Limit behavior of autonomous random oscillating system of third order

The asymptotic behavior of the general type third order autonomous oscillating system under the action of small non-linear random perturbations of ”white” and ”Poisson” types is investigated.

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Borysenko, O.D., Borysenko, O.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/4511
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Limit behavior of autonomous random oscillating system of third order / O.D. Borysenko, O.V. Borysenko // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 4. — С. 19–28. — Бібліогр.: 13 назв.— англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-4511
record_format dspace
spelling irk-123456789-45112009-11-25T12:00:28Z Limit behavior of autonomous random oscillating system of third order Borysenko, O.D. Borysenko, O.V. The asymptotic behavior of the general type third order autonomous oscillating system under the action of small non-linear random perturbations of ”white” and ”Poisson” types is investigated. 2007 Article Limit behavior of autonomous random oscillating system of third order / O.D. Borysenko, O.V. Borysenko // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 4. — С. 19–28. — Бібліогр.: 13 назв.— англ. 0321-3900 http://dspace.nbuv.gov.ua/handle/123456789/4511 en Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The asymptotic behavior of the general type third order autonomous oscillating system under the action of small non-linear random perturbations of ”white” and ”Poisson” types is investigated.
format Article
author Borysenko, O.D.
Borysenko, O.V.
spellingShingle Borysenko, O.D.
Borysenko, O.V.
Limit behavior of autonomous random oscillating system of third order
author_facet Borysenko, O.D.
Borysenko, O.V.
author_sort Borysenko, O.D.
title Limit behavior of autonomous random oscillating system of third order
title_short Limit behavior of autonomous random oscillating system of third order
title_full Limit behavior of autonomous random oscillating system of third order
title_fullStr Limit behavior of autonomous random oscillating system of third order
title_full_unstemmed Limit behavior of autonomous random oscillating system of third order
title_sort limit behavior of autonomous random oscillating system of third order
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/4511
citation_txt Limit behavior of autonomous random oscillating system of third order / O.D. Borysenko, O.V. Borysenko // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 4. — С. 19–28. — Бібліогр.: 13 назв.— англ.
work_keys_str_mv AT borysenkood limitbehaviorofautonomousrandomoscillatingsystemofthirdorder
AT borysenkoov limitbehaviorofautonomousrandomoscillatingsystemofthirdorder
first_indexed 2025-07-02T07:44:18Z
last_indexed 2025-07-02T07:44:18Z
_version_ 1836520318638751744
fulltext Theory of Stochastic Processes Vol.13 (29), no.4, 2007, pp.19–28 OLEKSANDR D. BORYSENKO AND OLGA V. BORYSENKO LIMIT BEHAVIOR OF AUTONOMOUS RANDOM OSCILLATING SYSTEM OF THIRD ORDER The asymptotic behavior of the general type third order autonomous oscillating system under the action of small non-linear random per- turbations of ”white” and ”Poisson” types is investigated. 1. Introduction The averaging method proposed by N.M.Krylov, N.N.Bogolyubov and Yu.A.Mytropolskij ([1], [2]) is one of the main tool in studying of the deter- ministic oscillating systems under the action of small non-linear perturba- tions. The case of small random ”white noise” type disturbances in oscillat- ing systems of second order is considered in papers of Yu.A.Mytropolskij, V.G.Kolomiets ([3]). The autonomous and non-autonomous oscillating sys- tems of second order under the action of ”white noise” and Poisson type noise perturbations are studied in the papers of O.V.Borysenko ([4], [5]). Particular case of the third order oscillating systems are investigated in arti- cles of O.D.Borysenko, O.V.Borysenko ([6]), O.D.Borysenko, O.V.Borysen- ko and I.G.Malyshev ([7], [8]). This paper deals with investigation of the behaviour, as ε → 0, of the general type third order autonomous oscillating system described by stochastic differential equation x′′′(t) + ax′′(t) + b2x′(t) + ab2x(t) = = εk1f1(x(t), x′(t), x′′(t)) + fε(x(t), x′(t), x′′(t)) (1) with non-random initial conditions x(0) = x0, x ′(0) = x′ 0, x ′′(0) = x′′ 0, where ε > 0 is a small parameter, fε(x, x′, x′′) is a random function such that ∫ t 0 fε(x(s), x′(s), x′′(s)) ds = εk2 ∫ t 0 f2(x(s), x′(s), x′′(s)) dw(s)+ 2000 Mathematics Subject Classifications. 60H10 Key words and phrases. Asymptotic behavior, third order autonomous oscillating system, small non-linear random perturbations 19 20 O.D.BORYSENKO AND O.V.BORYSENKO +εk3 ∫ t 0 ∫ R f3(x(s), x′(s), x′′(s), z) ν̃(ds, dz), ki > 0, i = 1, 2, 3; fi, i = 1, 2, 3 are non-random functions; w(t) is a stan- dard Wiener process; ν̃(dt, dy) = ν(dt, dy)−Π(dy)dt, Eν(dt, dy) = Π(dy)dt, ν(dt, dy) is the Poisson measure independent on w(t); Π(A) is a finite mea- sure on Borel sets A ∈ R, a > 0, b > 0. We will consider the equation (1) as the system of stochastic differential equations dx(t) = x′(t)dt, dx′(t) = x′′(t)dt, dx′′(t) = [−ax′′(t) − b2x′(t) − ab2x(t)+ + εk1f1(x(t), x′(t), x′′(t))]dt+ + εk2f2(x(t), x′(t), x′′(t))dw(t)+ + εk3 ∫ R f3(x(t), x′(t), x′′(t), z)ν̃(dt, dz), x(0) = x0, x′(0) = x′ 0, x′′(0) = x′′ 0. (2) In what follows we will use the constant K > 0 for the notation of different constants, which are not depend on ε. 2. Auxiliary result From Borysenko O. and Malyshev I. [9], using the obvious modifications we obtain following results Lemma. Let for each x ∈ Rd there exists lim T→∞ 1 T ∫ T+A A f(t, x) dt = f̄(x) uniformly with respect to A, the function f̄(x) is bounded, continuous, func- tion f(t, x) is bounded and continuous in x uniformly with respect to (t, x) in any region t ∈ [0,∞), |x| ≤ K, and stochastic processes ξ(t) ∈ Rd, η(t) ∈ R are continuous, then lim ε→0 ∫ t 0 f (s ε + η(s), ξ(s) ) ds = ∫ t 0 f̄(ξ(s)) ds almost surely for all arbitrary t ∈ [0, T ]. LIMIT BEHAVIOR 21 Remark. Let f(t, x, z) is bounded and uniformly continuous in x with respect to t ∈ [0,∞) and z ∈ R in every compact set |x| ≤ K, x ∈ Rd. Let Π(·) be a finite measure on the σ-algebra of Borel sets in R and let lim T→∞ 1 T ∫ T+A A f(t, x, z) dt = f̄(x, z), uniformly with respect to A for each x ∈ Rd, z ∈ R, where f̄(x, z) is bounded, uniformly continuous in x with respect to z ∈ R in every compact set |x| ≤ K. Then for any continuous processes ξ(t) ∈ Rd and η(t) ∈ R we have lim ε→0 ∫ t 0 ∫ R f (s ε + η(s), ξ(s), z ) Π(dz)ds = ∫ t 0 ∫ R f̄(ξ(s), z) Π(dz)ds. 3. Main result Let us consider the following representation of processes x(t), x′(t), x′′(t): x(t) = C(t) exp{−at} + A1(t) cos(bt) + A2(t) sin(bt), x′(t) = −aC(t) exp{−at} − bA1(t) sin(bt) + bA2(t) cos(bt), x′′(t) = a2C(t) exp{−at} − b2A1(t) cos(bt) − b2A2(t) sin(bt), N(t) = C(t) exp{−at}. Then N(t) = b2x(t) + x′′(t) a2 + b2 , A1(t) = cosα cos(bt + α)x(t) − sin bt b x′(t) − sin α sin(bt + α) b2 x′′(t), A2(t) = cos α sin(bt + α)x(t) + cos bt b x′(t) + sin α cos(bt + α) b2 x′′(t), where α = arctg (b/a). We can apply Ito formula [10] to stochastic process ξ(t) = (N(t), A1(t), A2(t)) and obtain for the process ξ(t) the system of stochastic differential equations dN(t) = [ −aN(t) + εk1 a2 + b2 f̃1(t, N(t), A1(t), A2(t)) ] dt+ + εk2 a2 + b2 f̃2(t, N(t), A1(t), A2(t))dw(t)+ + εk3 a2 + b2 ∫ R f̃3(t, N(t), A1(t), A2(t), z)ν̃(dt, dz), 22 O.D.BORYSENKO AND O.V.BORYSENKO dA1(t) = −sin α sin(bt + α) b2 [εk1 f̃1(t, N(t), A1(t), A2(t))dt+ (3) +εk2 f̃2(t, N(t), A1(t), A2(t))dw(t)+ +εk3 ∫ R f̃3(t, N(t), A1(t), A2(t), z)ν̃(dt, dz)], dA2(t) = sin α cos(bt + α) b2 [εk1 f̃1(t, N(t), A1(t), A2(t))dt+ +εk2 f̃2(t, N(t), A1(t), A2(t))dw(t)+ +εk3 ∫ R f̃3(t, N(t), A1(t), A2(t), z)ν̃(dt, dz)], N(0) = b2x0 + x′′ 0 a2 + b2 , A1(0) = a2x0 − x′′ 0 a2 + b2 , A2(0) = ax′′ 0 + (a2 + b2)x′ 0 + ab2x0 b(a2 + b2) , where f̃i(t, N, A1, A2) = fi(N + A1 cos bt + A2 sin bt,−aN − bA1 sin bt + bA2 cos bt, a2N − b2A1 cos bt − b2A2 sin bt), i = 1, 2, f̃3(t, N, A1, A2, z) = f3(N +A1 cos bt+A2 sin bt,−aN −bA1 sin bt+bA2 cos bt, a2N −b2A1 cos bt− b2A2 sin bt, z). Theorem. Let Π(R) < ∞, t ∈ [0, t0], k = min(k1, 2k2, 2k3). Let us suppose, that functions fi, i = 1, 3 bounded and satisfy Lipschitz condition on x, x′, x′′. If given below matrix σ̄2(A1, A2) is non-negative definite, then 1. For k1 = 2k2 = 2k3 the stochastic process ξε(t) = ξ(t/εk) weakly converges, as ε → 0, to the stochastic process ξ̄(t) = (0, Ā1(t), Ā2(t)), where Ā(t) = (Ā1(t), Ā2(t)) is the solution to the system of stochastic differential equations dĀ(t) = ᾱ(Ā(t))dt + σ̄(Ā(t))dw̄(t), Ā(0) = (A1(0), A2(0)), (4) where ᾱ(Ā) = (ᾱ(1)(A1, A2), ᾱ (2)(A1, A2)), ᾱ(1)(A1, A2) = − 1 2πb(a2 + b2) 2π∫ 0 f̂1(ψ, A1, A2)(a sin ψ + b cos ψ) dψ, ᾱ(2)(A1, A2) = 1 2πb(a2 + b2) 2π∫ 0 f̂1(ψ, A1, A2)(a cos ψ − b sin ψ) dψ, σ̄(A1, A2) = { B̄(A1, A2) } 1 2 = ⎧⎨ ⎩ 1 2πb2(a2 + b2)2 2π∫ 0 f̂(ψ, A1, A2)B(ψ) dψ ⎫⎬ ⎭ 1 2 , B(ψ) = (Bij(ψ), i, j = 1, 2), B11(ψ) = (a sin ψ + b cos ψ)2, LIMIT BEHAVIOR 23 B12(ψ) = B21(ψ) = −(a sin ψ + b cos ψ)(a cos ψ − b sin ψ), B22(ψ) = (a cos ψ − b sin ψ)2, f̂i(ψ, A1, A2) = f̃i(ψ, 0, A1, A2), i = 1, 2, f̂3(ψ, A1, A2, z) = f̃3(ψ, 0, A1, A2, z), f̂(ψ, A1, A2) = f̂ 2 2 (ψ, A1, A2) + ∫ R f̂ 2 3 (ψ, A1, A2, z) Π(dz), w̄(t) = (wi(t), i = 1, 2), wi(t), i = 1, 2 – independent one-dimensional Wiener processes. 2. If k < k1 then in the averaging equation (4) we must put f̃1 ≡ 0; if k < 2k2 then in the averaging equation (4) we must put f̃2 ≡ 0; if k < 2k3 then in the averaging equation (4) we must put f̃3 ≡ 0. Proof. Let us make a change of variable t → t/εk in equation (3) and obtain for the process ξε(t) = (Nε(t), A ε 1(t), A ε 2(t)) = (N(t/εk), A1(t/ε k), A2(t/ε k)) the system of stochastic differential equations dNε(t) = [ − a εk Nε(t) + εk1−k a2 + b2 f̃1(t/ε k, Nε(t), A ε 1(t), A ε 2(t)) ] dt+ + εk2−k/2 a2 + b2 f̃2(t/ε k, Nε(t), A ε 1(t), A ε 2(t))dwε(t)+ + εk3 a2 + b2 ∫ R f̃3(t/ε k, Nε(t), A ε 1(t), A ε 2(t), z)ν̃ε(dt, dz), dAε 1(t) = −sin α sin(bt/εk + α) b2 [εk1−kf̃1(t/ε k, Nε(t), A ε 1(t), A ε 2(t))dt+ (5) +εk2−k/2f̃2(t/ε k, Nε(t), A ε 1(t), A ε 2(t))dwε(t)+ +εk3 ∫ R f̃3(t/ε k, Nε(t), A ε 1(t), A ε 2(t), z)ν̃ε(dt, dz)], dAε 2(t) = sin α cos(bt/εk + α) b2 [εk1−kf̃1(t/ε k, Nε(t), A ε 1(t), A ε 2(t))+ +εk2−k/2f̃2(t/ε k, Nε(t), A ε 1(t), A ε 2(t))dwε(t)+ +εk3 ∫ R f̃3(t/ε k, Nε(t), A ε 1(t), A ε 2(t), z)ν̃ε(dt, dz)], where wε(t) = εk/2w(t/εk), ν̃ε(t, A) = ν(t/εk, A)−Π(A)t/εk, here A is Borel set in R. For any ε > 0 the process wε(t) is the Wiener process and ν̃ε(t, A) is the centered Poisson measure independent on wε(t). Since we have relationship Nε(t) = exp{−at/εk}C(t/εk) and process Cε(t) = C(t/εk) satisfies the stochastic equation Cε(t) = C(0) + εk1−k ∫ t 0 exp{as/εk} a2 + b2 f̃1(s/ε k, Nε(s), A ε 1(s), A ε 2(s)) ds+ 24 O.D.BORYSENKO AND O.V.BORYSENKO +εk2−k/2 ∫ t 0 exp{as/εk} a2 + b2 f̃2(s/ε k, Nε(s), A ε 1(s), A ε 2(s)) dwε(s)+ +εk3 ∫ t 0 ∫ R exp{as/εk} a2 + b2 f̃3(s/ε k, Nε(s), A ε 1(s), A ε 2(s), z) ν̃ε(dt, dz), where C(0) = b2x0+x′′ 0 a2+b2 , we can obtain estimate E|Nε(t)|2 ≤ K[e−2at/εk + εk(1 − e−2at/εk )(tε2(k1−k) + ε2k2−k + ε2k3−k)]. Therefore limε→0 E|Nε(t)|2 = 0 and it is sufficient to study the behaviour, as ε → 0, of solution to the system of stochastic differential equations dAε 1(t) = −sin α sin(bt/εk + α) b2 [εk1−kf̂1(t/ε k, Aε 1(t), A ε 2(t))dt+ +εk2−k/2f̂2(t/ε k, Aε 1(t), A ε 2(t))dwε(t)+ +εk3 ∫ R f̂3(t/ε k, Aε 1(t), A ε 2(t), z)ν̃ε(dt, dz)], (6) dAε 2(t) = sin α cos(bt/εk + α) b2 [εk1−kf̂1(t/ε k, Aε 1(t), A ε 2(t))+ +εk2−k/2f̂2(t/ε k, Aε 1(t), A ε 2(t))dwε(t)+ +εk3 ∫ R f̂3(t/ε k, Aε 1(t), A ε 2(t), z)ν̃ε(dt, dz)], with initial conditions Aε 1(0) = A1(0), Aε 2(0) = A2(0). Let us denote Aε(t) = (Aε 1(t), A ε 2(t)). Using conditions on coefficients of equation (6) and properties of stochastic integrals we obtain estimates E||Aε(t)||2 ≤ K[1 + t2ε2(k1−k) + t(ε2k2−k + ε2k3−k)], E||Aε(t) − Aε(s)||2 ≤ K[|t − s|2ε2(k1−k) + |t − s|(ε2k2−k + ε2k3−k)]. Similarly for the process ζε(t) = (ζε 1(t), ζ ε 2(t)), where ζε 1(t) = −εk2−k/2 ∫ t 0 sin α sin(bs/εk + α) b2 f̂2(s/ε k, Aε 1(s), A ε 2(s))dwε(s)− −εk3 ∫ t 0 ∫ R sin α sin(bs/εk + α) b2 f̂3(s/ε k, Aε 1(s), A ε 2(s), z)ν̃ε(ds, dz)], ζε 2(t) = εk2−k/2 ∫ t 0 sin α cos(bs/εk + α) b2 f̂2(s/ε k, Aε 1(s), A ε 2(s))dwε(s)+ +εk3 ∫ t 0 ∫ R sin α cos(bs/εk + α) b2 f̂3(s/ε k, Aε 1(s), A ε 2(s), z)ν̃ε(ds, dz)] LIMIT BEHAVIOR 25 we derive estimates E||ζε(t)||2 ≤ Kt(ε2k2−k+ε2k3−k), E||ζε(t)−ζε(s)||2 ≤ K|t−s|(ε2k2−k+ε2k3−k). Therefore for stochastic process ηε(t) = (Aε(t), ζε(t)) conditions of weak compactness [11] are fulfilled lim h↓0 lim ε→0 sup |t−s|<h P{|ηε(t) − ηε(s)| > δ} = 0 for any δ > 0, t, s ∈ [0, T ], lim N→∞ lim ε→0 sup t∈[0,T ] P{|ηε(t)| > N} = 0, and for any sequence εn → 0, n = 1, 2, . . . there exists a subsequence εm = εn(m) → 0, m = 1, 2, . . ., probability space, stochastic processes Āεm(t) = (Āεm 1 (t), Āεm 2 (t)), ζ̄εm(t), Ā(t) = (Ā1(t), Ā2(t)), ζ̄(t) defined on this space, such that Āεm(t) → Ā(t), ζ̄εm(t) → ζ̄(t) in probability, as εm → 0, and finite-dimensional distributions of Āεm(t), ζ̄εm(t) are coincide with finite- dimensional distributions of Aεm(t), ζεm(t). Since we interesting in limit behaviour of distributions, we can consider processes Aεm(t), and ζεm(t) instead of Āεm(t), ζ̄εm(t). From (6) we obtain equation Aεm(t) = A(0) + t∫ 0 αεm(s, Aεm(s)) ds + ζεm(t), A0 = (A1(0), A2(0)), (7) where αε(t, A) = (α (1) ε (t, A1, A2), α (2) ε (t, A1, A2)), α(1) ε (t, A1, A2) = −εk1−k sin α sin(bt/εk + α) b2 f̂1(t/ε k, A1, A2), α(2) ε (t, A1, A2) = εk1−k sin α cos(bt/εk + α) b2 f̂1(t/ε k, A1, A2). It should be noted that process ζε(t) is the vector-valued square integrable martingale with matrix characteristic 〈ζ (i) ε , ζ (j) ε 〉(t) = t∫ 0 σ(i) ε (s, Aε 1(s), A ε 2(s))σ (j) ε (s, Aε 1(s), A ε 2(s)) ds+ + 1 εk t∫ 0 ∫ R γ(i) ε (s, Aε 1(s), A ε 2(s), z)γ(j) ε (s, Aε 1(s), A ε 2(s), z) Π(dz)ds, i, j = 1, 2, where σ(1) ε (s, A1, A2) = −εk2−k/2 sin α sin(bs/εk + α) b2 f̂2(s/ε k, A1, A2), 26 O.D.BORYSENKO AND O.V.BORYSENKO σ(2) ε (s, A1, A2) = εk2−k/2 sin α cos(bs/εk + α) b2 f̂2(s/ε k, A1, A2), γ(1) ε (s, A1, A2, z) = −εk3 sin α sin(bs/εk + α) b2 f̂3(s/ε k, A1, A2, z), γ(2) ε (s, A1, A2, z) = εk3 sin α cos(bs/εk + α) b2 f̂3(s/ε k, A1, A2, z). For processes Aε(t) and ζε(t) following estimates hold E||Aε(t) − Aε(s)||4 ≤ K [ ε4(k1−k)|t − s|4 + E||ζε(t) − ζε(s)||4 ] , (8) E||ζε(t) − ζε(s)||4 ≤ K [ (ε4k2−2k + ε4k3−2k)|t − s|2+ +ε4k3−3k/2|t − s|3/2 + ε4k3−k|t − s|] , (9) E||Aε(t) − Aε(s)||8 ≤ K, E||ζε(t) − ζε(s)||8 ≤ K. (10) Since Aεm(t) → Ā(t), ζεm(t) → ζ̄(t) in probability, as εm → 0, then, using (10), from (8) and (9) we obtain estimates E||Ā(t) − Ā(s)||4 ≤ K(|t − s|4 + |t − s|2), E||ζ̄(t) − ζ̄(s)||4 ≤ C|t − s|2. Therefore processes Ā(t) and ζ̄(t) satisfy the Kolmogorov’s continuity con- dition [12]. Let us consider the case k1 = 2k2 = 2k3. Under these conditions we have for i, j = 1, 2 lim ε→0 1 t t∫ 0 α(i) ε (s, A1, A2)ds = ᾱ(i)(A1, A2), lim ε→0 1 t t∫ 0 [ σ(i) ε (s, A1, A2)σ (j) ε (s, A1, A2)+ (11) + 1 εk ∫ R γ(i) ε (s, A1, A2, z)γ(j) ε (s, A1, A2, z)Π(dz) ⎤ ⎦ ds = B̄ij(A1, A2), where functions ᾱ(i)(A1, A2) and B̄(A1, A2) = {B̄ij(A1, A2), i, j = 1, 2} are defined in the condition of theorem. Since processes Ā(t), ζ̄(t) are continu- ous, then from Lemma and relationships (7), (11) it follows Ā(t) = A(0) + t∫ 0 ᾱ(Ā1(s), Ā2(s))ds + ζ̄(t), A(0) = (A1(0), A2(0)), (12) LIMIT BEHAVIOR 27 where ζ̄(t) is continuous vector-valued martingale with matrix characteristic 〈ζ̄ (i), ζ̄ (j)〉(t) = t∫ 0 B̄ij(Ā1(s), Ā2(s))ds, i, j = 1, 2. Hence [13] there exists Wiener process w̄(t) = (wi(t), i = 1, 2), such that ζ̄(t) = t∫ 0 σ̄(Ā1(s), Ā2(s)) dw̄(s), σ̄(A1, A2) = { B̄(A1, A2) }1/2 . (13) Relationships (12), (13) mean that process Ā(t) satisfies equation (4). Un- der conditions of theorem the equation (4) has unique solution. There- fore process Ā(t) does not depend on choosing of sub-sequence εm → 0, and finite-dimensional distributions of process Aεm(t) converge to finite- dimensional distributions of process Ā(t). Since processes Aεm(t) and Ā(t) are Markov processes then using the conditions for weak convergence of Markov processes [12] we finish the proof of statement 1 of theorem. Let us consider the case k < k1. Then coefficients α (i) ε (t, A1, A2), i = 1, 2 of equation (7) tend to zero, as ε → 0. Repeating with obvious modifications the proof of statement 1) of theorem we obtain proof of statement 2). In the case k < 2k2 in (11) we have σ (i) ε (t, A1, A2)σ (j) ε (t, A1, A2) = O(ε2k2−k), i, j = 1, 2. Then we finish the proof in this case as above. In the same way we consider the case k < 2k3. References 1. Krylov N.M., Bogolyubov N.N., Introduction to non-linear mechanics, Kyiv: Publ.Acad.Scien. UkrSSR, 1937. 2. Bogolyubov N.N., Mitropolskij Yu.A., Asymptotic methods in the theory of non-linear oscillations, M.: Nauka, 1974. 3. Mitropolskij Yu.A., Kolomiets V.G., On the action of random forces to the non-linear oscillating systems, Math. physics and non-linear mechanics, 5(39), (1986), 23 –34. 4. Borysenko O.V., Small random parturbations in oscillating systems of sec- ond order, Ukr.Math.Journ., 44 (1992), no.1. 5. Borysenko O.V., Behaviour of non-autonomous oscillating system under the action of small random perturbations in the resonance case, Ukr. Math. Journ., 44 (1992), no.12. 6. Borysenko O.D., Borysenko O.V. Asymptotic behaviour of stochastic dy- namical system, Theory of optimal decisions, Kyiv, Inst.Cibernetics NANU, (1999), 38 – 44. 28 O.D.BORYSENKO AND O.V.BORYSENKO 7. Borysenko O.D., Borysenko O.V., Malyshev I.G., Limit behaviour of dy- namical system under action of small random perturbations in non-reso- nance case, Theory of optimal decisions, Kyiv, Inst.Cibernetics NANU, (2002), no.1, 70 – 78. 8. Borysenko O.D., Borysenko O.V., Malyshev I.G., Asymptotic behavior of third order random oscillation system in the resonance case,Theory of Stoch. Proc., 9(25) (2003), no.3-4, 1 – 11. 9. Borysenko O.D., Malyshev I.G., The limit behaviour of integral functional of the solution of stochastic differential equation depending on small pa- rameter, Theory of Stoch. Proc., 7(23) (2001), no.1-2, 30 – 36. 10. Gikhman, I.I., Skorokhod, A.V., Stochastic Differential Equations, Sprin- ger-Verlag, Berlin, 1972. 11. Skorokhod, A.V., Studies in the Theory of Random Processes, Addison- Wesley, 1965. 12. Gikhman, I.I., Skorokhod, A.V., The Theory of Stochastic Processes, v.I, Springer-Verlag, Berlin, 1974. 13. Ikeda, N. and Watanabe, S., Stochastic Differential Equations and Dif- fusion Processes, North Holland, Amsterdam and Kadansha, Tokyo, 1981. Department of Probability Theory and Mathematical Statistics, Kyiv National Taras Shevchenko University, Kyiv, Ukraine E-mail: odb@univ.kiev.ua Department of Mathematical Physics, National Technical Univer- sity ”KPI“, Kyiv, Ukraine