Ruin probability for generalized φ-sub-Gaussian fractional Brownian motion

In this paper we investigate the ruin problem for the generalized φ-sub-Gaussian fractional Brownian motion (FBM). Such random process has the same covariation function as FBM but its trajectories belong to the space of φ-sub-Gaussian random variables (i.e. not necessarily Gaussian). For this risk...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автор: Yamnenko, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/4470
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Ruin probability for generalized φ-sub-Gaussian fractional Brownian motion / R. Yamnenko // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 3-4. — С. 261–275. — Бібліогр.: 9 назв.— англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-4470
record_format dspace
spelling irk-123456789-44702009-11-24T18:33:31Z Ruin probability for generalized φ-sub-Gaussian fractional Brownian motion Yamnenko, R. In this paper we investigate the ruin problem for the generalized φ-sub-Gaussian fractional Brownian motion (FBM). Such random process has the same covariation function as FBM but its trajectories belong to the space of φ-sub-Gaussian random variables (i.e. not necessarily Gaussian). For this risk process we obtain estimate of the ruin probability. 2006 Article Ruin probability for generalized φ-sub-Gaussian fractional Brownian motion / R. Yamnenko // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 3-4. — С. 261–275. — Бібліогр.: 9 назв.— англ. 0321-3900 http://dspace.nbuv.gov.ua/handle/123456789/4470 en Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper we investigate the ruin problem for the generalized φ-sub-Gaussian fractional Brownian motion (FBM). Such random process has the same covariation function as FBM but its trajectories belong to the space of φ-sub-Gaussian random variables (i.e. not necessarily Gaussian). For this risk process we obtain estimate of the ruin probability.
format Article
author Yamnenko, R.
spellingShingle Yamnenko, R.
Ruin probability for generalized φ-sub-Gaussian fractional Brownian motion
author_facet Yamnenko, R.
author_sort Yamnenko, R.
title Ruin probability for generalized φ-sub-Gaussian fractional Brownian motion
title_short Ruin probability for generalized φ-sub-Gaussian fractional Brownian motion
title_full Ruin probability for generalized φ-sub-Gaussian fractional Brownian motion
title_fullStr Ruin probability for generalized φ-sub-Gaussian fractional Brownian motion
title_full_unstemmed Ruin probability for generalized φ-sub-Gaussian fractional Brownian motion
title_sort ruin probability for generalized φ-sub-gaussian fractional brownian motion
publisher Інститут математики НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/4470
citation_txt Ruin probability for generalized φ-sub-Gaussian fractional Brownian motion / R. Yamnenko // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 3-4. — С. 261–275. — Бібліогр.: 9 назв.— англ.
work_keys_str_mv AT yamnenkor ruinprobabilityforgeneralizedphsubgaussianfractionalbrownianmotion
first_indexed 2025-07-02T07:42:29Z
last_indexed 2025-07-02T07:42:29Z
_version_ 1836520203581652992
fulltext Theory of Stochastic Processes Vol. 12 (28), no. 3–4, 2006, pp. 261–275 ROSTYSLAV YAMNENKO RUIN PROBABILITY FOR GENERALIZED ϕ-SUB-GAUSSIAN FRACTIONAL BROWNIAN MOTION1 In this paper we investigate the ruin problem for the generalized ϕ-sub- Gaussian fractional Brownian motion (FBM). Such random process has the same covariation function as FBM but its trajectories belong to the space of ϕ-sub-Gaussian random variables (i.e. not necessarily Gauss- ian). For this risk process we obtain estimate of the ruin probability. 1. Introduction Such properties of fractional Brownian motion as long-range dependence and self-similarity make it natural choice in modeling real processes from financial mathematics and queueing theory. Recall, that the fractional Brownian motion with index H ∈ (0, 1) is Gaussian centered process ZH with stationary increments and continuous paths and covariance function RH(t, s) = EZH(s)ZH(t) = 1 2 ( t2H + s2H − |s − t|2H ) . One of actual tasks of the theory of random processes is finding the esti- mates of probability that trajectories of a random process exceed the level specified by some curve. It finds an application in risk theory as classical problem of the investigation of the ruin probability P { sup t>0 (X(t) − f(t)) > x } for various types of risk process X = (X(t), t ≥ 0) and functions f(t). The similar problem of finding the buffer overflow probability appears in the queuing theory for different communication network models. The tasks of such type were solved for many types of processes, includ- ing Gaussian ones and aforementioned FBM (see, for example, Norros [1], Michna [2], Baldi and Pacchiarotti [3], etc.). But since in many cases real processes are Gaussian only asymptotically or not Gaussian at all, there arises a problem of introduction of more general class of random processes than Gaussian one. From the such viewpoint the classes of ϕ-sub-Gaussian and strictly ϕ-sub-Gaussian random processes are of significant interest as 1Invited lecture. 2000 Mathematics Subject Classification. Primary 91B30. Key words and phrases. Ruin probability, risk process, phi-sub-Gaussian process, gen- eralized fractional Brownian motion, buffer overflow. 261 262 ROSTYSLAV YAMNENKO a natural extension of the class of Gaussian random processes. Detailed overview of their properties one can found in [4] and [5]. In this paper we investigate the properties of generalized ϕ-sub-Gaussian fractional Brownian motion process which has the same covariation function as fractional Brownian motion but its trajectories are not necessarily Gauss- ian. This process was introduced firstly in [7] under the name of weakly self-similar stationary increment processes from the space SSubϕ(Ω). The plan of the paper is as follows. In §2 the general definitions and some properties of random variables and processes from spaces Subϕ(Ω) and SSubϕ(Ω) are considered. In §3 we give the definition of generalized ϕ-sub-Gaussian fractional Brownian motion process (ϕ-GFBM). In §4 the results from in [8, 9] are used to study the sampling distributions for the ruin problem for the generalized fractional Brownian motion and for f(t) of the form f(t) = ctα, c > 0, α ∈ [0, 1]. We obtain the following estimates of the ruin probability (and of the buffer overflow probability for corresponding queueing model) for ϕ-GFBM risk process ZH from the class Ψq x0 which also includes class of sub-Gaussian random processes (q = 2) and therefore (Gaussian) FBM. (i) P { sup a≤t≤b (ZH(t) − ctα) > x } ≤ ≤ 2 ( e p ) 1 H Kb(p, x) exp { −(q − 1)x q q−1 0 (Cbα + x) q q−1 q q q−1 b qH q−1 } , (ii) P { sup t>0 (ZH(t) − ct) > x } ≤ L(γ, x)x q(1−H) (q−1)H exp { −κ(γ)x q(1−H) q−1 } , where Kb(p, x), L(γ, x) are known bounded on x expressions. 2. Space of Subϕ(Ω) random variables: necessary definitions and some useful properties 2.1. Orlicz N-functions Let (Ω,F ,P) be a standard probability space. Definition 1. A continuous even convex function ϕ is an Orlicz N-function if it is strictly increasing for x > 0, ϕ(0) = 0 and ϕ(x) x → 0 as x → 0 and ϕ(x) x → ∞ as x → ∞. Condition Q. An N -function ϕ satisfies condition Q if (1) lim inf x→0 ϕ(x) x2 = c > 0. Remark. It may happen that c = ∞. 2.2. ϕ-sub-Gaussian random variables and processes RUIN PROBABILITY FOR ϕ-GFBM RISK PROCESS 263 Definition 2. [5] Let ϕ be an Orlicz N -function satisfying condition Q. The random variable ξ belongs to the space Subϕ(Ω) if Eξ = 0, E exp{λξ} exists for all λ ∈ R and there exists a constant a > 0 such that the following inequality holds for all λ ∈ R (2) E exp (λξ) ≤ exp (ϕ(aλ)) . Theorem 1. [4] The space Subϕ(Ω) is a Banach space with respect to the norm (3) τϕ(ξ) = inf { a ≥ 0 : E exp(λξ) ≤ exp ( ϕ(aλ) ) , λ ∈ R } . When ϕ(x) = x2 2 the space Subϕ(Ω) is called the space of sub-Gaussian random variables and is denoted by Sub(Ω). Examples. 1). Centered Gaussian random variable ξ = N(0, σ2) belongs to space Sub(Ω) and τ(ξ) = (Eξ2) 1 2 . 2). Let ξ be a centered bounded random variable, i.e. Eξ = 0 and there exists number c > 0 that |ξ| ≤ c almost surely. Then ξ ∈ Sub(Ω) and τ(ξ) ≤ c. Let T be a parameter set. Definition 3. Random process X = (X(t), t ∈ T ) is a ϕ-sub-Gaussian process if for all t ∈ T X(t) ∈ Subϕ(Ω). A random ϕ-sub-Gaussian process belongs to Ψq x0 if (4) ϕ(x) = ⎧⎨ ⎩ xq xq 0 , |x| > x0, x2 x2 0 , |x| ≤ x0, where x0 > 0 and q ≥ 2 are some constants. 2.3. Strictly ϕ-sub-Gaussian random variables and processes Theorem 2. [4] Let ϕ be an Orlicz N-function satisfying condition Q and suppose that function ϕ( √ · ) is convex. Let ξ1, ξ2, . . . , ξn be independent random variables from the space Subϕ(Ω). Then (5) τ 2 ϕ ( n∑ i=1 ξi ) ≤ n∑ i=1 τ 2 ϕ(ξi). Definition 4. [6] A family of random variables Δ from the space Subϕ(Ω) is called strictly Subϕ(Ω), if there exists a constant CΔ > 0 such that for arbitrary finite set I : ξi ∈ Δ, i ∈ I, and for any λi ∈ R the following inequality takes place (6) τϕ (∑ i∈I λiξi ) ≤ CΔ ( E (∑ i∈I λiξi )2) 1 2 . If Δ is a family of strictly Subϕ(Ω) random variables, then linear closure Δ of the family Δ in the space L2(Ω) also is strictly Subϕ(Ω) family of random 264 ROSTYSLAV YAMNENKO variables. Linearly closed families of strictly Subϕ(Ω) random variables form a space of strictly ϕ-sub-Gaussian random variables. This space is denoted by SSubϕ(Ω). When ϕ(x) = x2 2 the space SSubϕ(Ω) is called the space of strictly sub- Gaussian random variables and is denoted by SSub(Ω). The space of jointly Gaussian random variables belongs to space SSub(Ω). Definition 5. A random process X = (X(t), t ∈ T ) is a strictly ϕ-sub- Gaussian process if the corresponding family of random variables belongs to the space SSubϕ(Ω). Example. [6] Let ϕ be such an Orlicz N -function that the function ϕ( √ · ) is convex and X(t) = ∞∑ k=1 ξkφk(t), where series ∞∑ k=1 ξkφk(t) converges in mean square sense for all t ∈ T and family {ξk, k ≥ 1} belongs to the space SSubϕ(Ω), for instance {ξk, k ≥ 1} are independent random variables from SSubϕ(Ω). Then X(t) is a strictly ϕ-sub-Gaussian random process. 2.4. Probability of overrunning for ϕ-sub-Gaussian random process Let (T, ρ) be a pseudometrical (metrical) compact space with pseudomet- ric (metric) ρ. Suppose there exists such continuous monotonically increasing function σ = {σ(h), h > 0}, that σ(h) → 0, as h → 0, and the following inequality is true (7) sup ρ(t,s)≤h τϕ(Y (t) − Y (s)) ≤ σ(h). Let β > 0 be some number such that β ≤ σ ( inf s∈T sup t∈T ρ(t, s) ) , γ(u) = τϕ(Y (u)), NT (u) denotes the least number of closed ρ-balls with radius u needed to cover T . Theorem 3. [9] Let Y = {Y (t), t ∈ T} be a separable random process from the space Subϕ(Ω) and f = {f(t), t ∈ T} be such a continuous function that |f(u) − f(v)| ≤ δ(ρ(u, v)), where δ = {δ(s), s > 0} is some monotonically increasing nonnegative function, and X(t) = Y (t) − f(t). Let r = {r(u) : u ≥ 1} be such a continuous function that r(u) > 0 as u > 1 and the function s(t) = r(exp{t}), t ≥ 0, is convex. If β∫ 0 r(NT (σ(−1)(u)))du < ∞, RUIN PROBABILITY FOR ϕ-GFBM RISK PROCESS 265 then for all p ∈ (0; 1) and x > 0 the following inequalities hold true P { sup t∈T X(t) > x } ≤ inf λ>0 Zr(λ, p, β),(8) P { inf t∈T X(t) < −x } ≤ inf λ>0 Zr(λ, p, β),(9) P { sup t∈T |X(t)| > x } ≤ 2 inf λ>0 Zr(λ, p, β),(10) where Zr(λ, p, β) = = exp { θϕ(λ, p) + pϕ ( λβ 1 − p ) + λ ( ∞∑ k=2 δ(σ(−1)(βpk−1)) − x )} × ×r(−1) ⎛ ⎝ 1 βp βp∫ 0 r(NT (σ(−1)(u)))du ⎞ ⎠ , θϕ(λ, p) = sup u∈T ( (1 − p)ϕ ( λγ(u) 1 − p ) − λf(u) ) . 3. Process of ϕ-sub-Gaussian generalized fractional Brownian motion Definition 6. [7] We call the process ZH = (ZH(t), t ∈ T ) ϕ-sub-Gaussian generalized fractional Brownian motion (ϕ-GFBM) with Hurst index H ∈ (0, 1) if ZH is ϕ-sub-Gaussian process with stationary increments and co- variance function RH(t, s) = EZH(s)ZH(t) = 1 2 ( t2H + s2H − |s − t|2H ) . Example. Let {ηn, n = 1, 2, . . .} be a sequence of independent random variables such that Eηn = 0, Eη2 n = 1 and ηn ∈ SSubϕ(Ω), where ϕ is such an N -function that function ϕ( √·) is convex and τϕ(ηn) ≤ τ < +∞. Then the process ZH(t) = ∞∑ n=1 λnηnψn(t) is a centered strictly ϕ-sub-Gaussian random process with covariance func- tion RH , where λn are eigenvalues and ψn are corresponding eigen-functions of the following integral equation ψ(s) = 1 λ2 ∫ T 0 RH(t, s)ψ(t)dt. 266 ROSTYSLAV YAMNENKO 4. Main results It is easy to obtain the following corollary for the process of ϕ-GFBM from theorem 3 (see also [8,9]). Theorem 4. Let ZH = (ZH(t), t ∈ [a, b]) be a process of strictly ϕ-GFBM with Hurst parameter H ∈ (0, 1), C > 0 be some constant. Then for all x > 0, numbers a, b such that 0 ≤ a < b < ∞, p ∈ (0, 1), β ∈ ( 0, ( b−a 2 )H] and λ > 0 the following inequality holds true P { sup a≤t≤b (ZH(t) − ctα) > x } ≤ (b − a) ( e βp ) 1 H × × exp { λc(βp) α H CΔ(1 − p α H ) + pϕ ( λβ 1 − p ) + (1 − p)θϕ(λ, p) − λx CΔ } ,(11) where θϕ(λ, p) = sup a≤u≤b ( ϕ ( λuH 1−p ) − λcuα CΔ(1−p) ) , and CΔ is the constant from definition 4 of the space SSubϕ(Ω). Theorem 5. Let ZH = (ZH(t), t ∈ [a, b], 0 ≤ a < b < ∞), be a process of strictly ϕ-GFBM from the class Ψq x0 with Hurst parameter H ∈ (1 2 , 1). Let C > 0, p ∈ (0, 1) and α ∈ [0, 1] be some constants and suppose that if q > 2 then the following condition holds (12) max { v−H ; 2H (b − a)H } ≤ ( x0C(b − a) (bqH − aqH) ) 1 q−1 , where v = a if a > 0, or v = b if a = 0. Then for all ε > 0 the following estimate is true (13) P { sup a≤t≤b ( 1 CΔ ZH(t) − Ctα ) > ε } ≤ 2 ( e p ) 1 H Wa, b(ε)Ka, b(p, ε), where Wa,b(ε) = exp { − ( Cxq 0(b α − aα) (bqH − aqH) ) 1 q−1 ( ε + Caαbα bqH−α − aqH−α bqH − aqH )} , Ka,b(p, ε) = exp { p ( Cxq 0(b α − aα) (bqH − aqH) ) 1 q−1 ( ε + Caαbα bqH−α − aqH−α bqH − aqH + C(b − a)αp α−H H (1 − p) 2(1 − p α H ) + C(b − a)qH(bα − aα) 2qH(bqH − aqH) )} . Also if (14) ε ≥ εb = qC(bα − aα) bqH − aqH ( bqH + (b − a)qHp 2qH(1 − p) ) + C(b − a)αp α H 2(1 − p α H ) − Cbα, RUIN PROBABILITY FOR ϕ-GFBM RISK PROCESS 267 then the following estimate, which is better than (13), holds true (15) P { sup a≤t≤b ( 1 CΔ ZH(t) − Ctα ) > ε } ≤ 2 ( e p ) 1 H Γb(ε)Kb(p, ε), where Γb(ε) = exp { −(q − 1)x q q−1 0 (Cbα + ε) q q−1 q q q−1 b qH q−1 } , Kb(p, ε) = exp { p x q q−1 0 (Cbα + ε) 1 q−1 q q q−1 b qH q−1 ( (Cbα + ε)(b − a)qH 2qHbqH(1 − p) + + p α H −1qC(b − a)α 2(1 − p α H ) + (q − 1)(Cbα + ε) )} . Remarks. 1) If q = 2 then condition (12) is unnecessary. 2) Since p can be chosen small enough the expression Kb(p, ε) can be bounded for any ε. Proof. For simplicity put β = (b−a)H 2H . In order to unambiguously determine function ϕ(·), consider such λ ≥ λ0 > 0 that λ0(b−a)H 2H(1−p) ≥ x0 and λ0aH 1−p ≥ x0 if a > 0, or λ0bH 1−p ≥ x0 if a = 0. Then we can put λ0 = (1 − p)x0 max { v−H; 2H (b − a)H } , where v = a for a > 0 or else v = b if a = 0. Since ϕ(x) is strictly convex then (16) θϕ(λ, C, p) = { λqaqH xq 0(1−p)q − λCaα 1−p , λ0 ≤ λ ≤ λ∗; λqbqH xq 0(1−p)q − λCbα 1−p , λ > λ∗, where λ∗ = ( C(bα − aα) (bqH − aqH) ) 1 q−1 (1 − p)x q q−1 0 . For λ ≥ λ0 consider exponential part from estimate (11) in the theorem 4. Γ(λ, p, ε) = exp { λq ( dqH xq 0(1 − p)q−1 + (b − a)qHp xq 02 qH(1 − p)q ) − − λ ( Cdα + ε − C(b − a)αp α H 2(1 − p α H ) )} := exp {λqAd − λBd} ,(17) where d = { a, if λ ≤ λ∗, b, if λ > λ∗. It is obvious that if λ∗ ≤ ( Bb qAb ) 1 q−1 , that is if (18) ε ≥ εb = qC(bα − aα) bqH − aqH ( bqH + (b − a)qHp 2qH(1 − p) ) + C(b − a)αp α H 2(1 − p α H ) − Cbα, 268 ROSTYSLAV YAMNENKO then the function Γ(λ, p, ε) reaches its minimum value at the point λ =( Bb qAb ) 1 q−1 . Also for the unambiguity of the function ϕ we need λ0 ≤ λ∗, i.e. max { v−H ; 2H (b − a)H } ≤ ( x0C(bα − aα) (bqH − aqH) ) 1 q−1 . Consider the inequalities (1 + x′)α′ < 1 + α′x′, 0 < α′ < 1, x′ ≥ 0;(19) (1 − x′′)α′′ ≥ 1 − α′′x′′, α′′ ≥ 1, 0 ≤ x′′ ≤ 1.(20) Let x′ = (b − a)qHp 2qHbqH(1 − p) , α′ = 1 q−1 and x′′ = C(b − a)αp α H 2(Cbα + ε)(1 − p α H ) , α′′ = q q−1 . From (18) follows that x′′ ≤ 1. Applying (19) and (20) to (17), using inequality 1 1+z ≤ 1 for z ≥ 0, and the identity − z1 z2(1+z3) = −z1 z2 + z2 1+z2 for some positive z1, z3 and z2, we have min λ>0 Γ(λ, p, ε) ≤ min λ≥λ0 Γ(λ, p, ε) = exp ⎧⎨ ⎩−(q − 1)B q q−1 b q q q−1 A 1 q−1 b ⎫⎬ ⎭ = = exp ⎧⎪⎪⎪⎨ ⎪⎪⎪⎩ − (q − 1)x q q−1 0 (Cbα + ε) q q−1 ( 1 − C(b−a)αp α H 2(Cbα+ε) ( 1−p α H )) q q−1 q q q−1 b qH q−1 ( 1 + (b−a)qHp (2b)qH (1−p) ) 1 q−1 ⎫⎪⎪⎪⎬ ⎪⎪⎪⎭ × × exp ⎧⎪⎪⎪⎨ ⎪⎪⎪⎩ p(q − 1)x q q−1 0 ( Cbα + ε − C(b−a)αp α H 2 1−p α H ) q q−1 q q q−1 ( bqH + (b−a)qH p 2qH(1−p) ) 1 q−1 ⎫⎪⎪⎪⎬ ⎪⎪⎪⎭ ≤ ≤ exp ⎧⎪⎪⎨ ⎪⎪⎩− (q − 1)x q q−1 0 (Cbα + ε) q q−1 ( 1 − qC(b−a)αp α H 2(q−1)(Cbα+ε) 1−p α H ) q q q−1 b qH q−1 ( 1 + (b−a)qH p (q−1)(2b)qH (1−p) ) ⎫⎪⎪⎬ ⎪⎪⎭× × exp { p(q − 1)x q q−1 0 (Cbα + ε) q q−1 q q q−1 b qH q−1 } ≤ ≤ exp { −(q − 1)x q q−1 0 (Cbα + ε) q q−1 q q q−1 b qH q−1 } exp { px q q−1 0 (Cbα + ε) 1 q−1 q q q−1 b qH q−1 × ( (Cbα + ε)(b − a)qH 2qHbqH(1 − p) + p α H −1qC(b − a)α 2(1 − p α H ) + (q − 1)(Cbα + ε) )} .(21) RUIN PROBABILITY FOR ϕ-GFBM RISK PROCESS 269 Alternatively, if ε < εb min λ>0 Γ(λ, p, ε) ≤ Γ(λ∗, p, ε) = exp {( C(bα − aα) (bqH − aqH) ) q q−1 × ×(1 − p)qx q2 q−1 0 ( bqH xq 0(1 − p)q−1 + (b − a)qHp xq 02 qH(1 − p)q ) − − ( C(bα − aα) (bqH − aqH) ) 1 q−1 (1 − p)x q q−1 0 ( Cbα + ε − C(b − a)αp α H 2(1 − p α H ) )} = = exp { − ( C(bα − aα) (bqH − aqH) ) 1 q−1 x q q−1 0 ( ε + Caαbα bqH−α − aqH−α bqH − aqH )} × × exp { p ( C(bα − aα) (bqH − aqH) ) 1 q−1 x q q−1 0 ( ε + Caαbα bqH−α − aqH−α bqH − aqH + + C(b − a)αp α−H H (1 − p) 2(1 − p α H ) + C(b − a)qH(bα − aα) 2qH(bqH − aqH) )} .(22) It is obvious that the latter estimate holds true also for ε ≥ εb. So from (21) and (22) we have the assertion of the theorem. � Theorem 6. Let ZH = (ZH(t), t ≥ 0) be random processes from class Ψq x0 with Hurst parameter H ∈ [0.5, 1), qH > 1. Let C > 0 and γ > 1 be some constants. Then for all (23) ε ≥ 2 H(q−1) 1−H γMq(1 − H)(γqH−1 − 1) x 1 1−H 0 C H 1−H (qH − 1) max { 1 γqH − 1 ; (γqH − 1) H 1−H (γ − 1) H(q−1) 1−H } and ζ ∈ ( 0, ε q(1−H) (q−1)H ) , where M is such an integer that (24) M ≥ 1 + q − 1 q(1 − H) log ( q − 1 q(1 − H) (γ − 1) 1 q−1 (γqH − 1) 1 q−1 ) , the following inequality holds true (25) P { sup t>0 ( 1 CΔ ZH(t) − Ct ) > ε } ≤ L(γ, ε)ε q(1−H) (q−1)H exp { −κ(γ)ε q(1−H) q−1 } , 270 ROSTYSLAV YAMNENKO where κ(γ) = x q q−1 0 C qH q−1 (q − 1)(γ − 1) 1 q−1 (γqH − γ) qH−1 q−1 (q − qH) q−qH q−1 (qH − 1) qH−1 q−1 (γqH − 1) qH q−1 ,(26) L(γ, ε) = 2ζ−1e 1 H (K0(γ) + K1(γ)S1(γ, ε) + γ q(1−H)M (q−1)H KM(γ) + KM+1(γ)S2(γ, ε)) < ∞, (27) S1(γ, ε) = M−1∑ k=1 γ q(1−H)k (q−1)H exp { −κ(γ)ε q(1−H) q−1 }Sk,M (γ) ,(28) S2(γ, ε) = ∞∑ k=M+1 γ q(1−H)k (q−1)H exp { −κ(γ)ε q(1−H) q−1 }Sk,M (γ) ,(29) Sk,M(γ) = q(1 − H) q − 1 γ qH−1 q−1 (M−k) + qH − 1 q − 1 γ q(1−H) q−1 (k−M) − 1,(30) K0(γ) = exp { x q q−1 0 ζHC qH q−1 ( γMq(1 − H)(γqH−1 − 1) (qH − 1)(γqH − 1) ) qH−1 q−1 × ( 1 + γ−M(qH − 1)(γqH − 1) q(1 − H)(γqH−1 − 1) ( 1 2qH + H 2 ))} , (31) Kk(γ) = exp { x q q−1 0 ζHC qH q−1 ( γ − 1 γqH − 1 ) 1 q−1 × × ( γMq(1 − H)(γqH − γ) (qH − 1)(γqH − 1) ) qH−1 q−1 × × ( γ−k + γ−M(qH − 1) q(1 − H) + γ−M(γ − 1)qH+1(qH − 1) 2qH(γqH − γ)q(1 − H) + γ−M(γ − 1)(γqH − 1)(qH − 1) 2(γqH − γ)q(1 − H)γ q(1−H)2k (q−1)H ( 1 − γ − q(1−H)k (q−1)H ) ⎞ ⎟⎠ ⎫⎪⎬ ⎪⎭ , k ≥ 1. (32) Remark. The ruin probability can be minimized by appropriate selection of parameters γ and ζ . Proof. Let us consider the following partition: [0,∞) = ∞⋃ k=0 [ak, bk], where a0 = 0, b0 = a, bk = ak+1 = γka, k ≥ 1, a > 0, γ > 1 and apply for each interval theorem 5. Then for any k ≥ 1 Wak , bk (ε) = Wk(γ, ε) = = exp { − C 1 q−1 x q q−1 0 a qH−1 q−1 γ qH−1 q−1 (k−1) ( γ − 1 γqH − 1 ) 1 q−1 ( ε + Cγka γqH−1 − 1 γqH − 1 )} . RUIN PROBABILITY FOR ϕ-GFBM RISK PROCESS 271 Consider the function j(n) = γ 1−qH q−1 (n−1) ( ε + Cγna γqH−1 − 1 γqH − 1 ) as continuous relative to it’s argument n. Then dj(n) dn = ( 1 − qH q − 1 ( ε + Cγna(γqH−1 − 1) γqH − 1 ) + Caγn(γqH−1 − 1) γqH − 1 ) × γ 1−qH q−1 (n−1) log γ = ( ε(1 − qH) q − 1 + Cγna(γqH−1 − 1)q(1 − H) (γqH − 1)(q − 1) ) γ 1−qH q−1 (n−1) log γ, dj(n) dn = 0 ⇔ a = εγ−n C qH − 1 q(1 − H) γqH − 1 γqH−1 − 1 . If the previous equality holds true then Wn(γ, ε) takes maximal value. Choose such an a that Wk(γ, ε) takes maximal values for k = M for some M ≥ 1. Then (33) a = εγ−M C qH − 1 q(1 − H) γqH − 1 γqH−1 − 1 . After substituting a from (33) in Wk(γ, ε) we have W (M) k (γ, ε) = exp { − C qH q−1 x q q−1 0 ε q(1−H) q−1 γ qH−1 q−1 (M+1−k) ( q(1 − H) qH − 1 ) qH−1 q−1 × × (γ − 1) 1 q−1 (γqH−1 − 1) qH−1 q−1 (γqH − 1) qH q−1 ( 1 + γk−M qH − 1 q(1 − H) )} for k ≥ 1 and W (M) 0 (γ, ε) = exp { − C qH q−1 x q q−1 0 ε q(1−H) q−1 γ (qH−1)M q−1 × × ( q(1 − H) qH − 1 ) qH−1 q−1 ( γqH−1 − 1 γqH − 1 ) qH−1 q−1 } . Let’s define by W (γ, ε) = W (M) M (γ, ε) = exp { −κ(γ)ε q(1−H) q−1 } ,(34) κ(γ) = x q q−1 0 C qH q−1 (q − 1)(γ − 1) 1 q−1 (γqH − γ) qH−1 q−1 (q − qH) q−qH q−1 (qH − 1) qH−1 q−1 (γqH − 1) qH q−1 .(35) It is obvious that W (γ, ε) ≥ W (M) 0 (γ, ε) if (36) M ≥ 1 + q − 1 q(1 − H) log ( q − 1 q(1 − H) (γ − 1) 1 q−1 (γqH − 1) 1 q−1 ) . 272 ROSTYSLAV YAMNENKO Consider the following ratio W (M) k (γ, ε) W (γ, ε) = exp { − C qH q−1 x q q−1 0 ε q(1−H) q−1 γ qH−1 q−1 (q − 1)(qH − 1) 1−qH q−1 (q(1 − H)) q(1−H) q−1 × (γ − 1) 1 q−1 (γqH−1 − 1) qH−1 q−1 (γqH − 1) qH q−1 × ( q(1 − H) q − 1 γ qH−1 q−1 (M−k) + qH − 1 q − 1 γ− q(1−H) q−1 (M−k) − 1 )} = W (γ, ε)Sk,M (γ), where Sk,M(γ) are defined in (30). It is easy to see that Sk,M(γ) > 0 for any γ > 1 and k ≥ 1. In order to estimate the expressions consider the inequalities ex ≥ 1 + x + x2 and e−x ≥ 1 − x for x ≥ 0. Then Sk,M(γ) ≥ (qH − 1)q2(1 − H)2 log2(γ)(k − M)2 (q − 1)2 , k > M, and the series S2(γ, ε) = ∞∑ k=M+1 γ q(1−H)k (q−1)H W (γ, ε)Sk,M(γ) ≤ ∞∑ k=M+1 γ q(1−H)k (q−1)H × exp { −κ(γ)ε q(1−H) q−1 (qH − 1)q2(1 − H)2 log2 γ (q − 1)2 }(k−M)2 converges for any ε > 0 and γ > 1. RUIN PROBABILITY FOR ϕ-GFBM RISK PROCESS 273 Consider Ka, b(p, ε) from theorem 5 in details after substituting a from (33). Kak, bk (p, ε) = exp { px q q−1 0 ( C(bk − ak) (bqH k − aqH k ) ) 1 q−1 ( ε+ +Cakbk bqH−1 k − aqH−1 k bqH k − aqH k + C(bk − ak)p 1−H H (1 − p) 2(1 − p 1 H ) + C(bk − ak) qH+1 2qH(bqH k − aqH k ) )} = exp { px q q−1 0 ( C(γ − 1) (γqH − 1) ) 1 q−1 ( εγ−M(qH − 1)(γqH − 1) Cq(1 − H)(γqH−1 − 1) ) 1−qH q−1 × ×γ (1−qH)(k−1) q−1 ( ε + εγk−M(qH − 1) q(1 − H) + εγk−M(γ − 1)qH+1(qH − 1) 2qH(γqH − γ)q(1 − H) + + εγk−M(γ − 1)(γqH − 1)(qH − 1)p 1−H H (1 − p) 2(γqH − γ)q(1 − H)(1 − p 1 H ) )} .(37) For k ≥ 0 let’s put p = pk = ζH ε q(1−H) q−1 γ q(1−H)k q−1 , where ζ is such a positive constant that for all k ≥ 0 pk < 1, i.e. 0 < ζ < ε q(1−H) q−1 . Then for k ≥ 1 Kak , bk (pk, ε) ≤ Kk(γ), Kk(γ) specified in (32). It easy to check that fraction p 1−H H (1−p) 1−p 1 H monotone increases for p < 1 and p 1−H H (1−p) 1−p 1 H ↗ H if p ↗ 1. So in the same way for k = 0 Ka0, b0(p0, ε) = exp { px q q−1 0 C 1 q−1 a 1−qH q−1 ( ε + Ca 2qH + Cap 1−H H (1 − p) 2(1 − p 1 H ) )} ≤ K0(γ). Let’s investigate fulfilment of the condition (12) from theorem 5 for each interval of the partition. For the first interval [0, a] we have max{a−H ; 2Ha−H} = 2H aH ≤ (x0Ca1−qH ) 1 q−1 . And after substituting (33) we have the following inequality. (38) ε ≥ 2 H(q−1) 1−H γMq(1 − H)(γqH−1 − 1) x 1 1−H 0 C H 1−H (qH − 1)(γqH − 1) . For the intervals [ak, bk] = [aγk−1, aγk], k ≥ 1 in similar fashion max { a−Hγ−kH; 2H aHγH(k−1)(γ − 1)H } = 2H aHγH(k−1)(γ − 1)H ≤ ( x0Ca1−qH(γ − 1) q(γqH − 1) ) 1 q−1 274 ROSTYSLAV YAMNENKO After simple transformations we have (39) ε ≥ 2 H(q−1) 1−H γM−k+1q(1 − H)(γqH−1 − 1)(γqH − 1) H 1−H x 1 1−H 0 C H 1−H (qH − 1)(γ − 1) H(q−1) 1−H From (38) and (39) follows (23). Then from all the above P { sup t>0 ( 1 CΔ ZH(t) − Ct ) > ε } ≤ ≤ ∑ k≥0 P { sup t∈[ak ,bk] ( 1 CΔ ZH(t) − Ct ) > ε } ≤ ≤ ∑ k≥0 2 ( e pk ) 1 H W (M) k (γ, ε)Kak,bk (pk, ε) ≤ ≤ 2ζ−1e 1 H ε q(1−H) (q−1)H ( K0(γ)W (M) 0 (γ, ε) + M−1∑ k=1 γ q(1−H)k (q−1)H W (M) k (γ, ε)Kk(γ) + γ q(1−H)M (q−1)H W (γ, ε)KM(γ) + ∞∑ k=M+1 γ q(1−H)k (q−1)H W (M) k (γ, ε)Kk(γ) ) ≤ ≤ 2ζ−1e 1 H ε q(1−H) (q−1)H W (γ, ε) ( K0(γ) + K1(γ) M−1∑ k=1 γ q(1−H)k (q−1)H W (M) k (γ, ε) W (γ, ε) + + γ q(1−H)M (q−1)H KM(γ) + KM+1(γ) ∞∑ k=M+1 γ q(1−H)k (q−1)H W (M) k (γ, ε) W (γ, ε) )) ≤ ≤ ε q(1−H) (q−1)H W (γ, ε)2ζ−1e 1 H × × (K0(γ) + K1(γ)S1(γ, ε) + γ q(1−H)k (q−1)H KM(γ) + KM+1(γ)S2(γ, ε)). � References 1. I. Norros. On the use of Fractional Brownian motions in the Theory of Connec- tionless Networks. IEEE Journal on selected areas in communications, Vol.13, No.6. 953–962, 1995. 2. Z. Michna. Self-similar processes in collective risk theory. Journal of Applied Mathematics and Stochastic Analysis, 11(4), 429–448, 1998. 3. P. Baldi and B. Pacchiarotti. Importance sampling for the ruin problem for gen- eral Gaussian processes. Preprint. 2004. 4. V.V. Buldygin and Yu.V. Kozachenko, Metric Characterization of Random Vari- ables and Random Processes. AMS, Providence, RI, 2000. 5. R. Giuliano-Antonini, Yu. Kozachenko, T. Nikitina, Spaces of φ-Subgaussian Random Variables, Rendiconti, Academia Nazionale delle Scienze detta dei XL, Memorie di Matematica e Applicazioni, 121o(2003), Vol. XXVII, fasc.1, 95–124. RUIN PROBABILITY FOR ϕ-GFBM RISK PROCESS 275 6. Yu.V. Kozachenko, Yu.A. Kovalchuk, Boundary value problems with random ini- tial conditions, and functional series from Subϕ(Ω). I. Ukrainian Math. Journal. 50 (4), 504–515, 1998. 7. Yu. Kozachenko, T. Sottinen and O. Vasilik. Weakly self-similar stationary incre- ment processes from the space SSubϕ(Ω). Probab. Theory and Math. Statistics, 65, 2001. 8. Yu. Kozachenko, O. Vasylyk and R. Yamnenko. On the probability of exceeding some curve by ϕ-subgaussian random process. Theory of Stoch. Processes. 9(25), No. 3-4, 70–80, 2003. 9. Yu. Kozachenko, O. Vasylyk and R. Yamnenko. Upper estimate of overrunning by Subϕ(Ω) random process the level specified by continuous function. Random Oper. and Stoch. Equ., Vol. 13, No. 2, 101–118, 2005. Department of Probability Theory and Mathematical Statistics, Kyiv National Taras Shevchenko University, Kyiv, Ukraine E-mail address: yamnenko@univ.kiev.ua