346 3.3346 0,5 2.54618 2.54648 2.54618 2.54618 0.99 -0.327282 -0.326829 -0.327282 -0.327282 1.01 -0.759792 -0.759792 -0.759792 -0.759792 3 -0.0012482 -0.0012482 -0.0012482 -0.0012482 10 −9.25 × 10−6 −9.25 × 10−6 −9.25 × 10−6 −9.25 × 10−6 SOME PROPERTIES OF WEIGHT FUNCTIONS 135 Analyzing the table we see that even for N = 10 the values of the function are calculated with a high accuracy. It is important to mention that the accuracy of calculations declines, when t tends to r, due to discontinuity of the function fr,a(|t|) in the point |t| = r. Figures 3, 4, 5, and 6 show the sequence lg(gN(t)) for different t, where gN(t) := ∣∣∣f1, 1.2(t) − f̂N 1, 1.2(t) ∣∣∣ · { N 3N 4 , t < 1, N 3N 2 , t > 1. 10 20 30 40 50 N 25 50 75 100 125 150 gN �t� t�0.9999999999 t�0.5 t�0.00000000001 Fig.3. Plot of lg(gN(t)), t < 1 10 20 30 40 50 N 50 100 150 200 250 300 gN �t� t�3 t�1.00000000001 Fig.4. Plot of lg(gN(t)), t > 1 200 400 600 800 1000 N 1000 2000 3000 4000 gN �t� t�3 t�0.5 Fig.5. Plot of lg(gN(t)) 2000 4000 6000 8000 10000 N 10000 20000 30000 40000 50000 60000 70000 gN �t� t�0.5 Fig.6. Plot of lg(gN(t)) Numerical results shown on the figures 3-6 are in complete accordance with estimates for the rates of convergence in Theorems 1 and 2 (ε = 1 4 was chosen). Concluding remarks The rate of convergence for weight functions series in Tauberian theorems for random fields was obtained. Numerical results show that partial sums of the series give good approximation for weight functions and have required rate of convergence. Some asymptotic properties of hypergeometric functions were obtained as auxiliary results. 136 ANDRIY OLENKO AND BORIS KLYKAVKA References 1. Bingham, N.H., A tauberian theorem for integral transforms of Hankel type, Journal London Math. Soc., 5, N 3, (1972), 493-503. 2. Laue, G., Tauberian and Abelian theorems for characteristic functions, Theory Probab. and Math. Stat., 37, (1987), 78-92. 3. Bingham, N.H., Goldie, C.M., Teugels, J.L., Regular variation, Cambridge Uni- versity Press, Cambridge, (1989). 4. Yakymiv, A.L., Probabilistic applications of Tauberian theorems, Fizmatlit, Moskow, (2005). (in Russian) 5. Leonenko, N.N., Olenko, A.Ya., Tauberian theorems for correlation functions and limit theorems for spherical averages of random fields, Random Oper. Stoch. Eqs., 1, N 1, (1993), 57-67. 6. Olenko, A.Ya., Tauberian and Abelian theorems for strongly dependent random fields, Ukrainian Math. Journal, 48, N 3, (1996), 368-383. 7. Olenko, A.Ya., Tauberian theorems for random fields with OR asymptotics I, Theory Probab. and Math. Statistics, 73, (2005), 120-133. 8. Olenko, A.Ya., Tauberian theorems for random fields with OR asymptotics II, Theory Probab. and Math. Statistics, 74, (2006), 81-97. 9. Olenko, A.Ya., Klykavka, B.M., Tauberian theorem for random fields on plane, Reports of the National Academy of Sciences of Ukraine, 6, (2006), 19-25. (in Ukrainian) 10. Klykavka, B.M., An correlation functions of Polya type, Bulletin of Kyiv Univ., Series: Phys. and Math., 1, (2007). (will be published) 11. Yadrenko, M.I., Spectral theory of random fields, Optimization Software Inc., New York (distributed by Springer-Verlag), (1983). 12. Watson, G.N., A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, (1995). 13. Abramowitz, M., Stegun, I., (Eds.), Handbook of mathematical functions, Na- tional Bureau of Standarts, Applied Mathematics Series, US Government Print- ing Office, Washington, DC, 55, (1964). 14. Bateman, G., Erdelyi, A., Higher transcendental functions, Vol. 1, Mc Grow-Hill, New York, (1953). 15. Fihtengolts, G.M., Course of differential and integral calculus, Vol. 2, Nauka, Moskow, (1970). (in Russian) 16. Temme, N.M., Large parameter cases of the Gauss hypergeometric function, Jour- nal of Comp. and Appl. Math., 153, (2003), 441-462. 17. Jones, D.S., Asymptotics of the hypergeometric function, Math. Methods Appl. Sci., 24, (2001), 369-389. Department of Probability Theory and Mathematical Statistics, Math- ematical Faculty, Kyiv University, Volodymyrska 64, Kyiv, 01033, Ukraine E-mail address: olenk@univ.kiev.ua Department of Probability Theory and Mathematical Statistics, Math- ematical Faculty, Kyiv University, Volodymyrska 64, Kyiv, 01033, Ukraine E-mail address: bklykavka@yahoo.com