On fluctuations of the Black Sea basin after the Last Glacial Maximum and Early Holocene
The aim of this paper is to determine the causality between the cycles of Solar Luminosity on the one hand, and the palaeoclimatic data for the Black Sea region and the fluctuations of the Black Sea Basin on the other hand. The established cycles of Solar Luminosity can explain the short periodic...
Збережено в:
Дата: | 2009 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Відділення морської геології та осадочного рудоутворення НАН України
2009
|
Назва видання: | Геология и полезные ископаемые Мирового океана |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/44933 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On fluctuations of the Black Sea basin after the Last Glacial Maximum and Early Holocene / Krasimira Slavova // Геология и полезные ископаемые Мирового океана. — 2009. — № 3. — С. 70-77. — Бібліогр.: 18 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-44933 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-449332016-04-29T21:37:04Z On fluctuations of the Black Sea basin after the Last Glacial Maximum and Early Holocene Slavova, K. Палеогеография Черноморского бассейна The aim of this paper is to determine the causality between the cycles of Solar Luminosity on the one hand, and the palaeoclimatic data for the Black Sea region and the fluctuations of the Black Sea Basin on the other hand. The established cycles of Solar Luminosity can explain the short periodicity fluctuation of the Black Sea level. It is considered, that the regression of the Black Sea Basin to the depth of –90…–100 m below the contemporary sea level during the Early Holocene is not abrupt event. Метою дослідження є встановлення причинно наслідкового зв’язку сонячної світності з палеокліматичними даними та коливанням рівня Чорноморського басейну. Цикли сонячної активності пов’язані зі зміною палеокліматичної обстановки регіону та могли подіяти на дрібноперіодні варіації чорноморського рівня. Доведено, що регресія Чорноморського басейну до рівня –90...–100 м за раннього голоцену не є раптовою подією. Цель настоящего исследования – установление причинно следственной связи солнечной светимости с палеоклиматическими данными и колебаниями уровня Чернобассейна. Циклы солнечной активности связаны с изменением палеоклиматической обстановки региона и могли быть индикатором мелкопериодных вариаций черноморского уровня. Доказано, что регрессия Черноморского басейна до уровня –90... –100 м в раннем голоцене не является внезапным событием. 2009 Article On fluctuations of the Black Sea basin after the Last Glacial Maximum and Early Holocene / Krasimira Slavova // Геология и полезные ископаемые Мирового океана. — 2009. — № 3. — С. 70-77. — Бібліогр.: 18 назв. — англ. 1999-7566 http://dspace.nbuv.gov.ua/handle/123456789/44933 551.465 en Геология и полезные ископаемые Мирового океана Відділення морської геології та осадочного рудоутворення НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Палеогеография Черноморского бассейна Палеогеография Черноморского бассейна |
spellingShingle |
Палеогеография Черноморского бассейна Палеогеография Черноморского бассейна Slavova, K. On fluctuations of the Black Sea basin after the Last Glacial Maximum and Early Holocene Геология и полезные ископаемые Мирового океана |
description |
The aim of this paper is to determine the causality between the cycles of
Solar Luminosity on the one hand, and the palaeoclimatic data for the Black
Sea region and the fluctuations of the Black Sea Basin on the other hand. The
established cycles of Solar Luminosity can explain the short periodicity
fluctuation of the Black Sea level. It is considered, that the regression of the
Black Sea Basin to the depth of –90…–100 m below the contemporary sea level
during the Early Holocene is not abrupt event. |
format |
Article |
author |
Slavova, K. |
author_facet |
Slavova, K. |
author_sort |
Slavova, K. |
title |
On fluctuations of the Black Sea basin after the Last Glacial Maximum and Early Holocene |
title_short |
On fluctuations of the Black Sea basin after the Last Glacial Maximum and Early Holocene |
title_full |
On fluctuations of the Black Sea basin after the Last Glacial Maximum and Early Holocene |
title_fullStr |
On fluctuations of the Black Sea basin after the Last Glacial Maximum and Early Holocene |
title_full_unstemmed |
On fluctuations of the Black Sea basin after the Last Glacial Maximum and Early Holocene |
title_sort |
on fluctuations of the black sea basin after the last glacial maximum and early holocene |
publisher |
Відділення морської геології та осадочного рудоутворення НАН України |
publishDate |
2009 |
topic_facet |
Палеогеография Черноморского бассейна |
url |
http://dspace.nbuv.gov.ua/handle/123456789/44933 |
citation_txt |
On fluctuations of the Black Sea
basin after the Last Glacial Maximum
and Early Holocene / Krasimira Slavova // Геология и полезные ископаемые Мирового океана. — 2009. — № 3. — С. 70-77. — Бібліогр.: 18 назв. — англ. |
series |
Геология и полезные ископаемые Мирового океана |
work_keys_str_mv |
AT slavovak onfluctuationsoftheblackseabasinafterthelastglacialmaximumandearlyholocene |
first_indexed |
2025-07-04T03:30:34Z |
last_indexed |
2025-07-04T03:30:34Z |
_version_ |
1836685548941475840 |
fulltext |
SLAVOVA K.
70 ISSN 1999�7566. Геология и полезные ископаемые Мирового океана, 2009, №3
УДК 551.465
© Krasimira Slavova, 2009
Institute of Oceanology, BAS, Varna, Bulgary
ABOUT THE FLUCTUATIONS OF THE BLACK SEA
BASIN AFTER THE LAST GLACIAL MAXIMUM
AND EARLY HOLOCENE
The aim of this paper is to determine the causality between the cycles of
Solar Luminosity on the one hand, and the palaeoclimatic data for the Black
Sea region and the fluctuations of the Black Sea Basin on the other hand. The
established cycles of Solar Luminosity can explain the short�periodicity
fluctuation of the Black Sea level. It is considered, that the regression of the
Black Sea Basin to the depth of –90…–100 m below the contemporary sea level
during the Early Holocene is not abrupt event.
Introduction. The fluctuations of the Black Sea Basin depend on the
eustatic global sea level variations and the climate dynamics. This article aims
to determine the causality between the cycles of Solar Luminosity on the one
hand, and the palaeoclimatic data for the Black sea region and the Black sea
Basin fluctuations on other hand.
The solar insolation proxy record in a speleothem from Duhlata Cave, Bulgaria
is measured by Stoykova [16]. The latest results suggest that the solar insolation,
which results from Solar Luminosity self variations, can produce climatic variations
with intensity comparable to that of the orbital variations [17].
It is ascertained that for the Black Sea region there is a cycle
recurrence in the change of the climate after the Last Glacial Maximum
until present [14]. Most likely the understanding of the processes governing
a formation of palaeoclimatic records for the mentioned period can give
the established cycles of Solar Luminosity with the different duration.
Furthermore, in [13] the variations of the solar insolation in the past
climatic conditions, caused by variations of orbital parameters and Solar
Luminosity self variations were distinct.
Materials and Methods. In this paper the luminescent solar insolation
proxy record obtained from Duhlata Cave, Bulgaria speleothem is used. The
orbital variations are extracted from this record by a band�pass Tukey filter.
The same speleothem was dated by TIMS U/Th dates from [16]. The methods of
spore�pollen, dinoflagellate cysts and moluscan fauna analysis from different
authors were employed to reconstruct the climatic changes in continental and
marine environment. The climatic archives of the Black sea region, which are
dated in conventional 14C years were converted to calendar years using the
calibration curve of [18], in order to correlate them with cycles of the Solar
Luminosity, which are dated in U/Th years. The special features of the
palaeoclimatic archive, namely “reservoir correction” and “detrital carbon
input” for TOC and TCC [10] are also taken into account.
ABOUT THE FLUCTUATIONS OF THE BLACK SEA BASIN...
ISSN 1999�7566. Геология и полезные ископаемые Мирового океана, 2009, №3 71
Results and Discussion. The variations of the total amount of solar
radiation at the Earth’s surface (insolation) produce global changes in the climate
as it was established by [12]. Traditionally, it is considered that all such
variations of the insolation are due to the orbital variations. This presumption
is not precise because insolation depends also on:
� variations of the solar insolation due to the Solar Luminosity variations;
� variations of the atmosphere transparency;
According to different authors the theoretical curves of orbital variations
of insolation explain only a half of the real variations due to some incorrect
assumptions made by Milankovitch in his theory. For quantitative correlation,
it is thus necessary to use experimentally determined records of solar insolation.
There are various paleoclimatic archives, such as:
� ice cores;
� deep�sea sediment cores;
� continental records,
Speleothems are continental records and they are secondary cave
formations (stalagmites, stalactites, etc.). They are interesting because:
� they are the best samples for preparation of high�resolution paleoclimatic
records;
� they may grow continuously for hundreds of thousands of years,
preserving in their layers records of changes in different environmental
parameters;
� they can be dated by TIMS U/Th dates in calendar years, thus they don’t
need to be calibrated.
Speleothem luminescence is still the only proxy producing such records
for long spans of time. Stoykova et al. [17] used such records to study real
variations of past insolation. They ascertained that both Solar Luminosity and
orbital variations cause variations of solar insolation, which affect the climate
by the same mechanism.
The transition of the Black Sea system from a freshwater lake to a marine
environment is one of the most debatable scientific Late Quaternary
environmental event (fig.1).
During the LGM – Vurm ІІІ the Black Sea was a gigantic freshwater lake,
which were not connected to the Marmara Sea. During that period the Black
Sea level fluctuations were not synchronous with the global sea level
fluctuations. On the contrary the global curve of the sea level changes in the
last 20 000 cal.yrs was synchronous with the Mediterranean water level [4].
During the same period the surface level of the Black Sea Lake was
approximately –90…–100 m [3]. The palaeo�shores of the Marmara Sea were
reaching up to –100 m below the contemporary sea level [3, 9], while those of
the Aegean Sea up to –115…–120 m [2] (fig. 2A). For the period of maximum
low eustatic global sea level (18 000–15 000 cal.yrs BP) it can be concluded that
there were three entirely separated basins each with its own water�mass
configuration.
About 15 000 cal.yrs BP the 1st meltwater pulse (IA) along the Barbados
coral reef is dated. The melting led to a rise of the Word Ocean level. The Word
Ocean level was approximately –95 m in 14 500 cal.yrs BP [4]. For the period
SLAVOVA K.
72 ISSN 1999�7566. Геология и полезные ископаемые Мирового океана, 2009, №3
15 000–14 500 cal.yrs BP the climate warming was expressed in quick melting
of large glacial covers in North Europe and the Alps. It also helped for the sudden
inflow of melted water carried by the Danube River, the Dnepr River, the
Dnester River, the South Bug and the river Don into the Black Sea. The Caspian
Sea also reacted to the process of glacial melting, raising its level up to the
overspill point in the Black Sea through the Manichkata Valley [11].
In 14 500 cal.yrs BP (~12 500 14C yrs BP), the Black Sea was still in
freshwater stage with rapid rise of its level [15]. As a result large volumes of
water flowed out from the Black Sea into Marmara Sea through the Bosphorus
and later – through the Dardanelles into the Aegean sea (fig.2B). For the same
period there was a freshwater sedimentation in the Bosphorus strait, and its
southern sill (bar) was formed initially by means of the interaction between the
back current and the Black Sea inflowing current [7].
Stable improvement of the climate for the Black Sea coast after 15 000
cal.yrs BP is also proved by pollen analyses of the Black Sea sediments [11; 1;
6]. This regional improvement of the climate coincides with the established cycle
of Solar Luminosity 15 100+/� 605 cal.yrs BP from the Duhlata Cave, Bulgaria
proxy record [16; 13] – Table 1. Most likely this is the reason for this warm
spell. Moreover, the latest results suggest that the solar insolation, which is
results from Solar Luminosity self variations, can produce climatic variations
with intensity comparable to that of the orbital variations [13].
Fig.1. Location of the Black Sea, the Marmara Gateway (the Bosphorus Strait, the Sea of
Marmara, and the Dardanelles), the Aegean Sea, the Eastern Mediterranean
ABOUT THE FLUCTUATIONS OF THE BLACK SEA BASIN...
ISSN 1999�7566. Геология и полезные ископаемые Мирового океана, 2009, №3 73
A
B
Fig. 2. A – Possible palaeo�exchange of water masses between the East Mediterranean Sea,
Marmara Sea and Black Sea from 20 000 till 15 000 calendar years BP. B – Possible palaeo�
exchange of water masses between the East Mediterranean Sea, Marmara Sea and Black Sea ~ 14
500 calendar years BP. C – Possible palaeo�exchange of water masses between the East
Mediterranean Sea, Marmara Sea and Black Sea from 9 000 till 7 500 calendar years BP
C
SLAVOVA K.
74 ISSN 1999�7566. Геология и полезные ископаемые Мирового океана, 2009, №3
A mini glacial period “Younger Dryas” is dated to 12 500–11 800 cal.yrs
BP in Europe. As a result of this event the water supply from glacial sheets
melting in Europe to the Black Sea decreased.
Due to the reduction of the melted glacial water quantity, the intensity of
the Black Sea outflow to the Marmara Sea also decreased. As a result, very
intensive deposition of surplus sedimentary material and sill along the
Bosphorus Strait should had begun [15]. There was still a freshwater
sedimentation in the Bosphorus Strait.
On the Barbados coral reefs the Іst B melt water pulse of glacial waters is
dated to 11 500 cal.yrs BP [5]. The boundary Pleistocene/Holocene for the
Black Sea region is determined by pollen analysis as ~11 160 cal. yrs BP (10
035+/–65 14C yrs). On the other hand cycles of Solar Luminosity before
10 800+/–308 cal. yrs and 9 400+/–236 cal. yrs BP from the Duhlata Cave,
Bulgaria proxy record are measured. A warm time interval for the Black Sea
region, after the climatic warm maximum, results in increasing of the
evaporation in the Black Sea region and the reduction of the Black Sea outflow
and sediment accumulation in the Bosphorus Strait. But there are proofs of
continuous freshwater outflow from the Black Sea Lake through the Bosphorus
Strait to about 9 500 cal. yrs BP.
The chronostratigraphic scale for correlation between shelf sediments
and the upper part of continental slope on the one hand, and sediments from
more deepwater part on other hand in the Black Sea was created (Table 2). The
general idea of the scale is to show that the boundary Neoeuxin/Lower Holocene
is not possible to be fixed by a change of sedimentation conditions. The
boundary Neoeuxin/Lower Holocene is a climatic boundary defined by pollen
analyses.
The boundary Lower Holocene/Middle Holocene shows abrupt change of
ecological setting of the basin, expressed in sharp change of sedimentation
conditions [8]. The Black Sea Basin was again an isolated freshwater lake during
Table 1
Cycles of the Solar Luminosity (in years) from the sample
of Duhlata Cave, Bulgaria [16]
Cycle Error Intensity (%)
15100 +/� 605 99.8
10800 +/� 308 100
9400 +/� 236 53.1
8400 +/� 186 49.1
6900 +/� 125 70.5
5800 +/� 89 16.4
5500 +/� 80 23.4
5000 +/� 67 34.5
4700 +/� 57 24.1
4000 +/� 42 18.8
3600 +/� 33 8.7
3300 +/� 29 11.3
3100 +/� 26 8.3
3000 +/� 25 6.2
ABOUT THE FLUCTUATIONS OF THE BLACK SEA BASIN...
ISSN 1999�7566. Геология и полезные ископаемые Мирового океана, 2009, №3 75
Stage Shelf and upper
most part of
continental slope
Mollusc Salinity,
‰
Age,
cal.yrs
Deep see kettle
Upper Holocene
–Hl3
(Djemetin)
Modiolus phaseolinus
Mytilus galloprovincialis
Cardium edule
Abra ovata
Pitar rudis
Corbula mediteranea
Divaricela divaricata
Rissoa parva
Cerithidium pusillum
Triphora perversa и др.
18
0
3000
Upper
Holocene–Hl3
Cocculithic ooze
(continuous
sedimentation)
Middle
Holocene – Hl
2
(Kalamit � Vitiaz)
Mytilus galloprovincialis
Cardium edule
Abra ovata
Corbula mediteranea
Rissoa parva
Cerithidium pusillum и др.
15
3000
7500
Middle
Holocene – Hl
2
Sapropel
(continuous
sedimentation)
LITHOLOGICAL SHARP BOUNDARY
(proving the change of ecological conditions in the Black sea basin)
Holocene
Lower
Holocene – Hl
1
(Bugaz)
(absence in vast
shelf zones �
regression)
Dreissena polymorpha
Monodacna caspia
Turricaspia lincta
Clessiniola variabilis
Abra ovata
Cardium edule и др.
11
7500
11000
Lower Holocene
– Hl
1
Freshwater or
brakish sediments
(continuous
sedimentation)
CLIMATIC BOUNDARY (perceivable and fixed by pollen analyses)
Pleistocene
Neoeuxine – Ne
Dreissena polymorpha
Monodacna caspia
Dreissenarostriformis
Theodoxus pallasi
Turricaspia lincta и др.
10
3�8
11000
30000
Neoeuxine – Ne
Freshwater or
brakish sediments
(continuous
sedimentation)
the period 9 500 – 7 500 cal.yrs BP without connection with the Mediterranean
sea (Fig. 2C).
The period between 9 500–7 500 cal.yrs BP is discussible period in the
Black Sea history. The proof for this regression is the dating of the old coastlines
of the Western Black Sea (from –90 m to –100 m below the present sea level) as
Lower Holocene. Moreover, it is established that regional erosion, which affects
mainly the sediment layers deposited near the Pleistocene/Holocene boundary,
corresponds to the drastic change in the hydrological regime. This hiatus shows
that the shelf of terrestrial sediments was exposed and eroded at the time of low
sea�level and that it was then flooded by sea waters at some time about
7 500 cal. rs BP.
The regression of the Black Sea Basin to the depth –90 m…–100m below
the contemporary sea level during the Early Holocene is not accepted by many
authors. They assert that only the established warm time interval on the climatic
boundary Pleistocene/Holocene is not enough for such regression. Actually in
Table 2.
Chronostratigraphic scale of Neoeuxin/Holocene for the Black Sea [8]
SLAVOVA K.
76 ISSN 1999�7566. Геология и полезные ископаемые Мирового океана, 2009, №3
this paper the author suggests that reasons for this regression are several
successive events, namely:
� Younger Dryas mini glacial period is established about 12 500 cal. yrs
BP in Europe and it led to decrease of melted glacier waters inflow into the
Black Sea region.
� The climatic boundary Pleistocene/Holocene for the Black Sea region is
fixed at ~11 160 cal.yrs BP and the cycles of Solar Luminosity at 10 800+/�308
cal. yrs BP and 9 400+/�236 cal. yrs BP according to the Duhlata Cave, Bulgaria
proxy record are measured.
� In addition to arid climate and as a result of evaporation in the Black Sea
region the connection between the Caspian Sea through the Manichka Valley
with the Black Sea Lake was interrupted about 9 500 cal. yrs BP. The Black Sea
Lake outflow into the Marmara Sea was stopped after 9 500 cal. yrs BP.
� The cycle of Solar Luminosity at 8 400+/�186 cal. yrs BP is sampled from
the Duhlata Cave, Bulgaria.
� A second mini glacial period in Europe is established about 8 200–7 800
cal. yrs BP. It led to decrease of the melted Alpine glacial waters toward the
Danube River and to the Black Sea basin, respectively and causes the deepening
of the Black Sea regression.
Conclusion. The regression of the Black Sea Basin during the Early
Holocene is not an abrupt event. This is a process, which had continued
several thousands of years. The reasons for this are complex. Actually the
Black Sea level fluctuations correspond to the climatic dynamics. The
established cycles of Solar Luminosity are recorded in the changes of
paleoecological settings in the Black Sea region and they can explain the
fluctuations of the Black Sea level.
1. Bozilova, E., M. Filipova, J. Atanasova. Marine Palynological Data About
Palaeoecologikal Conditions And Vegetation History Of Eastern Bulgaria During
The Last 15000 Years // Annual of the University of Sofia “St. Kliment Ohridski”.
Faculty of Biology. Book 2� Botany, 82. 1992. p. 79�87.
2. Çagatay, N.M., O. Algan, M. Sakinç, J. Eastoe, L. Egesel, N. Balkis, D. Ongan,
H. Caner. A mid�late Holocene sapropelic sediment unit from the southern Marmara
sea shelf and its palaeocenographic significance. // Quat. Sci. Rev. – 18. – 1999. –
P. 531–540.
3. Demirbag, E., E. Gökasan, F. Oktay, M. Simsek, H. Yüce. The last sea level changes
in the Black Sea: evidence from the seismic data. // Marine Geology 157. 1999. –
P. 249–265.
4. Fairbanks, R. G. The Age And Origin Of The “Younger Dryas Climate Event” In
Greenland Ice Cores. –Paleoceanography, 5, 6. 1990. – P. 937–948.
5. Fairbanks, R. G. A 17,000�year glacio�eustatic sea level record: influence of glacial
melting rates on the Younger Dryas event and deep�ocean circulation. // Nature,
342. – 1989. – P. 637–642.
6. Filipova, M. V., E.D. Bozilova, P.S. Dimitrov. Palynological and Stratigraphical Data
about the Quaternary from the Southern Part of the Bulgarian Black Sea Shelf. //
Oceanology ІІ. BAS. 1983. – P. 24–31.
7. Genov, I. Model of sedimentation of the Bosphorus Strait during Neoeuxine�Holocene
time. – Compt. Rend. Acad. Bulg. Sci. – 58, 5. – 2005. – P. 579–586.
ABOUT THE FLUCTUATIONS OF THE BLACK SEA BASIN...
ISSN 1999�7566. Геология и полезные ископаемые Мирового океана, 2009, №3 77
8. Genov, I., К. Slavova. Chronostratigraphic scale for correlation of Neoeuxin and
Holocene sediments from the deep water part and the shelf of the Black sea. // Rev.
Bulg. Geol. Soc., 65, 1–3. – 2004. – P. 25–35.
9. Görür, N., M.N. Gagatay, Ö. Emre, B. Alpar, M. Sakinç, Y. Islamoglu, O. Algan,
T. Erkal, M. Keçer, R. Akkök, G. Karlik. Is the abrupt drowning of the Black Sea
shelf at 7150 yr BP a myth? // Marine Geology – 176. – 2001. – P. 65�73.
10. Jones, G.A., A. R. Gagnon. Radiocarbon Chronology of Black Sea Sediments. / Deep�
Sea Research І, 41, 3. 1994. – P. 531–557.
11. Major, C., W. Ryan, G. Lericolais, I. Hajdas. Constraints on Black Sea outflow to the
Sea of Marmara during the last glacial�interglacial transition. // Marine Geology –
190, 1–2. – 2002. – P. 19�34.
12. Milankovitch, M. Theorie mathematique des phenomenes thermiques produits par
la radiation solaire. Academie Yougoslave des sciences et des arts de Zagreb. Paris,
Gauthiers�Villiers. 1920.
13. Shopov, Y., D.Stoykova, L.Tsankov, et al. Intensity of Prolonged Solar Luminosity
Cycles and Their Influence Over Past Climates and Geomagnetic Field. // Proc. of
the XІІІth UIS Congress. Brazil. 2001. p. 216�218.
14. Slavova, K. Climatic changes on the Pleistocene�Holocene boundary and their
consequences for the Black Sea basin. – Compt. Rend. Acad. Bulg. Sci., 54, 10.
2001. – P. 91–94.
15. Slavova, K., Genov I. Possible Paleoexchange of Water Masses Between the
Mediterranean Sea, Marmara Sea and Black Sea. // Geologica Balcanica, 33. 2003.
P. 3–4.
16. Stoykova, D. The investigation of influence of solar variations on the past climate. /
PhD Thesis, Sofia, 2003. (in Bulgarian).
17. Stoykova, D., Y.Shopov, D.Garbeva, L.Tsankov, C.Yonge. Orgin of the climatic cycles
from orbiyal to sub�annual scales. // J. of Atm. and Solar�Terrestrial Physics, 70.
2008. – P. 293–302.
18. Stuiver, M, T. Braziunas. Modeling atmospheric 14C influences and 14C ages of
marine samples to 10,000 BC. // Radiocarbon – 35. – 1993. – P. 137–189.
Метою дослідження є встановлення причинно�наслідкового зв’язку сонячної
світності з палеокліматичними даними та коливанням рівня Чорноморського басей�
ну. Цикли сонячної активності пов’язані зі зміною палеокліматичної обстановки ре�
гіону та могли подіяти на дрібноперіодні варіації чорноморського рівня. Доведено, що
регресія Чорноморського басейну до рівня –90...–100 м за раннього голоцену не є рапто�
вою подією.
Цель настоящего исследования – установление причинно�следственной связи сол�
нечной светимости с палеоклиматическими данными и колебаниями уровня Черно�
морского бассейна. Циклы солнечной активности связаны с изменением палеоклима�
тической обстановки региона и могли быть индикатором мелкопериодных вариаций
черноморского уровня. Доказано, что регрессия Черноморского басейна до уровня –90...
–100 м в раннем голоцене не является внезапным событием.
|