Diffusion approximation algorithms in merging phase space

Diffusion approximation algorithms for stochastic systems in split and merging phase space are represented in servey form. The main mathematical tools of such algorithms are described in our book ”Stochastic Systems in Merging Phase Space” (World Scientific Publishing, 2005).

Gespeichert in:
Bibliographische Detailangaben
Datum:2007
Hauptverfasser: Koroliuk, V., Limnios, N.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2007
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/4480
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Diffusion approximation algorithms in merging phase space / V. Koroliuk, N. Limnios // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С. 98-102. — Бібліогр.: 1 назв.— англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-4480
record_format dspace
spelling irk-123456789-44802009-11-20T12:00:32Z Diffusion approximation algorithms in merging phase space Koroliuk, V. Limnios, N. Diffusion approximation algorithms for stochastic systems in split and merging phase space are represented in servey form. The main mathematical tools of such algorithms are described in our book ”Stochastic Systems in Merging Phase Space” (World Scientific Publishing, 2005). 2007 Article Diffusion approximation algorithms in merging phase space / V. Koroliuk, N. Limnios // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С. 98-102. — Бібліогр.: 1 назв.— англ. 0321-3900 http://dspace.nbuv.gov.ua/handle/123456789/4480 en Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Diffusion approximation algorithms for stochastic systems in split and merging phase space are represented in servey form. The main mathematical tools of such algorithms are described in our book ”Stochastic Systems in Merging Phase Space” (World Scientific Publishing, 2005).
format Article
author Koroliuk, V.
Limnios, N.
spellingShingle Koroliuk, V.
Limnios, N.
Diffusion approximation algorithms in merging phase space
author_facet Koroliuk, V.
Limnios, N.
author_sort Koroliuk, V.
title Diffusion approximation algorithms in merging phase space
title_short Diffusion approximation algorithms in merging phase space
title_full Diffusion approximation algorithms in merging phase space
title_fullStr Diffusion approximation algorithms in merging phase space
title_full_unstemmed Diffusion approximation algorithms in merging phase space
title_sort diffusion approximation algorithms in merging phase space
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/4480
citation_txt Diffusion approximation algorithms in merging phase space / V. Koroliuk, N. Limnios // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С. 98-102. — Бібліогр.: 1 назв.— англ.
work_keys_str_mv AT koroliukv diffusionapproximationalgorithmsinmergingphasespace
AT limniosn diffusionapproximationalgorithmsinmergingphasespace
first_indexed 2025-07-02T07:42:54Z
last_indexed 2025-07-02T07:42:54Z
_version_ 1836520230345506816
fulltext Theory of Stochastic Processes Vol.13 (29), no.1-2, 2007, pp.98-102 VLADIMIR KOROLIUK AND NIKOLAOS LIMNIOS DIFFUSION APPROXIMATION ALGORITHMS IN MERGING PHASE SPACE Diffusion approximation algorithms for stochastic systems in split and merging phase space are represented in servey form. The main mathematical tools of such algorithms are described in our book ”Stochastic Systems in Merging Phase Space” (World Scientific Publishing, 2005). 1. Introduction The general scheme is illustrated on the semi-Markov random evolution given by a solution of the evolutionary equation dUε(t) dt = Cε(Uε(t); Xε(t/ε2))dt. (1) The velocity function Cε(u; x) = C(u; x) + ε−1C0(u; x), u ∈ R d, x ∈ E (2) satisfies the conditions of existence of global solutions for associated deter- ministic evolutionary equations dUε x(t) dt = Cε(Uε x(t); x), x ∈ E. (3) 2. The semi-Markov switching process The semi-Markov switching process Xε(t), t ≥ 0, is considered in the series scheme with small parameter series ε → 0 (ε > 0) given on the double split phase space (E, ξ) : E = ∪N k=1Ek, Ek = ∪Nk r=1E r k, Er k ∩ Er′ k = ∅, r �= r′, (4) Invited lecture. 2000 Mathematics Subject Classifications. 60K15 Key words and phrases. Stochastic processes, normal distribution,... 98 DIFFUSION APPROXIMATION ALGORITHMS 99 by the semi-Markov kernel Qε(x, B, t) = P ε(x, B)Fx(t), x ∈ E, B ∈ ξ, t ≥ 0. (5) The stochastic kernels P ε(x, B) = P (x, B) + εP1(x, B) + ε2P2(x, B) (6) in (6) coordinated with split (4) as follows: P (x, Er k) = 1r k(x) := { 1, x ∈ Er k, 0, x �∈ Er k, P1(x, Ek) = 0, P2(x, E) = 0, x ∈ E. (7) The associated Markov process X0(t), t ≥ 0 given by the generator Qϕ(x) = q(x) ∫ E P (x, dy)[ϕ(y)− ϕ(x)], q(x) := 1/g(x), g(x) := ∫ ∞ 0 F x(t)dt, F x(t) := 1 − Fx(t), (8) is considered uniformly ergodic in every class Er k, 1 ≤ r ≤ Nk, 1 ≤ k ≤ N, with stationary distributions πr k(dx), 1 ≤ r ≤ Nk, 1 ≤ k ≤ N. (9) Introduce the merging functions V̂ (x) = V r k , x ∈ Er k, ̂̂ V (x) = k, x ∈ Ek (10) and operators Qlϕ(x) = q(x) ∫ E Pl(x, dy)ϕ(y), l = 1, 2. (11) 2. Phase merging principle Theorem 4.3 (double merging principle) [1, Section 4.2.4]. Under the merging conditions MD1–MD3 the following weak convergence take place V̂ (Xε(t/ε)) ⇒ X̂(t), ε → 0,̂̂ V (Xε(t/ε2)) ⇒ ̂̂ X(t), ε → 0. (12) The limit Markov processes X̂(t) and ̂̂ X(t), on the merged phase spaces Ê = ⋃N k=1 Êk, Êk = {V r k , 1 ≤ r ≤ Nk, 1 ≤ k ≤ N} and Ê = {1, 2, . . . , N} are given by the generating matrices Q̂1 and ̂̂ Q2 correspondedly determined as follows: Q̂1Π = ΠQ1Π, ̂̂ Q2Π̂ = Π̂ΠQ2ΠΠ̂. (13) 100 VLADIMIR KOROLIUK AND NIKOLAOS LIMNIOS The projectors Π and Π̂ are defined as follows: Πϕ(x) = ∑N k=1 ∑Nk r=1 ϕ̂r k1 r k(x), ϕ̂r k = ∫ Er k πr k(dx)ϕ(x) Π̂ϕ̂k = ∑Nk r=1 π̂r kϕ̂ r k. (14) Here π̂k = (π̂r k, 1 ≤ r ≤ Nk), 1 ≤ k ≤ N, are the stationary distributions of the merged Markov process X̂(t), t ≥ 0. The uniformly ergodicity of the double merged Markov process ̂̂ X(t), t ≥ 0, is assumed also with stationary distribution ̂̂π = (̂̂πk, 1 ≤ k ≤ N) defines the corresponding projector ̂̂ Πϕ̂ = N∑ k=1 ̂̂πkϕ̂k. 4. Split and merging scheme In what follows the following generators of semigroups are used: C0(x)ϕ(u) = C0(u; x)ϕ′(u) C(x)ϕ(u) = C(u; x)ϕ′(u) Here for simplicity the following equality is used: C(u; x)ϕ′(u) := d∑ i=1 Ci(u; x)∂ϕ(u)/∂Ui 4.1. Split & Merging Theorem 4.7 [1, Section 4.4.1]. Under the conditions of Section 4.4.1 [1] the weak convergence takes place: Uε(t) ⇒ ζ(t), ε → 0. The limit diffusion process ζ(t), t ≥ 0, switched by the Markov process X̂(t), t ≥ 0, is defined by the generator L̂ϕ(u, k) = L̂0ϕ(u, · ) + Q̂1ϕ( · , k), L̂0ϕ(u) = b̂(u; k)ϕ′(u) + 1 2 B̂(u; k)ϕ′′(u). The vector of drift b̂(u; k) and the covariance matrix B̂(u; k) are defined by a solution of singular perturbation problem for the operator L ε = ε−2Q + ε−1 C0(x)P + C(x)P + Q1, given by the following formulae: L̂ = Ĉ0 + Ĉ + Q̂1, Ĉ0 = ΠC0(x)PR0C0(x)Π, Ĉ = ΠC(x)Π. DIFFUSION APPROXIMATION ALGORITHMS 101 4.2. Split & Double merging Theorem 4.9 [1, Section 4.4.2]. Under the conditions of Section 4.4 in [1] the weak convergence takes place Uε(t/ε) ⇒ ζ̂(t), ε → 0. The limit diffusion process ζ̂(t), t ≥ 0, is defined by the generator L̂ϕ(u) = b̂(u)ϕ′(u) + 1 2 B̂(u)ϕ′′(u). The drift-coefficient b̂(u) and the covariance matrix B̂(u) are defined by a solution of singular perturbation problem for the operator L ε = ε−3Q + ε−2Q1 + ε−1 C0(x)P + C(x)P, given by the following formulae: ̂̂ L = ̂̂ C0 + ̂̂ C, ̂̂ C0 = Π̂Ĉ0R̂0Ĉ0Π̂, Ĉ0 = ΠC0(x)Π,̂̂ C = Π̂ĈΠ̂, Ĉ = ΠC(x)Π. 4.3. Double split & Merging Theorem 4.10 [1, Section 4.4.4]. Under the conditions of Section 4.4 in [1] the weak convergence takes place Uε(t/ε) ⇒ ̂̂ ζ(t), ε → 0. The limit diffusion process ̂̂ ζ(t), t ≥ 0, is defined by the generator ̂̂ Lϕ(u, k) = ̂̂ b(u; k)ϕ′(u) + 1 2 ̂̂ B(u; k)ϕ′′(u). The drift-coefficient ̂̂ b(u) and the covariance matrix ̂̂ B(u) are defined by a solution of singular perturbation problem for the operator L ε = ε−3Q + ε−2Q1 + ε−1 C0(x) + C(x) + Q2, given by the following formulae: ̂̂ L = ̂̂ C0 + ̂̂ C + ̂̂ Q2, ̂̂ C0 = Π̂Ĉ0R̂0Ĉ0Π̂, Ĉ0 = ΠC0(x)Π,̂̂ C = Π̂ĈΠ̂, Ĉ = ΠC(x)Π. 102 VLADIMIR KOROLIUK AND NIKOLAOS LIMNIOS 4.4. Double split & Double merging Theorem 4.11 [1, Section 4.4.5]. Under the conditions of Section 4.4 in [1] the weak convergence takes place Uε(t/ε2) ⇒ ̂̂̂ ζ(t), ε → 0. The limit diffusion process ̂̂̂ ζ(t), t ≥ 0, is defined by the generator ̂̂̂ Lϕ(u) = ̂̂̂ b(u)ϕ′(u) + 1 2 ̂̂̂ B(u)ϕ′′(u). The drift-coefficient ̂̂̂ b(u) and the covariance matrix ̂̂̂ B(u) are defined by a solution of singular perturbation problem for the operator L ε = ε−4Q + ε−3Q1 + ε−2Q2 + ε−1 C0(x) + C(x), given by the formulae: ̂̂̂ L = ̂̂̂ C0 + ̂̂̂ C,̂̂̂ C0 = ̂̂ Π ̂̂ C0 ̂̂ Π, ̂̂ C0 = Π̂Ĉ0Π̂,̂̂̂ C = ̂̂ Π ̂̂ C ̂̂ Π, ̂̂ C = Π̂ĈΠ̂. 5. Additional comments Diffusion approximation algorithms in split and merging phase space are constructed due to specific dependency of the generator of the associated Markov process on the parameter series ε. According to conditions of Section 4.4 in [1] the asymptotic extension of the compensative operator of the random evolution process is used to construct the truncated operators L ε in Theorems 4.7 – 4.11. A solution of singular perturbation problems given in Chapter 5, [1], are used to construct the limit generators. Verification of weak convergences is realized on the scheme represented in Chapter 6, [1]. Bibliography 1. Koroliuk, V.S., Limnios, N., Stochastic Systems in Merging Phase Space, World Scientific Publishing, (2005). Institute of Mathematics, Kyiv, Ukraine. University of Technology of Compiegne, France