Asymptotically optimal estimator of the parameter of semi-linear autoregression

The difference equations ξk = af(ξk-1) + εk, where (εk) is a square integrable difference martingale, and the differential equation dξ =-af(ξ)dt + dη, where η is a square integrable martingale, are considered. A family of estimators depending, besides the sample size n (or the observation period, if...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автор: Ivanenko, D.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/4475
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Asymptotically optimal estimator of the parameter of semi-linear autoregression / D. Ivanenko // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С.77-85. — Бібліогр.: 7 назв.— англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-4475
record_format dspace
spelling irk-123456789-44752009-11-20T12:00:29Z Asymptotically optimal estimator of the parameter of semi-linear autoregression Ivanenko, D. The difference equations ξk = af(ξk-1) + εk, where (εk) is a square integrable difference martingale, and the differential equation dξ =-af(ξ)dt + dη, where η is a square integrable martingale, are considered. A family of estimators depending, besides the sample size n (or the observation period, if time is continuous) on some random Lipschitz functions is constructed. Asymptotic optimality of this estimators is investigated. 2007 Article Asymptotically optimal estimator of the parameter of semi-linear autoregression / D. Ivanenko // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С.77-85. — Бібліогр.: 7 назв.— англ. 0321-3900 http://dspace.nbuv.gov.ua/handle/123456789/4475 en Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The difference equations ξk = af(ξk-1) + εk, where (εk) is a square integrable difference martingale, and the differential equation dξ =-af(ξ)dt + dη, where η is a square integrable martingale, are considered. A family of estimators depending, besides the sample size n (or the observation period, if time is continuous) on some random Lipschitz functions is constructed. Asymptotic optimality of this estimators is investigated.
format Article
author Ivanenko, D.
spellingShingle Ivanenko, D.
Asymptotically optimal estimator of the parameter of semi-linear autoregression
author_facet Ivanenko, D.
author_sort Ivanenko, D.
title Asymptotically optimal estimator of the parameter of semi-linear autoregression
title_short Asymptotically optimal estimator of the parameter of semi-linear autoregression
title_full Asymptotically optimal estimator of the parameter of semi-linear autoregression
title_fullStr Asymptotically optimal estimator of the parameter of semi-linear autoregression
title_full_unstemmed Asymptotically optimal estimator of the parameter of semi-linear autoregression
title_sort asymptotically optimal estimator of the parameter of semi-linear autoregression
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/4475
citation_txt Asymptotically optimal estimator of the parameter of semi-linear autoregression / D. Ivanenko // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С.77-85. — Бібліогр.: 7 назв.— англ.
work_keys_str_mv AT ivanenkod asymptoticallyoptimalestimatoroftheparameterofsemilinearautoregression
first_indexed 2025-07-02T07:42:41Z
last_indexed 2025-07-02T07:42:41Z
_version_ 1836520216630132736
fulltext Theory of Stochastic Processes Vol.13 (29), no.1-2, 2007, pp.77-85 DMYTRO IVANENKO ASYMPTOTICALLY OPTIMAL ESTIMATOR OF THE PARAMETER OF SEMI-LINEAR AUTOREGRESSION The difference equations ξk = af(ξk−1) + εk, where (εk) is a square integrable difference martingale, and the differential equation dξ = −af(ξ)dt + dη, where η is a square integrable martingale, are con- sidered. A family of estimators depending, besides the sample size n (or the observation period, if time is continuous) on some random Lipschitz functions is constructed. Asymptotic optimality of this estimators is investigated. 1. Introduction Discrete time We consider the difference equation ξk = af(ξk−1) + εk, k ∈ N, (1) where ξ0 is a prescribed random variable, f is a prescribed nonrandom function, a is an unknown scalar parameter and (εk) is a square integrable difference martingale with respect to some flow (Fk, k ∈ Z+) of σ-algebras such that the random variable ξ0 is F0-measurable. In the detailed form, the assumption about (εk) means that for any k εk is Fk-measurable, Eε2 k < ∞ (2) and E(εk|Fk−1) = 0. (3) The word ”semi-linear” in the title means that the right-hand side of (1) depends linearly on a but not on ξk−1. 2000 Mathematics Subject Classifications. Primary 62F12. Secondary 60F05. Key words and phrases. Martingale, estimator, optimization, convergence. 77 78 DMYTRO IVANENKO We use the notation: l.i.p. – limit in probability; d→ – the weak conver- gence of finite-dimensional distributions of random functions, in particular convergence in distribution of random variables. Let for each k ∈ Z+ hk = hk(ω, x) be an Fk−1 ⊗ B-measurable function (that is the sequence (hk) be predictable) such that E [(|ξk+1| + |af(ξk+1)|) |hk(ξk)|] + E|hk(ξk)| < ∞. Then from (1) – (3) we have E (ξk+1 − af(ξk))hk(ξk) = 0, whence a = (Eξk+1hk(ξk)) (Ef(ξk)hk(ξk)) −1 provided (Ef(ξk)hk(ξk)) �= 0. This prompts the estimator ǎn = ( n−1∑ k=0 ξk+1hk(ξk) ) ( n−1∑ k=0 f(ξk)hk(ξk) )−1 , (4) coinciding with the LSE if hk(x) = f(x) for all k. Continuous time We consider the differential equation dξ(t) = −af(ξ(t))dt + dη(t), t ∈ R, (5) where η(t) is a local square integrable martingale w.r.t. a flow (F(t)) such that the random variable ξ(0) is F(0)-measurable. Let h(t, x) be a predictable random function such that for all t ∈ R+ E [(|ξ(t)| + |af(ξ(t))|) |h(t, ξ(t))|] + E|h(t, ξ(t))| < ∞. Let us multiply (5) on h(t, ξ(t)) and integrate from 0 to T . The same rationale as in the discrete case yields the estimator ǎT = − (∫ T 0 h(t, ξ(t))dξ ) (∫ T 0 f(ξ(t))h(t, ξ(t))dt )−1 , (6) coinciding with the LSE if h(t, x) = f(x). Asymptotic normality of √ n ( Ǎn − A ) , where Ǎn is the LSE of a matrix parameter A, was proved in [1] under the assumptions of ergodicity and stationarity of (ξn). Convergence in distribution of this normalized deviation was proved in [2] with the use of stochastic calculus. Ergodicity and even stationarity of (εk) was not assumed in [2], so the limiting distribution could be other than normal. The goal of the article is to match a sequence (hk) (if time is discrete) or a function h(t, ·) (if time is continuous) so that to minimize the value of some random functional Vn which, as we shall see in Section 3, is asymptotical close in distribution to some numeral characteristic of the estimator (in case the latter is asymptotically normal this characteristic coincides with the variance). ASYMPTOTICALLY OPTIMAL ESTIMATOR 79 2. The main results Discrete time Denote σ2 k = E[ε2 k|Fk−1], μk = hk(ξk). Let Lip(C) denote the class of functions satisfying the Lipschitz condition with some constant C and equal to zero at the origin, Lip = ⋃ C>0Lip(C), and let H(C) denote the class of all predictable random functions on Z+ × R (discrete time) or R+ × R (continuous time) whose realizations hk(·) (respectively h(t, ·)) belong, as functions of x, to Lip(C), H = ⋃ C>0H(C). Predictability means P ⊗ B- measurability in (ω, t, x) (the σ-algebra P is defined in [4, p. 28], [6, p. 13]). We are seeking for (h̃k) ∈ H minimizing the functional Vn(h0, . . . , hn−1) = 1 n ∑n−1 k=0 σ2 k+1μ 2 k( 1 n ∑n−1 k=0 f(ξk)μk )2 . (7) Theorem 1. Let Vn(h̃0, . . . , h̃n−1) = min h0,...,hn−1∈H Vn(h0, . . . , hn−1). (8) Then σ2 k+1μ̃k n−1∑ i=0 f(ξi)μ̃i = f(ξk) n−1∑ i=0 σ2 i+1μ̃ 2 i , k = 0, n − 1. (9) Proof. To obtain the necessary conditions for extremum of the functional Vn (9) we will vary [3] just one of functions hk, k = 0, n − 1, leaving the other functions without changes. Thus regarding Vn(h0, . . . , hn−1) as a functional depending on only one function Vn(h0, . . . , hn−1) = Ṽn(hk). Let’s choose some scalar function g ∈ H and denote gλ(x) = h̃k(x) + λ(g(x) − h̃k(x)), v(λ) = Ṽn(gλ). Obviously, gλ ∈ H so the minimum of v(λ) is attained at zero and therefore v′(0) = 0. (10) The expression for the left-hand side is v′(0) = 2n(g(ξk) − μk) ( σ2 k+1μ̃k( ∑n−1 i=0 f(ξi)μ̃i − f(ξk) ∑n−1 i=0 σ2 i+1μ̃ 2 i ) (∑n−1 i=0 f(ξi)μ̃i )3 . Hence in view of (10) we obtain the i th equation of system (9). It remains to apply this argument to each function hk, k = 0, n − 1. Remark. The Lipschitz condition was not used in the proof. It will be required in Section 3. Corollary 1. Let f ∈ Lip(C) and there exist a constant q > 0 such that σ2 k ≥ q for all k. Then hi(x) = f(x)/σ2 i+1, i = 0, n − 1, is a solution to the problem (8). 80 DMYTRO IVANENKO Continuous time Let m denote the quadratic characteristic of η. We shall match h̃ = h̃(ω, t, x) from H(C) (C is independent of t) so that to minimize the value of the functional VT (h) = 1 T ∫ T 0 h(t, ξ(t))2dm(t)( 1 T ∫ T 0 f(ξ(t))h(t, ξ(t))dt )2 . (11) Theorem 2. Let VT (h̃) = min h∈H VT (h). (12) Then for all g ∈ H∫ T 0 h̃(t, ξ(t))g(t, ξ(t))dm(t) ∫ T 0 f(ξ(t))h̃(t, ξ(t))dt = ∫ T 0 f(ξ(t))g(t, ξ(t))dt ∫ T 0 h̃(t, ξ(t))2dm(t). (13) Proof. Let’s choose some scalar function g ∈ H and denote gλ(t, x) = h̃(t, x) + λg(t, x), v(λ) = VT (gλ). Obviously gλ(t, ·) ∈ H so the minimum of v(λ) is attained in zero and therefore v′(0) = 0. (14) The expression for the left-hand side is v′(0) = 2T (∫ T 0 f(ξ(t))h̃(t, ξ(t))dt )−3 ×(∫ T 0 f(ξ(t))h̃(t, ξ(t))dt ∫ T 0 h̃(t, ξ(t))g(t, ξ(t))dm(t)− ∫ T 0 f(ξ(t))g(t, ξ(t))dt ∫ T 0 h̃(t, ξ(t))2dm(t) ) . Hence in view of (14) we come to (13). Corollary 2. Let f ∈ Lip(C), m be absolutely continuous w.r.t. the Lebesgue measure and there exist a constant q > 0 such that for all t ṁ ≥ q. Then h(t, x) = f(x)/ṁ is a solution to the problem (12). 3. An illustration Denote E0 = E(· · · |F0), Qn = 1 n ∑n−1 k=0 f(ξk)μk, Gn = 1 n ∑n k=1 σ2 kμ 2 k−1. We denote E0 = E(· · · |F0) and introduce the conditions CP1. For any r ∈ N and any uniformly bounded sequence (αk) of R-valued Borel functions on Rr 1 n n−1∑ k=r ( αk(εk−r+1, . . . , εk) − E0αk(εk−r+1, . . . , εk) ) P−→ 0, ASYMPTOTICALLY OPTIMAL ESTIMATOR 81 1 n n−1∑ k=r ( σ2 kαk(εk−r+1, . . . , εk) − E0σ2 kαk(εk−r+1, . . . , εk) ) P−→ 0. CP2. For such r and (αk) the sequences( 1 n n−1∑ k=r E0αk(εk−r+1, . . . , εk), n = r + 1, . . . ) , ( 1 n n−1∑ k=r E0σ2 kαk(εk−r+1, . . . , εk), n = r + 1, . . . ) converge in probability. Denote f0(x) = x and, for r ≥ 1, fr(x0, . . . , xr) = af(fr−1(x0, . . . , xr−1)) + xr. Then ξk = fr(ξk−r, εk−r+1, . . . , εk), r < k. Lemma 1. Let conditions (2), (3), CP1 and CP2 be fulfilled. Suppose also that lim N→∞ lim n→∞ 1 n n∑ k=1 Eε2 kI{|εk| > N} = 0 (15) and there exist an F0-measurable random variable υ such that for all k σ2 k ≤ υ (16) and positive numbers C, C1 such that |a|C < 1, (17) f ∈ Lip(C), (hk) ∈ H(C1). Then (Gn, Qn) d→ (G, Q). (18) Proof. Denote ξr k = fr(0, εk−r+1, . . . , εk), μr k = hk(ξ r k), Qr n = 1 n ∑n−1 k=r f(ξr k)μ r k, Gr n = 1 n ∑n k=r σ2 k(μ r k−1) 2. We claim that conditions (2), (3), (15), (16), (17) and the relation (Qr n, Gr n) d→ (Qr, Gr) as n → ∞ (19) imply (18). Let Xr denote (x1, . . . , xr) ∈ Rr. Then under the assumptions on f and hk for any N > 0 lim r→∞ sup |x|≤N,Xr∈Rr |fr(x, Xr) − fr(0, Xr)| = 0, 82 DMYTRO IVANENKO whence with probability 1 for any k lim r→∞ sup |x|≤N,Xr∈Rr |f(fr(x, Xr))hk(fr(x, Xr)) − f(fr(0, Xr))hk(fr(0, Xr))| = 0, (20) lim r→∞ sup |x|≤N,Xr∈Rr |hk(fr(x, Xr)) 2 − hk(fr(0, Xr)) 2| = 0. These relations were proved in [5]. Let us prove that conditions (2), (3), (15), (16) and (17) imply that almost surely lim r→∞ lim n→∞E0|Qn − Qr n| = 0, lim r→∞ lim n→∞E0|Gn − Gr n| = 0. (21) By (20) for any N > 0 lim r→∞ lim n→∞ 1 n n−1∑ k=r E|f(ξk) ⊗ μk − f(ξr k)μ r k|I{|ξk| ≤ N} = 0. (22) Denote χN k = I{|ξk| > N}, IN k = I{|εk| > (1 − C)N}, bN k = E0|ξk|2χN k . Due to (17) and because of (hk) ∈ H(C1) E0|f(ξk)μk|χN k ≤ CC1b N k . Hence and from (2), (3), (15)–(17) we get by Corollary 1 [5] lim N→∞ lim n→∞ 1 n n−1∑ k=0 E0|f(ξk)μk|χN k = 0. (23) Further, for k ≥ r, E0|f(ξr k)μ r k| = E0|f(fr(0, εk−r+1, . . . , εk))||hk(fr(0, εk−r+1, . . . , εk))|, whence E|f(ξr k)μ r k|χN k ≤ CC1E ( r−1∑ i=0 Ci|εk−i| )2 χN k . (24) Writing the Cauchy – Bunyakovsky inequality( r−1∑ i=0 Ci|εk−i| )2 ≤ r−1∑ j=0 Cj r−1∑ i=0 Ci|εk−i|2, we get for an arbitrary L > 0 E (∑r−1 i=0 Ci|εk−i| )2 χN k ≤ (1 − C)−1 ( E r−1∑ i=0 Ciε2 k−iI{|εk−i| > L} + L2P{|ξk| > N} r−1∑ i=0 Ci ) . (25) ASYMPTOTICALLY OPTIMAL ESTIMATOR 83 In view of (2) and (3) Lemma 1 [5] together with (17) and (15) implies that lim N→∞ lim n→∞ 1 n n∑ k=0 P{|ξk| > N} = 0. (26) Obviously, for arbitrary nonnegative numbers u0, . . . , ur−1, v1, . . . , vn−1 n−1∑ k=r r−1∑ i=0 uivk−i ≤ r−1∑ i=0 ui n−1∑ j=1 vj , so conditions (17) and (15) imply that lim L→∞ sup r lim n→∞ 1 n n−1∑ k=r E r−1∑ i=0 Ciε2 k−iI{|εk−i| > L} = 0, whence in view of (24) – (26) lim N→∞ sup r lim n→∞ 1 n n−1∑ k=r E|f(ξr k)μ r k|χN k = 0. Combining this with (22) and (23), we arrive at the first relation of (21). The proof of the second relation of (21) is similar. Condition CP1 implies that lim r→∞ lim n→∞E0|Qr n − E0Qr n| = 0, lim r→∞ lim n→∞E0|Gr n − E0Gr n| = 0. Under condition CP2 the sequences (E0Gr n, n ∈ N) and (E0Qr n, n ∈ N) converge in probability for any r ∈ N. Thus relation (19) holds. From (19) and (21) we obtain that the sequence ((Qr, Gr), r ∈ N) con- verges in distribution to some limit (Q, G) and relation (18) holds. By construction Vn(h0, . . . , hn−1) = GnQ−2 n . The value Qn = 0 is ex- cluded by the choice of the tuple (h0, . . . , hn−1) minimizing Vn. Corollary 3. Let the conditions of Lemma 1 be fulfilled and Q �= 0 a.s. Then Vn d→ V , where V = GQ−2. Having in mind the use of stochastic analysis, we introduce the processes ǎn(t) = ǎ[nt] and the flows Fn(t) = F[nt] with continuous time. Theorem 3. Let conditions of Lemma 1 be fulfilled. Then √ n (ǎn(·) − a) d→ β(·), where β is a continuous local martingale with quadratic characteristic 〈β〉(t) = tV, (27) and initial value 0. Proof. Denote Yn(t) = 1√ n ∑[nt] k=1 εkμk−1. Then because of (4) √ n(ǎn(t) − a) = Yn(t)Q−1 n . (28) 84 DMYTRO IVANENKO By construction and conditions (2), (3), (17) Yn is a locally square inte- grable martingale with quadratic characteristic 〈Yn〉(t) = n−1[nt]G[nt]. It was proved in [5] that under conditions (2), (3), (15), (16), (17) and (18) √ n(ǎn(·) − a) d→ Y (·)Q−1, where Y is a continuous local martingale w.r.t. some flow (F(t), t ∈ R+) such that 〈Y 〉(t) = tG and the random variable Q is F(0)-measurable (and so does G, which can be seen from the expression for 〈Y 〉). In view of Lemma 1 it remains to note that Vn = 〈Yn〉(1)Q−2 n and V = 〈Y 〉(1)Q−2. Remark. This theorem explains the form of functional (7). In the most general case (without conditions CP1 and CP2) the denominator (28) in limit is an F(0)-measurable random variable, and the numerator tends to quadratic characteristic at the point t = 1 of the continuous local martingale Y . Thus, the numerator (7) is the quadratic characteristic at t = 1 of the pre-limit martingale Yn, and the denominator satisfies the law of large numbers. Minimizing the pre-limit variance in (hk) ∈ H(C1), we lessen the value of the limit variance of the normalized deviation of estimator (4). Let further hk(x) = f(x)/σ2 k+1. Recall that (hk, k = 0, n − 1) is a solution to the problem (8). For such hk we have Corollary 4. Let the conditions of Corollary 1 and Theorem 3 be fulfilled. Then V = ( lim r→∞ l.i.p. n→∞ 1 n n−1∑ k=r E0 f(ξr k) 2 σ2 k+1 )−1 . Proof. Obviously Vn = Q−1 n . By Lemma 1 Qn d→ Q, where Q = lim r→∞ l.i.p. n→∞ E0Qr n. To complete the proof it remains to note that Qr n = 1 n n−1∑ k=r E0 f(ξr k )2 σ2 k+1 . 4. An example Suppose that f ∈ Lip(C), hk ∈ H(C1) condition (17) be fulfilled. Let also εn = γnbn(ξn−1), where (γn) be a sequence of independent random variables with zero mean and variances ς2 n, |γk| ≤ C2, bn ∈ H(C3) and C + C2C3 < 1. Let also Eξ2 0 < ∞. For Fk we take the σ-algebra generated by ξ0; γ1, . . . , γk. Then σ2 k = ς2 kbk(ξk−1) 2 and (εn) satisfies (2), (3). Denote further f̂r(x0, . . . , xr) = af(f̂r−1(x0, . . . , xr−1)) + xrbr(f̂r−1(x0, . . . , xr−1)), ξ̂r k = f̂r(0, γk−r+1, . . . , γk), μ̂r k = hk(ξ̂ r k), Q̂r n = 1 n n−1∑ k=r f(ξ̂r k)μ̂ r k, ASYMPTOTICALLY OPTIMAL ESTIMATOR 85 Ĝr n = 1 n ∑n−1 k=r ς2 k+1bk+1(ξ̂ r k) 2(μ̂r k) 2. Similarly to the proof of Lemma 1 we obtain lim r→∞ lim n→∞E0|Gn − Ĝr n| = 0, lim r→∞ lim n→∞E0|Qn − Q̂r n| = 0. Summands in Ĝr n and Q̂r n are nonrandom functions of γk−r+1, . . . , γk, so they satisfy the law of large numbers in Bernstein’s form. If besides εn satisfies CP2 and Q �= 0 a.s. then Theorem 3 asserts (27). If herein f(x) ς2 k bk(x)2 ∈ Lip then h̃k(x) = f(x) ς2 k bk(x)2 is a solution to the problem (8) and V = ( lim r→∞ l.i.p. n→∞ 1 n n−1∑ k=r E0 f(ξ̂r k) 2 ς2 k+1bk+1(ξ̂r k) 2 )−1 . Example. Let bn = b, hn = h and γn be i.i.d. random variables. In view of expressions for Q̂r n and Ĝr n we may confine ourselves with the case αk = α. By the Stone – Weierstrass theorem for σ-compact spaces [7, p. 317] α can be uniformly on compacta approximated with finite linear combinations of functions of the kind g1(x1) . . . gr(xr). By the choice of Fk and the as- sumptions on (γn) E0g1(γk−r+1) . . . gr(γk) = r∏ i=1 Egi(γ1). Whence condition CP2 emerges. Acknowledgement. The author is grateful to A. Yurachkivsky for helpful advices. Bibliography 1. Dorogovtsev A. Ya., Estimation theory for parameters of random processes (Russian). Kyiv University Press. Kyiv (1982). 2. Yurachkivsky A. P., Ivanenko D. O., Matrix parameter estimation in an autoregression model with non-stationary noise (Ukranian), Th. Prob. Math. Stat. 72 (2005), 158–172. 3. Elsholz, L. E., Differential equations and calculus of variations (Russian), Nauka, Moscow (1969). 4. Chung K. L., Williams R. J., Introduction to stochastic integration (Rus- sian), Mir, Moscow (1987). 5. Yurachkivsky A. P., Ivanenko D. O., Matrix parameter estimation in an autoregression model, Theory of Stochastic Processes 12(28) No 1-2 (2006), 154-161. 6. Liptser R. Sh., Shiryaev A. N., Theory of martingales (Russian), Nauka, Moscow (1986). 7. Kelley, J., General topology (Russian). Nauka, Moscow (1981). Department of Mathematics and Theoretical Radiophysic, Kyiv National Taras Shevchenko University, Kyiv, Ukraine E-mail address: ida@univ.kiev.ua