Random process from the class V(φ,ψ): exceeding a curve

Random processes from the class V (φ, ψ) which is more general than the class of ψ-sub-Gaussian random process. The upper estimate of the probability that a random process from the class V (φ, ψ) exceeds some function is obtained. The results are applied to generalized process of fractional Brownian...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Yamnenko, R., Vasylyk, O.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/4526
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Random process from the class V(φ,ψ): exceeding a curve / R. Yamnenko, O. Vasylyk // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 4. — С.219–232. — Бібліогр.: 8 назв.— англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-4526
record_format dspace
spelling irk-123456789-45262010-03-01T17:26:32Z Random process from the class V(φ,ψ): exceeding a curve Yamnenko, R. Vasylyk, O. Random processes from the class V (φ, ψ) which is more general than the class of ψ-sub-Gaussian random process. The upper estimate of the probability that a random process from the class V (φ, ψ) exceeds some function is obtained. The results are applied to generalized process of fractional Brownian motion. 2007 Article Random process from the class V(φ,ψ): exceeding a curve / R. Yamnenko, O. Vasylyk // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 4. — С.219–232. — Бібліогр.: 8 назв.— англ. 0321-3900 http://dspace.nbuv.gov.ua/handle/123456789/4526 en Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Random processes from the class V (φ, ψ) which is more general than the class of ψ-sub-Gaussian random process. The upper estimate of the probability that a random process from the class V (φ, ψ) exceeds some function is obtained. The results are applied to generalized process of fractional Brownian motion.
format Article
author Yamnenko, R.
Vasylyk, O.
spellingShingle Yamnenko, R.
Vasylyk, O.
Random process from the class V(φ,ψ): exceeding a curve
author_facet Yamnenko, R.
Vasylyk, O.
author_sort Yamnenko, R.
title Random process from the class V(φ,ψ): exceeding a curve
title_short Random process from the class V(φ,ψ): exceeding a curve
title_full Random process from the class V(φ,ψ): exceeding a curve
title_fullStr Random process from the class V(φ,ψ): exceeding a curve
title_full_unstemmed Random process from the class V(φ,ψ): exceeding a curve
title_sort random process from the class v(φ,ψ): exceeding a curve
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/4526
citation_txt Random process from the class V(φ,ψ): exceeding a curve / R. Yamnenko, O. Vasylyk // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 4. — С.219–232. — Бібліогр.: 8 назв.— англ.
work_keys_str_mv AT yamnenkor randomprocessfromtheclassvphpsexceedingacurve
AT vasylyko randomprocessfromtheclassvphpsexceedingacurve
first_indexed 2025-07-02T07:45:00Z
last_indexed 2025-07-02T07:45:00Z
_version_ 1836520362552066048
fulltext Theory of Stochastic Processes Vol.13 (29), no.4, 2007, pp.219–232 ROSTYSLAV YAMNENKO AND OLGA VASYLYK RANDOM PROCESS FROM THE CLASS V (ϕ, ψ): EXCEEDING A CURVE Random processes from the class V (ϕ,ψ) which is more general than the class of ψ-sub-Gaussian random process. The upper estimate of the probability that a random process from the class V (ϕ,ψ) exceeds some function is obtained. The results are applied to generalized process of fractional Brownian motion. 1. Introduction In this paper we consider random process from the class V (ϕ, ψ) defined on compact set and the probability that this process exceeds some func- tion. Recall that random process belongs to class V (ϕ, ψ) if its trajectories belong to the space Subψ(Ω) and increments belong to the space Subϕ(Ω). Properties of random variables and processes from the spaces Subϕ(Ω) and SSubϕ(Ω) can be found in the book of Buldygin V.V. and Kozachenko Yu.V. [1] and in the papers [2-7]. Here we generalize the results obtained earlier in [6-8]. The paper is organized as follows. Basic definitions and some properties of ϕ-sub-Gaussian and strictly ϕ-sub-Gaussian spaces of random variables and processes are given in section 2. In section 3 we obtain general results on estimates of probability that random process from the class V (ϕ, ψ) overruns a level specified by a continuous function. The methods used in the section are the same as in [6]. However for convenience of readers we give here complete proofs. In section 4 we apply results from the previous section to generalized process of fractional Brownian motion from the class V (ϕ, ψ) and obtain the estimate of overcrossing by its trajectories the level defined by function ct, where c > 0 is a given constant. Such estimate has applications in the queuing theory as estimate of buffer overflow probability or in the risk theory as estimate of ruin probability. Invited lecture. 2000 Mathematics Subject Classifications. 60G20, 60G18, 60K25. Key words and phrases. Sub-Gaussian process, generalized fractional Brownian mo- tion, metric entropy, buffer overflow probability, ruin probability. 219 220 ROSTYSLAV YAMNENKO AND OLGA VASYLYK 2. Class V (ϕ, ψ): essential definitions and properties Let (Ω,B, P ) be a standard probability space and T be some paramet- rical space. Definition 2.1.[1] Function u = {u(x), x ∈ R} is called an Orlicz N- function if u is a continuous even convex function such that u(0) = 0, u(x) monotonically increases as x > 0, u(x) x → 0 as x → 0 and u(x) x → ∞ as x → ∞. Definition 2.2.[1] Let ϕ be such an Orlicz N-function that ϕ(x) = cx2 as |x| ≤ x0 for some x0 > 0 and c > 0. Centered random variable ξ belongs to the space Subϕ(Ω), the space of ϕ-sub-Gaussian random variables, if for all λ ∈ R there exists a constant rξ ≥ 0 which satisfies the following inequality E exp (λξ) ≤ exp {ϕ(λrξ))}. Theorem 2.1.[1] The space Subϕ(Ω) is a Banach space with respect to the norm τϕ(ξ) = sup λ>0 ϕ(−1) (log E exp{λξ}) λ , where ϕ(−1) is an inverse function to the function ϕ, and for all λ ∈ R the following inequality holds E exp(λξ) ≤ exp(ϕ(λτϕ(ξ))) . (1) Moreover, there exist constants r > 0, cr > 0 such that (E|ξ|r) 1 r ≤ crτϕ(ξ). Lemma 2.1.[2] Let ξ ∈ Subϕ(Ω). Then for all ε > 0 the following inequality holds true P {|ξ| > ε} ≤ 2 exp { −ϕ ( ε τϕ(ξ) )} . Definition 2.3. Random process X = (X(t), t ∈ T ) belongs to the space Subϕ(Ω), if for all t ∈ T : X(t) ∈ Subϕ(Ω) and sup t∈T τϕ(X(t)) < ∞. Let (T, ρ) be a pseudometrical (metrical) compact space with pseudo- metric (metric) ρ. Definition 2.4.[3] Metric entropy in relation to pseudometric (metric) ρ, or just metric entropy is a function H(T,ρ)(u) = H(u) = { log N(T,ρ)(u), if N(T,ρ)(u) < +∞ +∞, if N(T,ρ)(u) = +∞ , RANDOM PROCESS FROM THE CLASS V (ϕ,ψ) 221 where N(T,ρ)(u) = N(u) denotes the least the least number of closed ρ-balls with radius u. Definition 2.5. [3] A family of random variables Δ from the space Subϕ(Ω) is called strictly Subϕ(Ω), if there exists a constant CΔ > 0 such that for arbitrary finite set I : ξi ∈ Δ, i ∈ I, and for any λi ∈ R the following inequality takes place τϕ (∑ i∈I λiξi ) ≤ CΔ ⎛ ⎝E (∑ i∈I λiξi )2 ⎞ ⎠ 1 2 . (2) If Δ is a family of strictly Subϕ(Ω) random variables, then linear clo- sure Δ of the family Δ in the space L2(Ω) also is strictly Subϕ(Ω) family of random variables. Linearly closed families of strictly Subϕ(Ω) random variables form a space of strictly ϕ-sub-Gaussian random variables. This space is denoted by SSubϕ(Ω). When ϕ(x) = x2 2 the space SSubϕ(Ω) is called the space of strictly sub- Gaussian random variables and is denoted by SSub(Ω). The space of jointly Gaussian random variables belongs to the space SSub(Ω) and τ 2(ξ) = Eξ2. Definition 2.6. A random process X = (X(t), t ∈ T ) is a strictly ϕ-sub- Gaussian process if the corresponding family of random variables belongs to the space SSubϕ(Ω). Definition 2.7.[7] ϕ is subordinated to an Orlizc N -function ψ (ϕ ≺ ψ) if there are exist such numbers x0 > 0 and k > 0 that ϕ(x) < ψ(kx) for x > x0. Definition 2.8.[7] Let ϕ ≺ ψ are two Orlicz N -functions. Random process X = (X(t), t ∈ T ) belongs to class V (ϕ, ψ) if for all t ∈ T the process X(t) is from Subψ(Ω) and for all s, t ∈ T increments (X(t)−X(s)) belong to the space Subϕ(Ω). 3. Main Results Let (T, ρ) be a pseudometrical (metrical) compact space with pseudo- metric (metric) ρ and Y = {Y (t), t ∈ T} be a separable random process from the class V (ϕ, ψ). Suppose there exists such continuous monotonically increasing function σ = {σ(h), h > 0}, that σ(h) → 0, as h → 0, and the following inequality for increments of the process is true sup ρ(t,s)≤h τϕ(Y (t) − Y (s)) ≤ σ(h). (3) 222 ROSTYSLAV YAMNENKO AND OLGA VASYLYK Let β > 0 be some number such that β ≤ σ ( inf s∈T sup t∈T ρ(t, s) ) (4) and let εk = σ(−1)(βpk), p ∈ (0, 1), k = 0, 1, 2, . . ., γ(u) = τψ(Y (u)). Lemma 3.1. Let f = {f(t), t ∈ T} be a continuous function such that |f(u) − f(v)| ≤ δ(ρ(u, v)), where δ = {δ(s), s > 0} is some monotonically increasing nonnegative function, and X(t) = Y (t) − f(t). Let {qk, k = 1, 2, . . .} be such a sequence that qk > 1 and ∞∑ k=1 q−1 k ≤ 1. Then for all λ ∈ R, p ∈ (0, 1) we have E exp{λ sup t∈T X(t)} ≤ exp { 1 q1 sup u∈T (ψ(λq1γ(u)) − λq1f(u)) } × (5) × ( ∞∏ k=1 (N(εk)) 1 qk )( ∞∏ k=2 exp { 1 qk ϕ ( λqkβpk−1 ) + λδ ( σ(−1) ( βpk−1 ))}) . Proof. Denote by Vεk the set of the centers of the closed balls with radius εk, which form minimal covering of the space (T, ρ). Number of elements in the set Vεk is equal to NT (εk) = N(εk). The process Y (t) and, therefore, the process X(t) are separable pro- cesses. It follows from lemma 2.1 and condition (3) that for any ε > 0 P {|Y (t) − Y (s)| > ε} ≤ 2 exp { −ϕ ( ε τϕ(Y (t) − Y (s)) )} ≤ 2 exp { −ϕ ( ε σ(ρ(t, s)) )} . Therefore the process Y is continuous on probability and the process X is continuous on probability as well. If a separable random process on (T, ρ) is continuous on probability, then any set, which is countable and everywhere dense with respect to ρ, can be taken as a set of separability of this process. Therefore the set V = ∞⋃ k=1 Vεk is a set of separability of the process X and we have that with probability one sup t∈T X(t) = sup t∈V X(t). (6) Consider a mapping αn = {αn(t), n = 0, 1 . . .} of the set V in Vεn, where αn(t) is such a point from the set Vεn, that ρ(t, αn(t)) < εn. If t ∈ Vεn then αn(t) = t. If there exist several points from the set Vεn, such that RANDOM PROCESS FROM THE CLASS V (ϕ,ψ) 223 ρ(t, αn(t)) < εn, then we choose one of them and denote it by αn(t). Then it follows from the theorem 2.1 and (3) that P {|Y (t) − Y (αn(t))| > p n 2 } ≤ E(Y (t) − Y (αn(t)))2 pn ≤ c2 2τ 2 ϕ(Y (t) − Y (αn(t))) pn ≤ c2 2σ 2(εn) pn = c2 2β 2pn. This inequality means that ∞∑ n=1 P {|Y (t) − Y (αn(t))| > p n 2 } < ∞. From the Borell-Kantelli’s lemma follows that Y (t) − Y (αn(t)) → 0 as n → ∞ with probability one. Since the function f is continuous then X(t)−X(αn(t)) → 0 as n → ∞ with probability one as well. Since the set V is countable, then X(t)−X(αn(t)) → 0 as n → ∞ for all t simultaneously. Let t be an arbitrary point from the set V . Denote by tm = αm(t), tm−1 = αm−1(tm), . . . , t1 = α1(t2) for any m ≥ 1. Then for all m ≥ 2 we have the following inequality X(t) = X(t1) + m∑ k=2 (X(tk) − X(tk−1)) + X(t) − X(αm(t)) ≤ max u∈Vε1 X(u) + + m∑ k=2 max u∈Vεk (X(u) − X(αk−1(u)) + X(t) − X(αm(t)). (7) It follows from (7) and (6) that with probability one sup t∈T X(t) = sup t∈V X(t) ≤ lim m→∞ inf ( max u∈Vε1 X(u) + m∑ k=2 max u∈Vεk (X(u) − X(αk−1(u))) ) . (8) From the Helder’s inequality, Fatu’s lemma and (8) follows that for all λ > 0 E exp { λ sup t∈T X(t) } ≤ E lim m→∞ inf exp { λ ( max u∈Vε1 X(u) + m∑ k=2 max u∈Vεk (X(u) − X(αk−1(u))) )} ≤ lim m→∞ inf E exp { λ ( max u∈Vε1 X(u) + m∑ k=2 max u∈Vεk (X(u) − X(αk−1(u))) )} ≤ lim m→∞ inf (( E exp { q1λ max u∈Vε1 X(u) }) 1 q1 × 224 ROSTYSLAV YAMNENKO AND OLGA VASYLYK × m∏ k=2 ( E exp { qkλ max u∈Vεk (X(u) − X(αk−1(u))) }) 1 qk ) ≤ ( E exp { q1λ max u∈Vε1 X(u) }) 1 q1 × × ∞∏ k=2 ( E exp { qkλ max u∈Vεk (X(u) − X(αk−1(u))) }) 1 qk = I1 · ∞∏ k=2 Ik. (9) Let’s consider each term in (9). It follows from the theorem 2.1 that E exp{q1λY (u)} ≤ exp {ψ(q1λγ(u))}. Therefore I1 ≤ ⎛ ⎝∑ u∈Vε1 E exp { q1λY (u) } exp { − q1λf(u) }⎞⎠ 1 q1 ≤ ⎛ ⎝∑ u∈Vε1 exp { ψ(q1λγ(u)) − q1λf(u) }⎞⎠ 1 q1 ≤ ( N(ε1) exp { sup u∈T ( ψ(q1λγ(u)) − q1λf(u) )}) 1 q1 ≤ ( N(ε1) ) 1 q1 exp { 1 q1 sup u∈T ( ψ(q1λγ(u)) − q1λf(u) )} . (10) It also follows from the theorem 2.1 and assumption (3) that E exp{qkλ(Y (u) − Y (αk−1(u)))} ≤ exp{ϕ(qkλσ(εk−1))}. In that way since |f(u) − f(v)| ≤ δ(ρ(u, v)) then Ik ≤ ( N(εk) max u∈Vεk E exp { qkλ[Y (u) − Y (αk−1(u))] } × × exp { − qkλ[f(u) − f(αk−1(u))] }) 1 qk ≤ ( N(εk) ) 1 qk ( max u∈Vεk exp { ϕ(qkλσ(εk−1)) − qkλ[f(u) − f(αk−1(u))] }) 1 qk ≤ ( N(εk) ) 1 qk ( max u∈Vεk exp { ϕ(qkλσ(εk−1)) + qkλδ(ρ(u, αk−1(u))) }) 1 qk ≤ ( N(εk) ) 1 qk exp { q−1 k ϕ(qkλβpk−1) + λδ(σ(−1)(βpk−1)) } . (11) From inequalities (9), (10) and (11) we have the assertion of the lemma.� RANDOM PROCESS FROM THE CLASS V (ϕ,ψ) 225 Theorem 3.1. Let Y = {Y (t), t ∈ T} be a separable random process from the class V (ϕ, ψ) and f = {f(t), t ∈ T} be such a continuous function that |f(u) − f(v)| ≤ δ(ρ(u, v)), where δ = {δ(s), s > 0} is some monotonically increasing nonnegative function, and X(t) = Y (t) − f(t). Let r1 = {r1(u) : u ≥ 1} be such a continuous function that r1(u) > 0 as u > 1 and the function s(t) = r1(exp{t}), t ≥ 0, is convex. If β∫ 0 r1(N(σ(−1)(u)))du < ∞, (12) then for all p ∈ (0; 1) and x > 0 the following inequality holds true P { sup t∈T X(t) > x } ≤ inf λ>0 Zr1(λ, p, β), (13) where Zr1(λ, p, β) = exp { θψ(λ, p) + pϕ ( λβ 1 − p ) + λ ( ∞∑ k=2 δ(σ(−1)(βpk−1)) − x )} × ×r (−1) 1 ⎛ ⎝ 1 βp βp∫ 0 r1(N(σ(−1)(u)))du ⎞ ⎠ , (14) θψ(λ, p) = sup u∈T ( (1 − p)ψ ( λγ(u) 1 − p ) − λf(u) ) . (15) Proof. Let qk = ((1 − p)pk−1)−1 in the inequality (5) then E exp { λ sup t∈T X(t) } ≤ exp { θψ(λ, p) + ∞∑ k=2 (1 − p)pk−1ϕ ( λβ 1 − p ) + λ ∞∑ k=2 δ ( σ(−1)(βpk−1) )} × exp { ∞∑ k=1 (1 − p)pk−1 log N ( σ(−1)(βpk) )} . (16) Since exp { ∞∑ k=1 (1 − p)pk−1 log N ( σ(−1)(βpk) )} = r (−1) 1 ( r1 ( exp { ∞∑ k=1 (1 − p)pk−1 log N ( σ(−1)(βpk) )})) 226 ROSTYSLAV YAMNENKO AND OLGA VASYLYK ≤ r (−1) 1 ( ∞∑ k=1 (1 − p)pk−1r1 ( N ( σ(−1)(βpk) ))) ≤ r (−1) 1 ⎛ ⎝ 1 βp βp∫ 0 r1 ( N ( σ(−1)(u) )) du ⎞ ⎠ (17) the assertion of the theorem follows from the lemma 3.1, (16) and Cheby- shev’s inequality. � Lemma 3.2. Suppose that all assumptions of lemma 3.1 are satisfied and β∫ 0 H(σ(−1)(u)) ϕ(−1)(H(σ(−1)(u))) du < ∞, (18) where H(ε) = log N(ε). Then for all p ∈ (0, 1) and λ > 0 we have that E exp { λ sup t∈T X(t) } ≤ Z(λ, p, β), (19) where Z(λ, p, β) = exp { W (λ, p, β) + pϕ ( λβ 1 − p )} × × exp ⎧⎪⎨ ⎪⎩ 2λ p(1 − p) βp2∫ 0 H(σ(−1)(u)) ϕ(−1)(H(σ(−1)(u))) du + λ ∞∑ k=2 δ ( σ(−1) ( βpk−1 )) ⎫⎪⎬ ⎪⎭ , W (λ, p, β) = inf v≥(1−p)−1 ( 1 v H(σ(−1)(βp)) + sup u∈T ( ψ(λγ(u)v) v − λf(u) )) . Proof. It follows from lemma 3.1 (see inequality (5)) that for all qk > 1, k = 1, 2, . . . such that ∞∑ k=1 1 qk ≤ 1, and all λ > 0 the following inequality holds true E exp { λ sup t∈T X(t) } ≤ exp { λ ∞∑ k=2 δ ( σ(−1)(βpk−1) )} exp { ∞∑ k=2 H(εk) + ϕ(λqkβpk−1) qk } × × exp { 1 q1 ( H(ε1) + sup u∈T (ψ(λq1γ(u)) − λq1f(u)) )} . (20) Let q1 = v, where v is such a number that v ≥ 1 1−p and qk = 1 λβpk−1 ϕ(−1) ( ϕ ( λβ 1 − p ) + H(εk) ) , k = 2, 3 . . . (21) RANDOM PROCESS FROM THE CLASS V (ϕ,ψ) 227 Since 1 qk ≤ λβpk−1 ϕ(−1) ( ϕ ( λβ 1−p )) = pk−1(1 − p) as k = 2, 3 . . ., then ∞∑ k=1 1 qk ≤ ∞∑ k=1 pk−1(1 − p) = 1. Consider Z̃ = ∞∑ k=2 H(εk) + ϕ(λqkβpk−1) qk . For the sequence qk defined in (21) we have Z̃ = ∞∑ k=2 H(εk) qk + ∞∑ k=2 1 qk ϕ ⎛ ⎝λβpk−1 ϕ(−1) ( ϕ ( λβ 1−p ) + H(εk) ) λβpk−1 ⎞ ⎠ = ∞∑ k=2 H(εk) qk + ∞∑ k=2 H(εk) qk + ϕ ( λβ 1 − p ) ∞∑ k=2 1 qk ≤ 2 ∞∑ k=2 H(εk) λβpk−1 ϕ(−1)(H(εk)) + ϕ ( λβ 1 − p ) ∞∑ k=2 pk−1(1 − p) = ϕ ( λβ 1 − p ) p + 2λ ∞∑ k=2 H(σ(−1)(βpk))βpk−1 ϕ(−1)(H(σ(−1)(βpk))) . (22) The function ϕ(x) x increases as x > 0 (see, for example, [1]) therefore the function x ϕ(−1)(x) increases as well. Then βpk∫ βpk+1 H(σ(−1)(u)) ϕ(−1)(H(σ(−1)(u))) du ≥ H(σ(−1)(βpk)) ϕ(−1)(H(σ(−1)(βpk))) βpk(1 − p). (23) And from (22) and (23) it follows that Z̃ ≤ ϕ ( λβ 1 − p ) p + 2λ p(1 − p) βp2∫ 0 H(σ(−1)(u)) ϕ(−1)(H(σ(−1)(u))) du. (24) Therefore the assertion of the lemma follows from (5) and (24). � Theorem 3.2. Let Y = {Y (t), t ∈ T} be a separable random process from the class V (ϕ, ψ) and f = {f(t), t ∈ T} be a continuous function such that |f(u) − f(v)| ≤ δ(ρ(u, v)), where δ = {δ(s), s > 0} is some 228 ROSTYSLAV YAMNENKO AND OLGA VASYLYK monotonically increasing nonnegative function, and X(t) = Y (t) − f(t). Let r2 = {r2(u) : u ≥ 1} be such a continuous function that r2(u) > 0 as u > 1, r2(1) = 0 and the function s(t) = r2(exp{t}), t ≥ 0, is convex. If β∫ 0 r2(N(σ(−1)(u))) ϕ(−1)(log N(σ(−1)(u))) du < ∞ (25) then for all p ∈ (0; 1) and x > 0 the following inequality holds true P { sup t∈T X(t) > x } ≤ inf λ>0 Zr2(λ, p, β), (26) where Zr2(λ, p, β) = exp { W (λ, p, β) + pϕ ( λβ 1 − p ) + λ ( ∞∑ k=2 δ ( σ(−1) ( βpk−1 ))− x )} × × ⎛ ⎜⎝r (−1) 2 ⎛ ⎜⎝ λ p(1 − p) βp2∫ 0 r2(N(σ(−1)(u))) ϕ(−1)(log N(σ(−1)(u))) du ⎞ ⎟⎠ ⎞ ⎟⎠ 2 , (27) W (λ, p, β) = inf v≥(1−p)−1 ( 1 v H(σ(−1)(βp)) + sup u∈T ( ψ(λγ(u)v) v − λf(u) )) .(28) Proof. Let q1 and qk, k = 2, 3, . . . be defined as in the proof of the lemma 3.2. It follows from (20) and (22) that for λ > 0, p ∈ (0; 1) and v ≥ 1 1−p E exp { λ sup t∈T X(t) } ≤ exp { 1 v H(σ(−1)(u)) + sup u∈T ( ψ(λvγ(u)) v − λf(u) ) + λ ∞∑ k=2 δ(σ(−1)(βpk−1)) + pϕ ( λβ 1 − p ) + 2 ∞∑ k=2 H ( σ(−1)(βpk) ) qk } .(29) From the convexity of the function s(t) = r2(exp{t}) it follows that for all δi > 0, i ≥ 1, such that ∞∑ i=1 δi = 1 and all xi ≥ 0 s ( ∞∑ i=1 δixi ) ≤ ∞∑ i=1 δis(xi). If ∞∑ i=1 δi < 1 remembering s(0) = 0 we have s ( ∞∑ i=1 δixi ) = s ( ∞∑ i=1 δixi + 0(1 − ∞∑ i=1 δi) ) RANDOM PROCESS FROM THE CLASS V (ϕ,ψ) 229 ≤ ∞∑ i=1 δis(xi) + ( 1 − ∞∑ i=1 δi ) s(0) = ∞∑ i=1 δis(xi). (30) It follows from (30) that exp { 2 ∞∑ k=2 1 qk H ( σ(−1)(βpk) )} = ( r (−1) 2 ( r ( exp { ∞∑ k=2 q−1 k log N ( σ(−1)(βpk) )})))2 ≤ ( r (−1) 2 ( ∞∑ k=2 q−1 k s ( log N ( σ(−1)(βpk) ))))2 ≤ ( r (−1) 2 ( λ ∞∑ k=2 βpk−1 r2(N(σ(−1)(βpk))) ϕ(−1)(log N(σ(−1)(βpk))) ))2 . (31) The function a(t) = r2(exp{ϕ(t)}), t ≥ 0, is a convex function and a(0) = 0, that is a(t) is an Orlicz function and the function a(t) t increases as t > 0 [?]. Therefore the function r2(exp{u})/ϕ(−1)(u) increases as well. Consequently we have the following inequality βpk∫ βpk+1 r2(N(σ(−1)(u))) ϕ(−1)(log N(σ(−1)(u))) du ≥ r2(N(σ(−1)(βpk))) ϕ(−1)(log N(σ(−1)(βpk))) βpk(1 − p) and ∞∑ k=2 βpk−1 r2(N(σ(−1)(βpk))) ϕ(−1)(log N(σ(−1)(βpk))) ≤ 1 p(1 − p) ∞∑ k=2 βpk∫ βpk+1 r2(N(σ(−1)(u))) ϕ(−1)(log N(σ(−1)(u))) du ≤ 1 p(1 − p) βp2∫ 0 r2(N(σ(−1)(u))) ϕ(−1)(log N(σ(−1)(u))) du. (32) Using the Chebyshev’s inequality the assertion of the theorem follows from the (29), (31), (32). � 230 ROSTYSLAV YAMNENKO AND OLGA VASYLYK 4. Examples Definition 4.1.[4] Let ϕ ≺ ψ are two Orlicz N -functions. We call the pro- cess ZH = (ZH(t), t ∈ T ) generalized fractional Brownian motion from the class V (ϕ, ψ) with Hurst index H ∈ (0, 1) (V (ϕ, ψ)-GFBM) if ZH is strictly ψ-sub-Gaussian process with stationary strictly ϕ-sub-Gaussian increments and covariance function RH(t, s) = EZH(s)ZH(t) = 1 2 ( t2H + s2H − |s − t|2H ) . (33) Theorem 4.1. Let ZH = (ZH(t), t ∈ [a, b]), 0 ≤ a < b < ∞ be a generalized fractional Brownian motion from the class V (ϕ, ψ) with Hurst index H ∈ (0, 1) and let c > 0 be a constant. Then for all p ∈ (0, 1), β ∈ ( 0, ( b−a 2 )H] and λ > 0 the following inequlity holds true P { sup a≤t≤b ( ZH(t) − ct ) > x } ≤ (b − a) ( e βp ) 1 H × × exp { λc(βp) 1 H CΔ(1 − p 1 H ) + pϕ ( λβ 1 − p ) + (1 − p)θψ(λ, p) − λx CΔ } , (34) where θψ(λ, p) = sup a≤u≤b ( ψ ( λuH 1−p ) − λcu CΔ(1−p) ) , CΔ is the constant from defi- nition 2.5 of the space SSubϕ(Ω). Proof. Let’s apply theorem 3.1. P { sup a≤t≤b ( ZH(t) − ct ) > x } = P { sup a≤t≤b (Y (t) − Ct) > ε } , (35) where ε = x CΔ and C = c CΔ . Since τϕ(Yi(t) − Yi(s)) = 1 CΔ τϕ(ZH i (t) − ZH i (s)) ≤ (E(ZH i (t) − ZH i (s))2) 1 2 = |t − s|H, put γ(u) = uH and σ(h) = hH , then 0 ≤ β ≤ ( b−a 2 )H . Also we have that |f(u) − f(v)| = |Cu − Cv| = C|u − v|, i.e. δ(h) = Ch. As function r1(u) let’s choose r1(u) = uα, u ≥ 1, 0 < α < H. Then θψ(λ, p) = sup a≤u≤b ( ψ ( λuH 1 − p ) − λCu 1 − p ) , ∞∑ k=2 δ ( σ(−1)(βpk−1) ) = ∞∑ k=2 C(βpk−1) 1 H = C(βp) 1 H 1 − p 1 H . RANDOM PROCESS FROM THE CLASS V (ϕ,ψ) 231 Since log ( max { b − a 2u , 1 }) ≤ H(u) ≤ ln ( b − a 2u + 1 ) , then for u ≤ ( b−a 2 )H the following estimate is fulfilled r1 ( NB ( σ(−1)(u) )) ≤ r1 ( b − a 2σ(−1)(u) + 1 ) = ( b − a 2u 1 H + 1 )α ≤ (b − a)α u α H . Since βp < β ≤ ( b−a 2 )H then r(−1) ( 1 βp βp∫ 0 r ( NB ( σ(−1)(u) )) du ) ≤ ( 1 βp βp∫ 0 (b − a)α u α H du ) 1 α = (b − a)β− 1 H p− 1 H ( 1 − α H )− 1 α . (36) Infinum of the right of estimate (36) equals to lim α→0 (b − a)β− 1 H p− 1 H ( 1 − α H )− 1 α = (b − a) ( e βp ) 1 H . (37) Therefore from (35)-(37) we obtain the assertion of the theorem. � Acknowledgments. The authors thank professor Yuriy Kozachenko for his supporting and valuable advices. References 1. Buldygin, V. V. and Kozachenko, Yu. V., Metric Characterization of Ran- dom Variables and Random Processes, American Mathematical Society, Providence, RI, (2000). 2. R. Giuliano-Antonini, Yu. Kozachenko, T. Nikitina., Spaces of φ-Subgaus- sian Random Variables, Rendiconti, Academia Nazionale delle Scienze detta dei XL, Memorie di Matematica e Applicazioni, 121o(2003), XXVII, fasc.1, 95–124. 3. Kozachenko Yu.V., Kovalchuk Yu.A.,Boundary value problems with ran- dom initial conditions, and functional series from Subϕ(Ω), Ukrain.Mat.Zn. 50, (4), (1998), 504–515. 4. Kozachenko Yu., Sottinen T. and Vasilik O., Weakly self-similar stationary increment processes from the space SSubϕ(Ω), Probab. Theory and Math. Statistics, 65, (2001), 67–78. 232 ROSTYSLAV YAMNENKO AND OLGA VASYLYK 5. Kozachenko Yu., Vasylyk O. and Yamnenko R., On the probability of ex- ceeding some curve by ϕ-subgaussian random process, Theory of Stochastic Processes. 9(25), no.3-4, (2003), 70–80. 6. Kozachenko Yu., Vasylyk O. and Yamnenko R., Upper estimate of overrun- ning by Subϕ(Ω) random process the level specified by continuous function, Random Operators and Stochastic Equations, 13, no.2, (2005), 111–128. 7. Kozachenko Yu., Vasylyk O., Random processes from classes V (ϕ,ψ), Pro- bab. Theory and Math. Statistics, 63, (2000), 100–111. 8. Yamnenko R., Ruin probability for generalized ϕ-sub-Gaussian fractional Brownian motion, Theory of Stochastic Processes, 12(28), no.3-4, (2009), 261–275. Department of Probability Theory and Mathematical Statistics, Kyiv National Taras Shevchenko University, Kyiv, Ukraine E-mail address: yamnenko@univ.kiev.ua; vasylyk@univ.kiev.ua