Dynamic Analysis of Sandwich Cylindrical Shell

We present dynamic analysis of cylindrical shells and study new mechanical effects in distribution of stresses, strains and displacements. Cylindrical shells are studied in the framework of Kirchhoff-Love hypothesis and the refined Timoshenko model.

Збережено в:
Бібліографічні деталі
Дата:2000
Автор: Cabanska-Placzkiewicz, K.
Формат: Стаття
Мова:English
Опубліковано: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2000
Назва видання:Проблемы прочности
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/46310
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Dynamic Analysis of Sandwich Cylindrical Shell / K. Cabanska-Placzkiewicz // Проблемы прочности. — 2000. — № 4. — С. 119-127. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-46310
record_format dspace
spelling irk-123456789-463102013-06-29T15:18:00Z Dynamic Analysis of Sandwich Cylindrical Shell Cabanska-Placzkiewicz, K. Научно-технический раздел We present dynamic analysis of cylindrical shells and study new mechanical effects in distribution of stresses, strains and displacements. Cylindrical shells are studied in the framework of Kirchhoff-Love hypothesis and the refined Timoshenko model. Выполнен динамический анализ цилиндрических оболочек и изучены новые механические эффекты в распределении напряжений, деформаций и перемещений. Цилиндрические оболочки рассматриваются на основе гипотезы Кирхгофа-Лява и уточненной модели Тимошенко. Проведено динамічний аналіз циліндричних оболонок та розглянуто нові механічні ефекти в розподіленні напружень, деформацій і переміщень. Циліндричні оболонки розглядаються на основі гіпотези Кірхгофа-Лява й уточненої моделі Тимошенка. 2000 Article Dynamic Analysis of Sandwich Cylindrical Shell / K. Cabanska-Placzkiewicz // Проблемы прочности. — 2000. — № 4. — С. 119-127. — Бібліогр.: 7 назв. — англ. 0556-171X http://dspace.nbuv.gov.ua/handle/123456789/46310 539.4 en Проблемы прочности Інститут проблем міцності ім. Г.С. Писаренко НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Научно-технический раздел
Научно-технический раздел
spellingShingle Научно-технический раздел
Научно-технический раздел
Cabanska-Placzkiewicz, K.
Dynamic Analysis of Sandwich Cylindrical Shell
Проблемы прочности
description We present dynamic analysis of cylindrical shells and study new mechanical effects in distribution of stresses, strains and displacements. Cylindrical shells are studied in the framework of Kirchhoff-Love hypothesis and the refined Timoshenko model.
format Article
author Cabanska-Placzkiewicz, K.
author_facet Cabanska-Placzkiewicz, K.
author_sort Cabanska-Placzkiewicz, K.
title Dynamic Analysis of Sandwich Cylindrical Shell
title_short Dynamic Analysis of Sandwich Cylindrical Shell
title_full Dynamic Analysis of Sandwich Cylindrical Shell
title_fullStr Dynamic Analysis of Sandwich Cylindrical Shell
title_full_unstemmed Dynamic Analysis of Sandwich Cylindrical Shell
title_sort dynamic analysis of sandwich cylindrical shell
publisher Інститут проблем міцності ім. Г.С. Писаренко НАН України
publishDate 2000
topic_facet Научно-технический раздел
url http://dspace.nbuv.gov.ua/handle/123456789/46310
citation_txt Dynamic Analysis of Sandwich Cylindrical Shell / K. Cabanska-Placzkiewicz // Проблемы прочности. — 2000. — № 4. — С. 119-127. — Бібліогр.: 7 назв. — англ.
series Проблемы прочности
work_keys_str_mv AT cabanskaplaczkiewiczk dynamicanalysisofsandwichcylindricalshell
first_indexed 2025-07-04T05:32:22Z
last_indexed 2025-07-04T05:32:22Z
_version_ 1836693211141111808
fulltext UDC 539.4 Dynamic Analysis of Sandwich Cylindrical Shell K. Cabanska-Placzkiewicz Pedagogical University, Department of Mathematics Technology and Natural Science Institute of Technics, Bydgoszcz, Poland УДК 539.4 Динамический анализ многослойных цилиндрических оболочек К. Цабанска-Плашкевич Педагогический университет, отделение математических технологий и естествен­ ных наук Технического института, Быдгощ, Польша Выполнен динамический анализ цилиндрических оболочек и изучены новые механические эффекты в распределении напряжений, деформаций и перемещений. Цилиндрические обо­ лочки рассматриваются на основе гипотезы Кирхгофа-Лява и уточненной модели Тимо­ шенко. Cylindrical shells with wide range o f geometrical and physicomechanical parameters are component parts o f m any m odern structures subject to the action o f different loads. The development o f various vibration models becomes an urgent problem due to the structural features o f layered shells operating under different conditions o f m echanical loading. The classical theory o f cylindrical shells, which is based on the K irchhoff-Love hypothesis, is w idely used for the evaluation o f the stress-strain state or vibration o f isotropic thin elastic shells. Among numerous precise models applied to the investigation o f shells made o f modern m aterials due to their practical validity, visualization, and completeness, the Tim oshenko shear m odel is used. The behavior o f thick-walled shells under such conditions is fairly peculiar and complex and requires a more detailed investigation taking into account the changes in geometry, m aterial behavior, mode o f loading, conditions o f the boundary, and m any other factors. The dynamic problem o f elastic homogeneous bodies was presented in [1, 2]. The problem o f simulation o f the acoustic properties o f the larger hum an blood vessel was considered in [3]. Simple and complex vibration systems were considered in [4]. The coupled problems o f the therm om echanical behavior o f viscoelastic bodies under harmonic loading were presented in [5]. The problem o f nonaxisymmetric deformation o f flexible rotational shells was solved in [6] with the use o f the classical K irchhoff-Love m odel and im proved Timoshenko model. Free vibrations o f the elements o f shell constructions were described in [7]. The goal o f this paper is to perform the dynamic analysis o f cylindrical shells and discover new m echanical effects in the distribution o f stresses, deformations, and displacements. We present the dynamic analysis o f elastic layered cylindrical shells o f finite length l for different values o f thickness h. We consider two models o f deformation o f a straight line shell element that is norm al to the © K. CABANSKA-PLACZKIEWICZ, 2000 ISSN 0556-171X. Проблемы прочности, 2000, N 4 119 K. Cabanska-Placzkiewicz undeform ed coordinate surface. The first one is based on the K irchhoff-Love hypothesis according to which this element remains straight and norm al and its length does not change in the process o f deformation. The second one is the improved Timoshenko model, which is also based on the hypothesis o f straight line, but, in this case, the shell element, initially norm al to the surface, does not remain norm al to the deformed surface. These kinematic assumptions are supplemented with static assumptions according to which the norm al stresses on the squares that are parallel to the coordinate surface, as compared with the stresses on the other squares, can be neglected. The inertial forces associated with the displacement o f a surface element along the coordinate axes are also taken into account. The layers o f the shell are deformed without m utual separation on the entire surface o f contact. Due to the assumptions made, the displacements and deformations o f arbitrary points o f the shell are determined by the displacements and deformations o f the coordinate surface. Thus, the displacements o f the shell points located at a distance z from the coordinate surface are determined as a near function o f the displacements o f this surface: U ( s , 6 , r , t) = u( s , 6 , t) + r p i ( s , 6 , t), V ( s, 6 , r , t ) = V ( s , 6 , t ) + rp 2 ( s, 6 , t ), W ( s , 6 , r , t ) = w( s , 6 , t ), where p i , ip 2 are the angles o f rotation o f the norm al in the planes 6 = const and s = const, respectively, for the classical version o f the theory, or the full angles o f rotation for the im proved version o f the theory with shear deformations taken into account. Investigations were carried out for both models for radial displacements w in the cylindrical coordinates r , z , 6 (—h / 2 < r < h / 2 , 0 < z < 1,0 < 6 < 2n ) under axisymmetric loading. O ne-L ayered C y lindrical Shell. According to the assumptions o f the classical K irchhoff-Love theory, we have e r = e zr = 86r = 0, the norm al stresses o r = 0, and w (z , r ,6 , t) = f ( z , r , t). In the m athematical m odel o f the problem on the basis o f the classical K irchhoff-Love model, the system o f conjugate partial differential equations describing the phenom enon o f small transverse vibrations in the considered physical model has the form Eh d u 1 D v 2 d z 2 d 4 w v d w , d u ------ ;— P h — t R d z d t = 0 , Eh dz4 ( i - v 2 ) R \ R w du — + v — l + p h d z d 2 w d t2 (1) = 0, where D = E h 3 12(1- v 2 ) ' 120 ISSN 0556-171X. npodneMbi npouuocmu, 2000, № 4 Dynamic analysis o f sandwich cylindrical shell A solution o f this problem was obtained in the following form: — n t ( n n z \? 'In1 ------ ( n=l dw dz (2) Function o f stresses has been accepted as T N O O O, X'' X '' /- \ • n n z .= 2 2 O r ( r ) s in ----- sin rnt, t=0 n=l 1 T N = 2 2 o z ( r ) t=0 n=l T N = 2 2 o o ( r ) n n z . cos----- sin rnt, I (3) t=0 n=l n n z . cos----- sin rnt, I where o r ( r ), o z ( r ), o e ( r ) are functions varying across the thickness h and length l o f the shell at time t. U nder the assumptions o f the im proved Timoshenko model, in which the influences o f forces o f rotational inertia and shearing deformation are taken into account, one has deformations e zr ^ 0, e 9r ^ 0 and norm al stresses o r = 0. The m athematical m odel o f the problem on the basis o f the im proved Timoshenko m odel is represented by the following system o f conjugate partial differential equations D d 2 ÿ z . . ,r , J d w I p h 3 d 2 ÿ z = 0 D — T + I c ^ — — ÿ z j - — - d T = 0- p h dz d 2 w d t2 l k ' Gh d 2 w d z 2 # z dz + d t Eh ( l - v 2 )R w du''. — + v — | = 0. R dz (4) In this case, we found a solution o f the problem in the form w = 2 e" n=l ÿ z = 2 ‘ n=l ^ -- 2ÿ z p h 3 d 2ÿ z D — h r - + — ------- ^ + k ' G h ÿ , dz l 2 d t2 I G h Eh cos( « nt + p n ) d 2 w d 2 wdu \ 2 2 I w + v —— | + p h 2 2 L(l — v 2 )R 2 \ d z j d t2 d z2 (5) cos( rn n t + p n ). Here, w , u are displacements o f the shell, p z is the angle o f rotation o f a cross section o f the shell, p is the mass density o f the m aterial o f the shell, h is the l ISSN 0556-171X. npoôneMbi npouuocmu, 2000, № 4 121 K. Cabanska-Placzkiewicz height o f the shell, v is Poisson’s ratio, G is the K irchhoff modulus o f the material o f the shell, E is Y oung’s modulus o f the material o f the shell, k ' is the shear coefficient, and t is time. First, we consider a cylindrical shell under load q n = q 0 sin(n n z / 1) distributed symmetrically with respect to z-axis. Elastic cylindrical shell with finite length l , rigidity D , and external radius R is considered with free supports on its ends: w| 7=0 = 0 W 7=1 = 0 (6) Num erical calculations are perform ed for the following data: l = 120 mm, h = 2; 6 mm, E = 2.1-1011 N /m m 2, v = 0.3, n = 1 ,2 , 20. Some results concerning the solution o f the problem are shown in Figs. 1 and 2. The diagrams present free vibrations for displacements w(z , t ) in the middle section o f the cylindrical shell for different thicknesses h / R = 1/10; 1/30 and the initial condition w 0 = 0.02sin(n n z / 1) [m]. The two-dimensional diagrams display the distribution with length 0 < 7 < 0.2 l at time t = 0.48 s for various n , d = l / nh. The diagrams m arked with “a” correspond to the cases where the classical K irchhoff-Love model was applied, whereas the diagrams marked with “b” correspond to the cases where the improved Timoshenko model was used. w b Fig. 1. Distribution of free vibrations of the cylindrical shell for h / R =1/10. w 0 .0 2 b 6=60 0 .0 1 5 6=6 6=3 0 .0 1 a 8=60 0 .0 0 5 6=3 6=6 5 10 15 20 z , 122 Fig. 2. Distribution of free vibrations of the cylindrical shell for h / R =1/30. ISSN 0556-171X. Проблемы прочности, 2000, № 4 Dynamic analysis o f sandwich cylindrical shell Analyzing the results for h / R = 1/10, 6 = 1 , 2 (Fig. 1) and h / R = 1/30, 6 = 3, 6 (Fig. 2), one can note that, as n = 1, 10, 20 increases, the free vibrations w decrease and the difference between the results obtained for the Timoshenko and K irchhoff-Love models increases. As 6 decreases, the difference between the values o f displacement for the two models considered increases. The distributions o f stresses a z , a r , a 0 , t rz and deformations e r , e z for cylindrical shells for z = 0.51 across the thickness — h / 2 < r < h / 2 are shown in Fig. 3. The spatial curves o f stresses and deformations are presented for the external load q n = q 0 sin(n n z / l ), which affects the cylindrical shell, with respect to time. The components o f stresses and deformations vary nonlinearly across the thickness. The tangential stresses t rz vary across the thickness according to the parabolic law. The distribution o f stresses t rz is symmetrical w ith respect to the z = 0.51 axis. The normal stresses depend on r. Strain distribution e z , e r (both axial and radial ones) also have the form o f a centrally symmetrical parabola. Considering the section z = 0 .2 1, we see that the longitudinal a z , radial a r , and circular a g stresses reach values that are smaller than those for z = 0.51 by approximately 60%, 6%, and 54%, respectively. The tangential stresses t rz for z = 0.21 reach values approximately 5% smaller than for z = 0.51. For z = 0.21, the deformations along the radial direction e r reach values approximately 75% smaller than for z = 0.51. For z = 0.21, the deformation along the axial direction e z reaches a value approximately 50% smaller than for z = 0.51. Fig. 3. Distribution of stresses a z, a r , ae, t rz and deformations er , e z for cylindrical shells for z = 0.5 l across the thickness — h / 2 < r < h / 2. ISSN 0556-171X. npoôneMU nponnocmu, 2000, № 4 123 K. Cabanska-Placzkiewicz The distributions o f the radial displacement w( r , t ) across the thickness h , z = 0.51 at time t are shown in Fig. 4. The diagrams m arked with “a” represent the distribution according to the Timoshenko model, and the diagrams m arked with “b” describe the distribution according to the K irchhoff-Love model. In the case o f the Timoshenko model, the radial displacements vary across the thickness and decrease with time. In the case o f the K irchhoff-Love model, the radial displacements are described by a constant function across the thickness and also decrease with time. Fig. 4. Distribution of the radial displacement w(r, t) across the thickness h, z = 0.51 at time t. For cylindrical shells with h / R > 1/10 and d < 3 subjected to nonuniform loading, it is necessary to use the Timoshenko model. The application o f the classical K irchhoff-Love m odel in these cases m ay lead to significant errors. Sandw ich C y lind rical Shell. In the case o f a system o f two cylindrical shells coupled by a viscoelastic interlayer, the m athematical model o f the problem corresponding to the Timoshenko m odel is represented by the following system o f coupled partial differential equations describing small transverse vibrations o f the system: w( r , t ) / 1 0 3 q ohE 1 w( r , t ) / 1 0 3q 0hE 1 a b (7) p 2 h2 + ------ ^ --------- - + V d t2 k 'G 2h2 [ d z 2 d z J (1 — v 2 )R2 VR2 d z d 124 ISSN 0556-171X. npo6neMbi npouHocmu, 2000, № 4 Dynamic analysis o f sandwich cylindrical shell where R i is the radius o f the internal shell I, R 2 is the radius o f the interlayer, R 3 is the radius o f the external shell II, hi and ^2 are the heights o f shells I and II, P i and p 2 are the mass densities o f the m aterials o f shells I and II, w 1n, w 2n , u 1n ,an d u 2n are the displacements o f shells I and II, ^ in and ^ 2n are the angles o f rotation o f cross sections o f shells I and II, E i and E 2 are Y oung’s m oduli o f the materials o f shells I and II, k ' is the shear coefficient, k is the coefficient o f elasticity o f the interlayer, and c is the coefficient o f viscosity o f the interlayer. The free vibration o f a system o f two cylindrical shells coupled by a viscoelastic interlayer was determined with the use o f the Timoshenko model as follows: X w 1n = 2 e ~ tlnt lW1n II ̂ n |[cos(O nt + P n + X in X n=1 X u 1n = 2 e ~Vnt IU in 11 ̂ n |[cos(O nt + P n + $ in X n=1 X - n^ 1» = 2 e Vnt I H Ф n |[cosO nt + ^ n + e in ), n=1 X w 2n = 2 e ~ tlnt |W2n 11 Ф n |[cos( m nt + ^ n + X 2n X n=1 X u 2n = 2 e ~ ylJ |U 2 n 11Ф n |[cos( m nt + ^ n + # 2 n X n=1 X 2n = 2 e ~ nnt | XV2n || Ф n |[cos( Ю nt + ^ n + # 2n X n=1 where I =nФ 2 1 V h h2 12R1 + (8) + c(W1n - W2n X I“1 l I h 2 dx I J W 12nw 1 0 + U in u 1 0 + 1 2 ^10 + J 0 1 12n212R1 + W2nw 20 + U 2nu 20 + TT"2" ̂W2n^ 20 + c(W 1n “ W2n )(w10 “ w 20 ) 12R 2 d x , X 1n = arg ^ 1n > X 2n = arg ^ 2n > # 1n = arg ^ 1n > # 2n = ar§ ^ 2n = 0 1n = ar§ ̂ 1n > 0 2n = ar§ ̂ 2n > (P n = ar§ Ф n > and v n = г n n ± ^ n are the complex natural frequencies. ISSN 0556-171X. Проблемы прочности, 2000, № 4 125 2 2 K. Cabanska-Placzkiewicz t , s t , s w, m O .I 0 .0 7 5 \ Wi 0 .0 5 0 .0 2 5 w 2 - 0 . 0 2 5 A 0 . 0p t ~ ■ t^ T ^ 2 y 0 .0 0 3 " 0T 004 ’ OO1 c w, m o . i 0.075 0.05 0.025 -0.025 -0 .05 Fig. 5. Free vibration of a system of two cylindrical shells coupled by a viscoelastic interlayer for z = 0.051 and different thicknesses of internal layers: a) R1 = 0.02 m, R2 = 0.03 m, R3 = 0.04 m, and h = 0.01 m; b) R: = 0.02 m, R2 = 0.04 m, R3 = 0.05 m, and h = 0.02 m; c) R1 = 0.02 m, R2 = 0.05 m, R3 = 0.06 m, and h = 0.03 m; d) R1 = 0.02 m, R2 = 0.06 m, R3 = 0.07 m, and h = 0.04 m. 126 ISSN 0556-171X. npo5neMbi npounocmu, 2000, № 4 Dynamic analysis o f sandwich cylindrical shell According to the K irchhoff-Love model, the free vibration is described by (2). Some results concerning the time dependence o f the distributions o f displacements w and W2 for the external layers I and II in the system o f two cylindrical shells coupled together by a viscoelastic interlayer for different thicknesses o f the internal layers in the case z = 0 .51 are presented in Fig. 5. The thicknesses o f the external layers do not change. The internal layers are m ade o f 8 2the soft material w ith E = 10 N/m m , v = 0.3 and are described by the V oigt-Kelvin model. The external layers o f the cylindrical shell are made o f an 11 2elastic material with E i = E 2 = 2.1-10 N/m m , and v = 0.3. The displacements o f the internal layer for the thickness h = 0,01 m are shown in a Fig. 5a and reach values approximately 15% sm aller than those in Fig. 5b for the thickness h = 0,02 m. The displacements in Fig. 5b reach values approximately 8.5% smaller than those in Fig. 5c for h = 0,03 m. The displacements in Fig. 5c reach values approximately 5.3% smaller than those in Fig. 5d for h = 0,04 m. In conclusion, it m ay be noted that, as the thickness R 3 o f the interlayer increases, the free vibration o f a sandwich system decays m ore slowly w ith time t. Р е з ю м е Проведено динамічний аналіз циліндричних оболонок та розглянуто нові механічні ефекти в розподіленні напружень, деформацій і переміщень. Циліндричні оболонки розглядаються на основі гіпотези К ірхгоф а-Л ява й уточненої моделі Тимошенка. 1. Г рин чен ко В. Т., М елеш ко В. В. Гармонические колебания и волны в упругих телах. - Киев: Наук. думка, 1981. - 284 с. 2. Грин чен ко В. Т. Равновесие и установившиеся колебания упругих тел конечных размеров. - Киев: Наук. думка, 1978. - 264 с. 3. B o risyu k A . M odelling o f the acoustic properties o f the larger hum an blood vessel // J. Acoustic Wisnik. - 1998. - 1, N 3. - P. 3 - 13 (Institute o f Hydromechanics, National Academ y o f Sciences o f Ukraine). 4. Скучик E. Простые и сложные колебательные системы. - M.: Мир, 1971. - 558 с. 5. К а р н а ух о в В. Г ., С енченков И. К ., Г ум ен ю к Б. П . Термомеханическое поведение вязкоупругих тел при гармоническом нагружении. - Киев: Наук. думка, 1981. - 288 с. 6 . P a n k r a to v a N. D ., N ik o la e v B ., S w ito n c s k i E . N onax isym m etrica l deformation o f flexible rotational shell in classical and improved statements // J. Eng. Mech. - 1996. - 3, N 2. - P. 89 - 96. 7. Г р и го р ен к о Я. М ., Б есп ал ова E. И., К и т ай город ски й А. Б., Ш и нкарь А. И . Свободные колебания элементов оболочечных конструкций. - Киев: Наук. думка, 1981. - 172 с. Received 02. 10. 99 ISSN 0556-171X. Проблемы прочности, 2000, № 4 127