On local linear estimation in nonparametric errors-in-variables models

Local linear methods are applied to a nonparametric regression model with normal errors in the variables and uniform distribution of the variables. The local neighborhood is determined with help of deconvolution kernels. Two different linear estimation method are used: the naive estimator and the to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2007
1. Verfasser: Zwanzig, S.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2007
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/4500
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On local linear estimation in nonparametric errors-in-variables models / S. Zwanzig // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С. 316-327. — Бібліогр.: 5 назв.— англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-4500
record_format dspace
spelling irk-123456789-45002009-11-20T12:00:38Z On local linear estimation in nonparametric errors-in-variables models Zwanzig, S. Local linear methods are applied to a nonparametric regression model with normal errors in the variables and uniform distribution of the variables. The local neighborhood is determined with help of deconvolution kernels. Two different linear estimation method are used: the naive estimator and the total least squares estimator. Both local linear estimators are consistent. But only the local naive estimator delivers an estimation of the tangent. 2007 Article On local linear estimation in nonparametric errors-in-variables models / S. Zwanzig // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С. 316-327. — Бібліогр.: 5 назв.— англ. 0321-3900 http://dspace.nbuv.gov.ua/handle/123456789/4500 en Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Local linear methods are applied to a nonparametric regression model with normal errors in the variables and uniform distribution of the variables. The local neighborhood is determined with help of deconvolution kernels. Two different linear estimation method are used: the naive estimator and the total least squares estimator. Both local linear estimators are consistent. But only the local naive estimator delivers an estimation of the tangent.
format Article
author Zwanzig, S.
spellingShingle Zwanzig, S.
On local linear estimation in nonparametric errors-in-variables models
author_facet Zwanzig, S.
author_sort Zwanzig, S.
title On local linear estimation in nonparametric errors-in-variables models
title_short On local linear estimation in nonparametric errors-in-variables models
title_full On local linear estimation in nonparametric errors-in-variables models
title_fullStr On local linear estimation in nonparametric errors-in-variables models
title_full_unstemmed On local linear estimation in nonparametric errors-in-variables models
title_sort on local linear estimation in nonparametric errors-in-variables models
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/4500
citation_txt On local linear estimation in nonparametric errors-in-variables models / S. Zwanzig // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С. 316-327. — Бібліогр.: 5 назв.— англ.
work_keys_str_mv AT zwanzigs onlocallinearestimationinnonparametricerrorsinvariablesmodels
first_indexed 2025-07-02T07:43:48Z
last_indexed 2025-07-02T07:43:48Z
_version_ 1836520286788255744
fulltext Theory of Stochastic Processes Vol.13 (29), no.1-2, 2007, pp.316-327 SILVELYN ZWANZIG ON LOCAL LINEAR ESTIMATION IN NONPARAMETRIC ERRORS-IN-VARIABLES MODELS Local linear methods are applied to a nonparametric regression model with normal errors in the variables and uniform distribution of the variables. The local neighborhood is determined with help of decon- volution kernels. Two different linear estimation method are used: the naive estimator and the total least squares estimator. Both local linear estimators are consistent. But only the local naive estimator delivers an estimation of the tangent. 1. Introduction Errors-in-variables models are essentially more complicated as ordinary regression models. The design points are observed with errors only, such that the models include an increasing number of nuisance parameters. Nev- ertheless it is wanted to estimate a regression function belonging to some smoothness class. Fan and Truong (1993) applied the deconvolution technique of density estimation to nonparametric regression with errors in variables. The main idea was to use kernel estimators with deconvolution kernels. In ordinary regression a method of bias reducing is the local polynomial regression, see [1]. Local linear regression has two main aspects. - Around the wanted x a local neighborhood is defined. - The regression function is approximated by its tangent at x. This tangent is estimated by usual methods with observations coming from the neighborhood. The definition of the neighborhood of x is not trivial in errors-in-variables models, because observations of design points near the wanted x can come from a design point lying far away. Invited lecture. 2000 Mathematics Subject Classifications: 62G08, 62G05, 62G20 Key words and phrases: error in variable, measurement errors, nonparametric regres- sion, deconvolution, kernel methods, local linear regression, naive estimation, total least squares. 316 LOCAL LINEAR ESTIMATION 317 J. Staudenmayer and D. Ruppert (2004) applied the local polynomial approach to errors-in-variables models. They derived asymptotic results for decreasing error variances. The local neighborhood is described by weights basing on ordinary kernels at the observed variables. The tangent (or the best polynomial) was estimated by a weighted naive estimator. In this paper we are interested in consistent local linear regression, where the consistency is based on increasing sample size. Unfortunately the best possible rates are slow. For normal errors of the variables the best possible rate is OP ( (log n)− 1 2 ) . In this paper we describe the local environment by deconvolution kernels. That is an adjustment of the errors in variables. As estimation methods for the tangent two different estimators from the theory of the linear errors-in- variables model are taken: a weighted linear naive estimator and a weighted total least squares estimator. The unweighted naive estimator has a bias in usual linear errors-in-variables models. The unweighted total least squares estimator is consistent and is the maximum likelihood estimator in linear errors-in-variables models with normal error distributions. The main result is that both procedures deliver consistent estimators, but only the weighted naive estimator is an estimator of the tangent. The weighted total least squares estimator estimates something else. The limit value of the slope is derived. A heuristic interpretation of this effect may be, that the weights basing on the deconvolution kernels and the total least squares estimation principle are two independent adjustments for the same thing. 2. The model and methods Let the observations (x1, y1), ...(xi, yi), ...(xn, yn) be independently dis- tributed, generated by yi = g (ξi) + εi (1) xi = ξi + δi. (2) The error variables εi, δi, i = 1, ..., n are mutually independent with expectation zero and bounded fourth moments, with V ar (εi) = σ2 and V ar (ε2 i ) ≤ μ4 ε. The errors in the errors-in-variables equation (2) are normal distributed δi ∼ N(0, σ2) i.i.d., σ2 > 0. (3) The unobserved design points come from an uniform distribution ξi ∈ [0, 1] , i.i.d. U [0, 1]. (4) and ξi, εi, δi are mutually independent. We assume a smooth regression function g ∈ C2 [0,1] with 318 SILVELYN ZWANZIG ∣∣∣g(2) (x) − g(2) (x + δ) ∣∣∣ ≤ Lδ. (5) The aim is to estimate g(x) for a given x ∈ (0, 1). Further we introduce kernel functions K(.) with∫ ∞ −∞ K(u)du = 1, K(u) = K(−u), ∫ ∞ −∞ K(u)2du = μK < ∞ (6) and with compact supported Fourier transform ΦK (t) = ∫ exp(itu)K(u)du, ΦK (t) = 0 for t < a, t > b. (7) Furthermore we assume that the second derivative of the kernel exists and that for some constants μ′ K , μ′′ K , cK , c′K∫ ∞ −∞ K ′(u)2du = μ′ K < ∞; ∫ ∞ −∞ K ′′(u)2du = μ′′ K < ∞, (8) ∣∣∣u4K(u) ∣∣∣ ≤ cK , ∣∣∣u4K ′(u) ∣∣∣ ≤ c′K . (9) Examples for kernels fulfilling these conditions (6) - (9) are K2(u) = 48 cos(u) πu4 (1 − 15 u2 ) − 144 sin(u) πu5 (2 − 5 u2 ) and K3(u) = 3 8π ( sin(u 4 ) (u 4 ) )4 . Note the sinc kernel K1(u) = 1 π sin(u) u does not fulfill the condition (9). We set the bandwidth hn = C(log n)− 1 2 , C sufficiently large. That is the optimal bandwidth in the model (1) - (3), see [2]. In ordinary local linear regression common local weights are wi (x) = K ( ξi−x hn ) ∑n i=1 K ( ξi−x hn ) . (10) In errors-in-variables models the design points ξi are unknown, that is why we have chosen w∗ i (x) = K∗ hn ( xi−x hn ) ∑n i=1 K∗ hn ( xi−x hn ) , (11) where K∗ hn is the deconvolution kernel of K defined by K∗ hn (u) = 1 2π ∫ exp(−itu + 1 2 σ2 t2 h2 n ) ΦK (t) dt. (12) Note, that the dominators in (10) and (11) are positive with increasing probability, because they are consistent density estimators, compare also (22). LOCAL LINEAR ESTIMATION 319 For weighted means and weighted quadratic forms with weights (10) we use an analog notation as in [3]: xw, ξw, mξξ, myx, ..., mgg. If the weights (11) are used, then we write x∗ w, ξ ∗ w, m∗ ξξ, m∗ yx, ..., m ∗ gg. Thus xw = ∑n i=1 wi(x)xi, x∗ w = ∑n i=1 w∗ i (x)xi and mxy = ∑n i=1 wi(x)(xi − xw)(yi − yw) and m∗ xy =∑n i=1 w∗ i (x)(xi − x∗ w)(yi − y∗ w) and so on. Denote the local linear approximation of g(ξ) by t(ξ) = β0 + β1(ξ − x). Then the local naive estimator is defined as ĝnaive(x) = y∗ w − m∗ xy m∗ xx (x∗ w − x). (13) Note that ĝnaive(x) = t̂naive(0) = β̂0,naive, where ( β̂0,naive, β̂1,naive )T = arg min β0,β1 n∑ i=1 w∗ i (x) (yi − t(xi)) 2 . The local total least squares estimator is defined for m∗ xy �= 0 as ĝtls(x) = y∗ w − β̂1,tls (x∗ w − x) (14) with β̂1,tls = m∗ yy − m∗ xx + √ (m∗ yy − m∗ xx) 2 + 4 ( m∗ xy )2 2m∗ xy . (15) Note that ĝtls(x) = t̂tls(0) = β̂0,tls, where ( β̂0,tls, β̂1,tls )T = arg min β0,β1 n∑ i=1 w∗ i (x) min ξ [ (yi − t(ξ))2 + (xi − ξ)2 ] . 3. Main result In this section the main theorems are proved. The proofs are based on auxiliary results shown in Section 4. The following theorem states the consistence of the local naive estima- tor. Further it is shown that the naive estimator is really an estimator of the tangent. Theorem. In the model (1) - (5) and for kernels with (6) - (9) it holds 1. β̂1,naive = g′(x) + OP ( (log n)− 1 2 ) 2. ĝnaive(x) = g(x) + OP ( (log n)− 1 2 ) 320 SILVELYN ZWANZIG Proof. 1. Using (37) and (38) we get β̂1,naive = m∗ xy m∗ xx = −σ2g′(x) −σ2 + Op (hn) = g′(x) + Op (hn) . 2. Remember (13). Applying (35), (36) and that β̂1,naive is stochastically bounded, we obtain the statement. The following theorem delivers the results for the local total least squares estimator. The estimator is consistent but does not yield a consistent of the tangent. Theorem. In the model (1) - (3) and for kernels with (6) - (9) it holds 1. for g′(x) �= 0 β̂1,tls = − 1 g′(x) ( 1 + √ 1 + g′(x)2 ) + OP ( (log n)− 1 2 ) . 2. ĝtls(x) = g(x) + OP ( (log n)− 1 2 ) Proof. 1. Introduce F (x) = ⎧⎪⎨⎪⎩ F1(x) for m∗ xy > 0 undefined for m∗ xy = 0 F2(x) for m∗ xy < 0 , (16) where F1(x) = 1 2 x + 1 2 √ x2 + 4 and F2(x) = 1 2 x − 1 2 √ x2 + 4. Both functions are increasing. F1 is convex and F2 is concave. The first derivatives are bounded by 1 for all x. It holds β̂1,tls = F ( m∗ yy − m∗ xx m∗ xy ) . Consider zn = m∗ yy−m∗ xx m∗ xy . From (37), (38) and (39) it follows for g′(x) �= 0 that zn = −z + Op (hn) , where z = − 2 g′(x) . Denote βlim = − 1 g′(x) ( 1 + √ 1 + g′(x)2 ) . It holds for g′(x) < 0 that F1(z) = βlim and for g′(x) > 0 that F2(z) = βlim. Suppose g′(x) > 0, then from (37) follows that limn→∞ P ( m∗ xy > 0 ) = 0. We have for T > 0 P (∣∣∣β̂1,tls − βlim ∣∣∣ > T hn ) = P (∣∣∣β̂1,tls − βlim ∣∣∣ > T hn/m∗ xy < 0 ) + o(1). LOCAL LINEAR ESTIMATION 321 Further P (|F2(zn) − βlim| > T hn) = P (|F2(zn) − F2(z)| > T hn) = o(1) for T → ∞. Assume g′(x) < 0, then limn→∞ P ( m∗ xy < 0 ) = 0. For T > 0 P (∣∣∣β̂1,tls − βlim ∣∣∣ > T hn ) = P (|F1(zn) − F1(z)| > T hn) + o(1). Hence lim T→∞ lim sup n→∞ P (∣∣∣β̂1,tls − βlim ∣∣∣ > T hn ) = 0. 2. Remember (14). Applying (35), (36) and that β̂1,tls is stochastically bounded, we obtain the statement. 3. Auxiliary results In [2] it is shown that ExK ∗ h( x−a h ) = K( ξ−a h ). Furthermore we have the following integral equations. Lemma. Under x = ξ + δ, δ ∼ N(0, σ2) and for kernels with (6) - (9) it holds for all a that the expectation with respect to δ is 1. Ex/ξK ∗ h( x − a h ) (x − ξ) = σ2 h K ′ ( ξ − a h ) (17) 2. Ex/ξK ∗ h( x − a h ) (x − ξ)2 = σ4 h2 K ′′ ( ξ − a h ) + σ2K( ξ − a h ). (18) Proof. 1. Note that K ′(u) = 1 2π ∫ (−it) exp(−itu) ΦK (t) dt. (19) Using exp(−it(x−a h )) = exp(−it( ξ−a h ) exp(−it(x−ξ h ) and (12) we get Ex/ξK ∗ h( x − a h )(x − ξ) = 1 2π ∫ exp(−it( ξ − a h )) ΦK (t) Φδ ( t h )I2 (t) dt where Φδ (t) = exp(−1 2 σ2t2) and I2(t) = ∫ u exp(−i t h u) ϕδ (u) dx with ϕδ (u) = 1√ 2π exp(−u2 2 ). Using the quadratic decomposition we get exp(−i t h u) ϕδ (u) = Φδ ( t h ) ϕ (−itσ2 h ,σ2) (u) , (20) 322 SILVELYN ZWANZIG where ϕ( −itσ2 h ,σ2 ) (u) = 1√ 2π σ exp(− 1 2σ2 ( u + it σ2 h )2 ). Thus I2(t) = Φδ ( t h ) ∫ u ϕ( −itσ2 h ,σ2 )(u)du = −it σ2 h Φδ ( t h ) . Summarizing and applying (19) we obtain Ex/ξK ∗ h( x − a h )(x − ξ) = σ2 h 1 2π ∫ (−it) exp(−it( ξ − a h )) ΦK (t) dt = σ2 h K ′ ( ξ − a h ) . 2. Note that K ′′(u) = − 1 2π ∫ t2 exp(−itu) ΦK (t) dt. (21) In the same way as above we get Ex/ξK ∗ h( x − a h )(x − ξ)2 = 1 2π ∫ exp(−it( ξ − a h )) ΦK (t) Φδ ( t h )I3 (t) dt, with I3(t) = ∫ u2 exp(−i t h u)ϕδ (u) du. Applying (20) we obtain I3(t) = Φδ ( t h ) ∫ u2ϕ (−itσ2 h ,σ2) (u) du = ( σ2 − σ4 ( t h )2 ) Φδ ( t h ) . Summarizing and using (21) we get Ex/ξK ∗ h( x − a h )(x − ξ)2 = 1 2π ∫ exp(−it( ξ − a h )) ΦK (t) ( σ2 − σ4 ( t h )2 ) dt = σ4 h2 K ′′ ( ξ − a h ) + σ2K ( ξ − a h ) . Lemma. In the model (1) - (5) and for kernels with (6) - (9) and hn = C (log n)− 1 2 , C sufficiently large, it holds that: 1. 1 nhn n∑ i=1 K∗ hn ( xi − x hn ) = 1 + OP ( (log n)− 1 2 ) (22) LOCAL LINEAR ESTIMATION 323 2. 1 nhn n∑ i=1 K∗ hn ( xi − x hn ) xi = x + OP ( (log n)− 3 2 ) (23) 3. 1 nhn n∑ i=1 K∗ hn ( xi − x hn ) x2 i − 1 nhn n∑ i=1 K ( ξi − x hn ) ξ2 i (24) = −σ2 + OP ( (log n)− 1 2 ) 4. 1 nhn n∑ i=1 K∗ hn ( xi − x hn ) yi = 1 nhn n∑ i=1 K ( ξi − x hn ) g(ξi)+OP ( (log n)− 1 2 ) (25) 5. 1 nhn n∑ i=1 K∗ hn ( xi − x hn ) y2 i (26) = 1 nhn n∑ i=1 K ( ξi − x hn ) ( g(ξi) 2 + σ2 ) + OP ( (log n)− 1 2 ) 6. 1 nhn n∑ i=1 K∗ hn ( xi − x hn ) xiyi − 1 nhn n∑ i=1 K ( ξi − x hn ) ξig(ξi)(27) = −σ2g′(x) + OP ( (log n)− 3 2 ) Proof. The proofs are based on a sum of i.i.d. random variables of the form S = 1 nh ∑n i=1 Zi. For Vn = ∑n i=1 V ar (Zi) we have S = ES + Op ( 1 (nh)2 Vn ) . (28) Here only the main steps are given, but all details are shown in [5]. 1. First we consider S1 = 1 nh ∑n i=1 Z1,i with Z1,i = K∗ h ( xi−x h ) . We have for the expectation with respect to δi Exi/ξi Z1,i = Exi/ξi K∗ h ( xi − x h ) = K ( ξi − x h ) . 324 SILVELYN ZWANZIG Further E ( K∗ h ( xi−x h ))2 ≤ hVK (h) with VK (h) = ∫ K∗ h(u)2du. From the Parseval equality and (12) it follows that VK (h) = ∫ ∣∣∣ΦK∗ h (t) ∣∣∣2 dt = ∫ exp(σ2 t2 h2 ) ΦK (t)2 dt. For kernels K with compactly supported Fourier transform, (7), we get VK (h) ≤ max t∈[a,b] (exp(σ2 t2 h2 ) ΦK (t)2) ≤ const exp(c0h −2). (29) Thus for h = hn, V ar(S1) = 1 nhn VK (hn) ≤ const exp(c0h −2 n − ln n − ln(hn)) < const√ n . The expectation of S1 with respect to all δi is the ordinary density estimator of pξ : ES1 = p̂ξ (x) with p̂ξ (x) = 1 nhn n∑ i=1 K ( ξi − x hn ) . Using the model assumption (3) we get (for more details see the report [5]) p̂ξ (x) = 1 + OP ( (log n)− 1 2 ) . (30) 2. Here S2 = 1 nh ∑n i=1 Z2,i with Z2,i = K∗ h ( xi−x h ) xi. From (17) it follows that Exi/ξi Z2,i = σ2 h K ′ ( ξi − x h ) + K ( ξi − x h ) ξi. (31) Further E (Z2,i) 2 ≤ E ( K∗ h ( xi−x h ) xi )2 ≤ hc2(ξi)VK (h) . Thus using a similar argumentation as in (29) we get that the V ar (S2) < const√ n . The conditional expectation of S2 can be interpreted as a sum of an ordinary estimator of p′ξ and of the expectation of an ordinary kernel estimator f̂(x) = 1 nh ∑ K ( ξi − x h ) xi (32) of f(x) = x. Using the model assumption (3) we get (for more details see the report [5]) for h = hn ES2 = x + OP ( h3 n + 1 nhn ) = x + OP ( (log n)− 3 2 ) . (33) LOCAL LINEAR ESTIMATION 325 3. Now we have a sum of independent r.v. S3 = 1 nh ∑n i=1 Z3,i with Z3,i = K∗ h ( xi−x h ) x2 i . Applying (17), (18) and (31), we obtain Exi/ξi Z3,i = K( ξi − x h ) ( σ2 + ξ2 i ) + 2ξi σ2 h K ′ ( ξi − x h ) + σ4 h2 K ′′ ( ξi − x h ). Further we apply similar argumentation as above and use p̂′ξ (x) = 0 + OP ( hn + 1 nhn ) and 1 nhn n∑ i=1 σ2 hn K ′ ( ξi − x hn ) ξi = −σ2 + OP ( h3 n + 1 nh3 n ) . We estimate V ar (S3) < const√ n in a similar way as above. 4. Can be shown similarly, see [5]. We use Exi/ξi Z4,i = K ( ξi−x h ) g (ξi) . 5. Can be shown similarly, see [5]. We use Exi/ξi Z5,i = K ( ξi−x h ) ( g (ξi) 2 + σ2 ) . 6. Can be shown similarly, see [5] with Z6,i = K∗ h ( xi−x h ) yixi. We use Exi/ξi Z6,i = E ( K∗ h ( xi − x h ) xi ) g (ξi) = ( K ( ξi − x h ) ξi + σ2 h K ′ ( ξi − x h )) g (ξi) . and that 1 nhn n∑ i=1 σ2 hn K ′ ( ξi − x hn ) g (ξi) = g′(x) + OP ( h3 n + 1 nh3 n ) . Now we summarize the results for means and quadratic forms with weights w∗ i . Lemma. In the model (1) - (5) and for kernels with (6) - (9) and hn = C (log n)− 1 2 , C sufficiently large, it holds that: mξξ = OP ( (log n)−1 ) (34) xw∗ = x + OP ( (log n)− 1 2 ) (35) yw∗ = g(x) + OP ( (log n)− 1 2 ) (36) m∗ xx = −σ2 + OP ( (log n)− 1 2 ) (37) m∗ xy = −σ2g′(x) + OP ( (log n)− 1 2 ) (38) m∗ yy = σ2 + OP ( (log n)− 1 2 ) (39) 326 SILVELYN ZWANZIG Proof. 1. We decompose mξξ = ∑n i=1 wi (x) (ξi − x)2 − ( ξw − x )2 thus mξξ ≤∑n i=1 wi (x) (ξi − x)2 . Consider 1 nh ∑n i=1 K ( ξi−x h ) (ξi − x)2 as S = 1 nh ∑n i=1 Zi . We get from (9) that EZi ≤ h2 ∫ 1−x h 0−x h |K (u)| u2 du ≤ h2cK ∣∣∣∣∣ ∫ 1−x h 0−x h 1 |u2|du ∣∣∣∣∣ = O(h3). The variance term is estimated by E ( K ( ξ−x h ) (ξ − x)2 )2 = O(h). Remember (30) we get ∑n i=1 wi (x) (ξi − x)2 = Op (hn) . 2. Applying (22) and (23) we get xw∗ = 1 1 + Op (hn) ( x + Op ( h3 n )) = x + Op (hn) . 3. Analogously we estimate yw∗ by using (22) (25), (30) yw∗ = 1 nhn ∑n i=1 K ( ξi−x hn ) g (ξi) + Op (hn) 1 + Op (hn) = gwp̂ξ (x) + Op (hn) = gw + Op (hn) . Furthermore it holds gw = g(x)+Op ( h2 n + 1 nhn ) , compare for instance Theorem 4 in [5]. Thus yw∗ = g(x) + Op (hn) . 4. Using the decomposition m∗ xx = ∑n i=1 w∗ i x 2 i − (xw∗)2 . Because of (22), (24) it holds that n∑ i=1 w∗ i x 2 i = 1 1 + Op (hn) 1 nhn n∑ i=1 K∗ hn ( xi − x hn ) x2 i = −σ2 + 1 nhn n∑ i=1 K ( ξi − x hn ) ξ2 i + Op (hn) . Applying (30) we obtain ∑n i=1 w∗ i x 2 i = ∑n i=1 wiξ 2 i − σ2 + Op (hn) . Thus m∗ xx = mξξ−σ2 +Op (hn) . Then the statement (37) follows from (34). 5. Using the decomposition m∗ xy = ∑n i=1 w∗ i xiyi − yw∗xw∗ and (22), (27), and (30) we get ∑n i=1 w∗ i xiyi = 1 1 + Op (hn) ( 1 nhn n∑ i=1 K ( ξi − x hn ) ξig(ξi) − σ2g′(x) + Op (hn) ) = n∑ i=1 wiξig(ξi) − σ2g′(x) + Op (hn) . LOCAL LINEAR ESTIMATION 327 Under (5) we can show (compare Theorem 4 in [5]) that mξg = g′(x)mξξ + Op ( h2 n + 1 nhn ) . Then (38) follows from (34), (35), and (36). 6. We consider now m∗ yy = ∑n i=1 w∗ i y 2 i − (yw∗) 2 . From (22) and (26) we get n∑ i=1 w∗ i y 2 i = 1 nhn n∑ i=1 K ( ξi − x hn ) (g(ξi) 2 + σ2) + 1 + Op (hn) . Thus by (30) n∑ i=1 w∗ i y 2 i = n∑ i=1 wig(ξi) 2 + σ2 + Op (hn) . Under (5) we can show (compare Theorem 4 in [5]) that mgg = g′(x)2mξξ + Op ( h 5 2 n + 1 nhn ) . Then (39) follows from (34), (35) and (36). Bibliography 1. J. Fan and I. Gjibels (1996), Local Polynomial Modeling and Its Application, London: Chapman and Hall. 2. J. Fan and Y. Truong (1993), Nonparametric regression with errors in vari- ables. Ann. Statist. 21. 1900-1925. 3. W.A. Fuller (1987), Measurement Errors Models. Wiley, New York. 4. J. Staudenmayer and D. Ruppert (2004), Local polynomial regression and simulation extrapolation. J.R.Soc.B. 66, Part 1, 17 -30. 5. S. Zwanzig (2006), On local linear estimation in nonparametric errors-in- variables models. U.U.D.M. Report 2006-12. Uppsala University. Department of Mathematics, Uppsala University, SE-75106 Uppsala, Box 480 Sweden. E-mail address: zwanzig@math.uu.se