Stochastic processes in some Besov spaces

The norm of increments of stochastic process in space Lq[a, b] is estimated and conditions under which trajectories of process belong to some Besov spaces are found.

Gespeichert in:
Bibliographische Detailangaben
Datum:2007
1. Verfasser: Yakovenko, T.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2007
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/4499
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Stochastic processes in some Besov spaces / T. Yakovenko // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С. 308-315. — Бібліогр.: 3 назв.— англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-4499
record_format dspace
spelling irk-123456789-44992009-11-20T12:00:41Z Stochastic processes in some Besov spaces Yakovenko, T. The norm of increments of stochastic process in space Lq[a, b] is estimated and conditions under which trajectories of process belong to some Besov spaces are found. 2007 Article Stochastic processes in some Besov spaces / T. Yakovenko // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С. 308-315. — Бібліогр.: 3 назв.— англ. 0321-3900 http://dspace.nbuv.gov.ua/handle/123456789/4499 en Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The norm of increments of stochastic process in space Lq[a, b] is estimated and conditions under which trajectories of process belong to some Besov spaces are found.
format Article
author Yakovenko, T.
spellingShingle Yakovenko, T.
Stochastic processes in some Besov spaces
author_facet Yakovenko, T.
author_sort Yakovenko, T.
title Stochastic processes in some Besov spaces
title_short Stochastic processes in some Besov spaces
title_full Stochastic processes in some Besov spaces
title_fullStr Stochastic processes in some Besov spaces
title_full_unstemmed Stochastic processes in some Besov spaces
title_sort stochastic processes in some besov spaces
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/4499
citation_txt Stochastic processes in some Besov spaces / T. Yakovenko // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С. 308-315. — Бібліогр.: 3 назв.— англ.
work_keys_str_mv AT yakovenkot stochasticprocessesinsomebesovspaces
first_indexed 2025-07-02T07:43:46Z
last_indexed 2025-07-02T07:43:46Z
_version_ 1836520284039938048
fulltext Theory of Stochastic Processes Vol.13 (29), no.1-2, 2007, pp.308-315 TETYANA YAKOVENKO STOCHASTIC PROCESSES IN SOME BESOV SPACES The norm of increments of stochastic process in space Lq[a, b] is esti- mated and conditions under which trajectories of process belong to some Besov spaces are found. 1. Introduction In this paper the stochastic process from Lp(Ω) is considered. We find conditions under which trajectories of this process belong with probability one to the Besov space Bαp q [a, b] when 0 < α < 1 and p < q. The paper consists of 4 sections. In Section 2 the norm of increments of the stochastic process is estimated. In Section 3 the definition of the Besov space is given. Then, it was obtained the estimation for the modulus of continuity of stochastic process. It gives the possibility to find the condition under which the trajectories of stochastic process belong to some Besov space with probability one. Section 4 is the conclusion of this paper. 2. Estimates for increments of the stochastic processes Let’s consider stochastic process X = {X(t), t ∈ [a− δ, b + δ]}, a < b, δ > 0 and denote the increments of this process as ΔhX(t) = X(t + h) − X(t), t ∈ [a, b], |h| < δ. Theorem 1. Assume that 1 < p < q < ∞. Let X = {X(t), t ∈ [a−δ, b+δ]}, a < b, δ > 0 to be separable measurable stochastic process from space Lp(Ω) for which the following condition on its increments holds true: sup t ∈ [a, b] |h| ≤ δ, ‖ΔhX(t)‖Lp(Ω) = sup t ∈ [a, b] |h| ≤ δ, (E|X(t + h) − X(t)|p)1/p ≤ σ(δ), (1) where σ(δ), δ > 0 is a continuous nondecreasing function such that σ(δ) → 0 as δ → 0. Then 2000 Mathematics Subject Classifications. Primary 60G17; Secondary 60G07. Key words and phrases. Stochastic processes, Besov space, moduli of continuity. 308 STOCHASTIC PROCESSES IN SOME BESOV SPACES 309 1) there exists m = m(h) ∈ {1, 2, ...} : ∥∥∥‖ΔhX(·)‖Lq[a,b] ∥∥∥ Lp(Ω) = ⎛ ⎝E (∫ b a |X(t + h) − X(t)|qdt ) p q ⎞ ⎠ 1 p ≤ ≤ 21+ 1 q − 1 p (b − a) 1 p ∞∑ k=m−1 (εk+1) 1 q − 1 p [σ(6εk+1) + σ(6εk)] =: Bm, where sequence {εk > 0}k≥0 is such that for all k ≥ 0 εk > εk+1, εk → 0, k → ∞ and there exists the sequence {0 < αk < 1}k≥0, for which the fraction σ(εk) αk → 0, k → ∞ and the series ∑∞ k=0 αk < ∞; 2) if Bm < ∞ then ‖ΔX(·)‖Lq [a,b] belongs to Lp(Ω) and for all x > 0 P { ‖ΔX(·)‖Lq[a,b] > x } ≤ ( Bm x )p . Proof. Let’s divide the interval [a − δ, b + δ] into measurable sets {Br k, r = 1, 2, ..., N(εk)}k≥0 with respect to the sequence {εk > 0}k≥0 according to partition procedure placed in [1]. This partition has the following properties: 1) B1 0 = [a − δ, b + δ], (ε0 = b−a 2 + δ); 2) ∀k ≥ 1 Bu k ⋂ Br k = ∅ if u = r and ⋃N(εk) r=1 Br k = [a − δ, b + δ]; 3) ∀k ≥ 1 ∀Br k ∃Bl k−1: Br k ⊂ Bl k−1 and Br k ⋂ Bl k−1 = Br k; 4) ∀k ≥ 1 ∀Br k ∃trk : ∀t ∈ Br k 2εk ≤ |t − trk| < 6εk. Now we can define the process: Xk(t) = N(εk)∑ r=1 X(trk)χBr k (t), k ≥ 0, t ∈ [a − δ, b + δ], χBR k = { 1, t ∈ Br k; 0, t /∈ Br k. As long as the proof of this theorem is similar to the proof of the lemma 3.5 [1] it was reduced to the statements that are essentially different. So, if the points t and t+h belong to the same set Br k then Xk(t) = Xk(t+ h) with probability one and ΔhXk(t) = 0 with probability one. Further we will assume that process X is not degenerate. The properties of the sequence εk imply that there exists the number m = m(h) ∈ {1, 2, ...} starting from which the points t and t+h will be in different sets of the partition {Br m}εm r=1. Then, taking into consideration that Xm−1(t) = Xm−1(t + h) we have for some n > m: |ΔhX(t)| = |X(t+h)−X(t)| = |X(t+h)−Xm−1(t+h)+Xm−1(t)−X(t)| ≤ 310 TETYANA YAKOVENKO ≤ |X(t + h) − Xn(t + h)| + n−1∑ k=m−1 |Xk+1(t + h) − Xk(t + h)|+ +|X(t) − Xn(t)| + n−1∑ k=m−1 |Xk+1(t) − Xk(t)|. So, for all t ∈ [a, b] as n → ∞: |ΔhX(t)| ≤ ∞∑ k=m−1 [ |Xk+1(t + h) − Xk(t + h)| + |Xk+1(t) − Xk(t)| ] . The condition (1) yields: ‖Xk+1(t) − Xk(t)‖Lp(Ω) ≤ ‖Xk+1(t) − X(t)‖Lp(Ω) + ‖X(t) − Xk(t)‖Lp(Ω) ≤ σ(6εk+1) + σ(6εk). Then ‖ΔhX(·)‖Lq[a,b] = (∫ b a |X(t + h) − X(t)|q )1/q ≤ ≤ ∥∥∥∥∥∥ ∞∑ k=m−1 { |Xk+1(t) − Xk(t)| ‖Xk+1(t) − Xk(t)‖Lp(Ω) ‖Xk+1(t) − Xk(t)‖Lp(Ω) + |Xk+1(t + h) − Xk(t + h)| ‖Xk+1(t + h) − Xk(t + h)‖Lp(Ω) ‖Xk+1(t + h) − Xk(t + h)‖Lp(Ω) }∥∥∥∥∥ Lq[a,b] ≤ ≤ ∞∑ k=m−1 ⎧⎨ ⎩ ∥∥∥∥∥ |Xk+1(t + h) − Xk(t + h)| ‖Xk+1(t + h) − Xk(t + h)‖Lp(Ω) ∥∥∥∥∥ Lq[a,b] + + ∥∥∥∥∥ |Xk+1(t) − Xk(t)| ‖Xk+1(t) − Xk(t)‖Lp(Ω) ∥∥∥∥∥ Lq[a,b] ⎫⎬ ⎭ [ σ(6εk+1) + σ(6εk) ] ≤ ≤ ∞∑ k=m−1 ⎧⎨ ⎩ ∥∥∥∥∥ |Xk+1(t + h) − Xk(t + h)| ‖Xk+1(t + h) − Xk(t + h)‖Lp(Ω) ∥∥∥∥∥ Lp[a,b] + + ∥∥∥∥∥ |Xk+1(t) − Xk(t)| ‖Xk+1(t) − Xk(t)‖Lp(Ω) ∥∥∥∥∥ Lp[a,b] ⎫⎬ ⎭ (2εk+1) 1 q − 1 p [ σ(6εk+1) + σ(6εk) ] = Bm. The expression for Bm we will get from the fact that Condition M (see [1]) is fulfilled for the space Lp with constant (b − a)1/p. The second statement follows from lemma 3.1 [2,p.66]. Corollary 1. If the stochastic process X = {X(t), t ∈ [a−δ, b+δ]} fatisfies the conditions of theorem 1, then for all 0 < θ1 < 1 the following inequality takes place: ∥∥∥‖ΔhX(·)‖Lq[a,b] ∥∥∥ Lp(Ω) = ⎛ ⎝E (∫ b a |X(t + h) − X(t)|qdt )p q ⎞ ⎠ 1 p ≤ STOCHASTIC PROCESSES IN SOME BESOV SPACES 311 ≤ 2(b − a) 1 p 3 1 q − 1 p · 1 + θ1 θ(1 − θ) ∫ θ1σ( b−a 2 +δ) 0 (σ(−1)(u)) 1 q − 1 p du =: B̃m (2) Proof. Lets choose the sequence {εk}k≥0 in such way ε0 = b − a 2 + δ, γ0 = σ(ε0), εk = σ(−1)(θk 1γ0) 6 . This sequence has appropriable for theorem 1 properties. So, Bm = 2(b − a) 1 p ∞∑ k=m−1 ( σ(−1)(θk+1 1 γ0) 3 ) 1 q − 1 p [θk+1 1 γ0 + θk 1γ0] ≤ ≤ 2(b − a) 1 p ∞∑ k=m−1 θk+1 1 γ0 + θk 1γ0 θk+1 1 γ0 − θk+2 1 γ0 ∫ θk+1 1 γ0 θk+2 1 γ0 ( σ(−1)(u) 3 ) 1 q − 1 p du ≤ ≤ 2(b − a) 1 p 3 1 q − 1 p · 1 + θ1 θ1(1 − θ1) ∫ θ1γ0 0 (σ(−1)(u)) 1 q − 1 p du = B̃m. Corollary 2. Assume that in the theorem 1 function σ(δ) = Cδτ , where C > 0 is some constant, τ > 1 p − 1 q . Then the increments of the process X = {X(t), t ∈ [a − δ, b + δ]} belong to the space Lq[a, b] with probability one and for all 0 < θ1 < 1 the inequality follows: ∥∥∥‖ΔhX(·)‖Lq[a,b] ∥∥∥ Lp(Ω) = ⎛ ⎝E (∫ b a |X(t + h) − X(t)|qdt )p q ⎞ ⎠ 1 p ≤ ≤ 2 · 3 1 p − 1 q C(b − a + 2δ) 1 q +τ 1 τ ( 1 q − 1 p ) + 1 · 1 + θ1 1 − θ1 · θ m τ ( 1 q − 1 p)+m−1 1 =: B∗ m. Proof. Indeed, in this case B̃m = 2(b − a) 1 p 3 1 q − 1 p · 1 + θ1 θ1(1 − θ1) ∫ θm 1 C( b−a 2 +δ) τ 0 ( u C ) 1 τ ( 1 q − 1 p) du = = 2 · 3 1 p − 1 q (b − a) 1 p C 1 τ ( 1 q − 1 p) · 1 + θ1 θ1(1 − θ1) · ( θm 1 C ( b−a 2 + δ )τ) 1 τ ( 1 q − 1 p)+1 1 τ ( 1 q − 1 p ) + 1 ≤ B∗ m. Remark 1. Similar results hold for stochastic processes in more general case when stochastic process belongs to the Orlicz space of random variables. The estimation for the norm of increments in various functional Orlicz space could be obtained by the same way. More information can be found in [1,2]. 312 TETYANA YAKOVENKO 3. Conditions under which trajectories of the process belong to some Besov spaces Let’s remind the definition of the Besov space at first. We start from intro- ducing the moduli of continuity of the first and the second order and some of their properties. Definition 2. Let f be a function in Lq(T ), 1 ≤ q ≤ ∞, T ⊆ R. Let’s denote Δhf = f(t + h) − f(t) and Δ2 hf = ΔhΔhf . For δ > 0 the moduli of continuity are determined as ω1 q (f, δ) = sup |h|≤δ ‖Δhf‖Lq(T ), ω2 q (f, δ) = sup |h|≤δ ‖Δ2 hf‖Lq(T ). Remark 2. For any function f from the space Lq(R) ω1 q(f, δ) and ω2 q (f, δ) are non-decreasing functions of δ and ω2 q (f, δ) ≤ 2ω1 q (f, δ) ≤ 4‖f‖Lq(T ). Let 1 ≤ p ≤ ∞ be given, and let the function y(δ) on [0,∞) be such that ‖y(δ)‖∗p < ∞, where ‖y(δ)‖∗p = ⎧⎨ ⎩ (∫∞ 0 |y(δ)|p dδ δ ) 1 p , if 1 ≤ p < ∞; ess supδ |y(δ)|, if p = ∞. Clearly, ‖ · ‖∗p is a norm in the weighted Lp-space Lp ( [0,∞), dδ δ ) , if p < ∞. Definition 2. Let 1 ≤ q, p ≤ ∞ and s = n + α, with n ∈ {0, 1, ...} and 0 < α ≤ 1. The Besov space Bsp q (T ) is the space of all functions f such that f ∈ W n q (T ) and ω2 q (f (n), δ) = y(δ)δα, where W n q (T ) is the Sobolev space and ‖y(δ)‖∗p < ∞. The space Bsp q (T ) is equipped with the norm ‖f‖Bsp q (T ) = ‖f‖W n q (T ) + ∥∥∥∥∥ω 2 q (f (n), δ) δα ∥∥∥∥∥ ∗ p . Remark 3. If 0 < α < 1 we can use ω1 q instead of ω2 q in the definition of Besov spaces. But this is not true in the case if α = 1 (See [3]). Definition 3. The stochastic process X = {X(t), t ∈ T} belongs to Besov space Bsp q (T ) with probability one if all its trajectories belong to this func- tional space with probability one. Remark 4. Further, when convergence of the integral ∫ c 0 f(t)dt doesn’t depend on value c we will use the sign ∫ 0+. Theorem 2.Assume that 1 < p < q < ∞ and separable measurable stochas- tic process X = {X(t), t ∈ [a − δ, b + δ]}, a < b, 0 < δ < ∞ belongs to the space Lp(Ω). Besides, let its increments satisfy two conditions: STOCHASTIC PROCESSES IN SOME BESOV SPACES 313 a) sup t ∈ [a, b] |h| ≤ δ, ‖ΔhX(t)‖Lp(Ω) = sup t ∈ [a, b] |h| ≤ δ, (E|X(t + h) − X(t)|p)1/p ≤ Cpδ τp, b) sup t ∈ [a, b] |h| ≤ δ, ‖ΔhX(t)‖Lq(Ω) = sup t ∈ [a, b] |h| ≤ δ, (E|X(t + h) − X(t)|q)1/q ≤ Cqδ τq , where Cp, Cq > 0 are some constants, τp > 1 p − 1 q and τq > 0. Then 1) ω1 q (X, δ) = sup|h|≤δ (∫ b a |X(t + h) − X(t)|qdt )1/q ∈ Lp(Ω) 2) ‖ω1 q (X, δ)‖Lp(Ω) = ( E ( sup|h|≤δ (∫ b a |X(t + h) − X(t)|qdt )1/q )p)1/p ≤ 21/p+2τq C2 q (b−a)2/qδ2τq 2δ p−1 +2τqCq(b−a)1/qδτq−2 √ δ2 (p−1)2 + 2τq Cq(b−a)1/qδ1+τq p−1 . Proof. Let’s determine the stochastic process ξ(h) = ‖ΔhX(·)‖Lq[a,b], |h| < δ (so, ω1 q (X, δ) = sup|h|≤δ ξ(h)). We can conclude from the corollary 2 that ξ ∈ Lp(Ω). Then, Lyapunov inequality, Fubini theorem and condition b) yield β := sup h1,h2∈[−δ,δ] ‖ξ(h1) − ξ(h2)‖Lp(Ω) = = sup h1,h2∈[−δ,δ] ∥∥∥‖Δh1X(·)‖Lq[a,b] − ‖Δh2X(·)‖Lq[a,b] ∥∥∥ Lp(Ω) ≤ ≤ sup h1,h2∈[−δ,δ] ∥∥∥‖Δh1X(·) − Δh2X(·)‖Lq[a,b] ∥∥∥ Lp(Ω) = = sup h1,h2∈[−δ,δ] ⎛ ⎝E (∫ b a |X(t + h1) − X(t + h2)|qdt ) p q ⎞ ⎠ 1 p ≤ ≤ sup h1,h2∈[−δ,δ] ( E ∫ b a |X(t + h1) − X(t + h2)|qdt ) 1 q = = sup h1,h2∈[−δ,δ] (∫ b a E|X(t + h1) − X(t + h2)|qdt ) 1 q ≤ ≤ (∫ b a (Cq(2δ) τq)q dt ) 1 q ≤ Cq(2δ) τq(b − a)1/q < ∞. Since, the entropy integral ∫ 0+ ( δ ε + 1 )1/p dε ∼ ∫ 0+ dε ε1/p < ∞, as p > 1, then the theorem 3.3 [2, p.120] implies that 314 TETYANA YAKOVENKO 1) sup|h|≤δ ξ(h) = ω1 q (X, δ) ∈ Lp(Ω) 2) ∥∥∥sup|h|≤δ ξ(h) ∥∥∥ Lp(Ω) = ∥∥∥ω1 q(X, δ) ∥∥∥ Lp(Ω) ≤ ≤ inf |h|≤δ ‖ξ(h)‖Lp(Ω) + inf0<θ2<1 1 θ2(1−θ2) θ2β∫ 0 ( δ ε + 1 )1/p dε. Let’s calculate each term of latter inequality. inf |h|≤δ ‖ξ(h)‖Lp(Ω) = inf |h|≤δ ∥∥∥‖X(· + h) − X(·)‖Lq[a,b] ∥∥∥ Lp(Ω) = 0, when h = 0. ∫ θ2β 0 ( δ ε + 1 )1/p dε = ∫ δ 0 ( 2δ ε )1/p dε + ∫ θ2Cq(2δ)τq (b−a)1/q δ 21/pdε = = (2δ)1/p p p − 1 δ1−1/p + 21/p ( θ2Cq(2δ) τq(b − a)1/q − δ ) = = 21/p p − 1 δ + 21/p+τqCq(b − a)1/qδτqθ2 = A + Bθ2. Function A+Bθ2 θ2(1−θ2) possesses its minimum value B2 (2A+B)−2 √ A(A+B) at point θ2 = √ A(A+B)−A B . So, ∥∥∥ω1 q (X, δ) ∥∥∥ Lp(Ω) ≤ 21/p+2τqC2 q (b − a)2/qδ2τq 2δ p−1 + 2τqCq(b − a)1/qδτq − 2 √ δ2 (p−1)2 + 2τq Cq(b−a)1/qδ1+τq p−1 . And now let’s find the conditions under which stochastic process X = {X(t), t ∈ [a − δ, b + δ]} belongs to the Besov space when 1 < p < q < ∞, n = 0, 0 < α < 1. Under this assumptions we can use ω1 q instead of ω2 q in definition of the Besov space and norm in this particular Besov space Bαp q [a, b] is following: ‖X‖Bαp q [a,b] = ‖X‖Lq[a,b] + ∥∥∥∥∥ω 1 q(X, δ) δα ∥∥∥∥∥ ∗ p = = (∫ b a |X(t)|qdt )1/q + ⎛ ⎜⎝∫ ∞ 0 ∣∣∣∣∣∣∣ sup|h|≤δ (∫ b a |X(t + h) − X(t)|qdt )1/q δα ∣∣∣∣∣∣∣ p dδ δ ⎞ ⎟⎠ 1/p . Theorem 3. If for stochastic process X supt∈[a,b] (E|X(t)|p)1/p < ∞ and all the assumptions of the theorem 2 hold true, then: 1) for 0 < τq ≤ 1 the stochastic process X belongs to the Besov space Bαp q [a, b], 0 < α < τq with probability one; STOCHASTIC PROCESSES IN SOME BESOV SPACES 315 2) for τq > 1 the stochastic process X belongs to the Besov space Bαp q [a, b] with probability one for all 0 < α < 1. Proof. Applying the theorem 4.1 [1] to the process X we will get that it belongs to the space Lq[a, b] with probability one. Then: for 0 < τq ≤ 1 the estimation for ∥∥∥ω1 q(X, δ) ∥∥∥ Lp(Ω) from the theorem 2 21/p+2τqC2 q (b − a)2/qδ2τq 2δ p−1 + 2τqCq(b − a)1/qδτq − 2 √ δ2 (p−1)2 + 2τq Cq(b−a)1/qδ1+τq p−1 ∼ δτq as δ → 0 and E ∫ 0+ ∣∣∣∣∣ω 1 q (X, δ) δα ∣∣∣∣∣ p dδ δ = ∫ 0+ E ∣∣∣∣∣ω 1 q (X, δ) δα ∣∣∣∣∣ p dδ δ = ∫ 0+ E ∣∣∣ω1 q(X, δ) ∣∣∣p dδ δαp+1 = = ∫ 0+ ( ‖ω1 q (X, δ)‖Lp(Ω) )p dδ δαp+1 ∼ ∫ 0+ δτqp δαp+1 dδ < ∞, as 0 < α < τq; for τq > 1 21/p+2τqC2 q (b − a)2/qδ2τq 2δ p−1 + 2τqCq(b − a)1/qδτq − 2 √ δ2 (p−1)2 + 2τq Cq(b−a)1/qδ1+τq p−1 ∼ δ2τq−1 as δ → 0 and E ∫ 0+ ∣∣∣∣∣ω 1 q(X, δ) δα ∣∣∣∣∣ p dδ δ ∼ ∫ 0+ ( δ2τq−1 δα )p dδ δ < ∞, as 0 < α < 2τq − 1. Since, 2τq − 1 ≥ 1 the last statement is true for all 0 < α < 1. 4. Conclusion In this paper the processes in the Besov space are investigated. It was found the conditions under which the trajectories of the stochastic process from space Lp(Ω) belong to certain Besov space Bsp q [a, b] when s = α and p < q. Bibliography 1. Kozachenko, Yu.V. and Yakovenko, T.O., Conditions under which stochas- tic processes belong to some function Orlicz spaces. Bulletin of Kiyv Uni- versity 5 , Kiev, (2002), 64–74. 2. Buldygin, V.V. and Kozachenko, Yu.V., Metric characterization of random variables and random processes, Amer. Math. Soc., Providence, RI (2000). 3. Härdle, W., Kerkyacharian, G., Picard, D., Tsybakov, A., Wavelets, Appro- ximation, and Statistical Applications, Springer-Varlag, New York, (1998). Department of Probability Theory and Mathematical Statistics, Kyiv National Taras Shevchenko University, Kyiv, Ukraine E-mail address: yata452@univ.kiev.ua