Linear stochastic differential equations in the dual of a multi-Hilbertian space

We prove the existence and uniqueness of strong solutions for linear stochastic differential equations in the space dual to a multi–Hilbertian space driven by a finite dimensional Brownian motion under relaxed assumptions on the coefficients. As an application, we consider equtions in S' with c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2008
Hauptverfasser: Gawarecki, L., Mandrekar, V., Rajeev, B.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2008
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/4549
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Linear stochastic differential equations in the dual of a multi-Hilbertian space / L. Gawarecki, V. Mandrekar, B. Rajeev // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 2. — С. 28–34. — Бібліогр.: 9 назв.— англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We prove the existence and uniqueness of strong solutions for linear stochastic differential equations in the space dual to a multi–Hilbertian space driven by a finite dimensional Brownian motion under relaxed assumptions on the coefficients. As an application, we consider equtions in S' with coefficients which are differential operators violating the typical growth and monotonicity conditions.