Vibrations of a Complex System with a Viscoelastic Inertial Interlayer

The paper presents an analytical method for solving problems of free and forced vibrations with damping of complex systems whose loaded layers are made of homogeneous elastic inertial materials, and the middle one is made of viscoelastic inertial material. Small lateral vibrations of the compl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2001
1. Verfasser: Cabanska-Placzkiewicz, K.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2001
Schriftenreihe:Проблемы прочности
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/46722
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Vibrations of a Complex System with a Viscoelastic Inertial Interlayer / K. Cabanska-Placzkiewicz // Проблемы прочности. — 2001. — № 6. — С. 103-115. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-46722
record_format dspace
spelling irk-123456789-467222013-07-16T18:56:53Z Vibrations of a Complex System with a Viscoelastic Inertial Interlayer Cabanska-Placzkiewicz, K. Научно-технический раздел The paper presents an analytical method for solving problems of free and forced vibrations with damping of complex systems whose loaded layers are made of homogeneous elastic inertial materials, and the middle one is made of viscoelastic inertial material. Small lateral vibrations of the complex systems are caused by distributed and movable loads. A dynamic analysis of laminated structures for a wide range of variation of the geometrical and mechanical characteristics of a layer from viscoelastic inertial material was performed. Предложен аналитический метод решения задач о затухании свободных и вынужденных колебаний сложных систем, несущие слои которых выполнены из однородного упругого, а средний - из вязкоупругого инерционного материала. Малые поперечные колебания сложных систем обусловлены распределенной и подвижной нагрузкой. Выполнен динамический анализ слоистых конструкций в широком диапазоне изменения геометрических и механических характеристик слоя из вязкоупругого инерционного материала. Запропоновано аналітичний метод розв’язку задач щодо згасання вільних та вимушених коливань складних систем, несучі шари яких виконано з однорідного пружного, а середній - з в’язкопружного інерційного матеріалу. Малі поперечні коливання складних систем зумовлені розподіленим і рухомим навантаженням. Виконано динамічний аналіз шаруватих конструкцій у широкому діапазоні зміни геометричних і механічних характеристик шару з в’язкопружного інерційного матеріалу. 2001 Article Vibrations of a Complex System with a Viscoelastic Inertial Interlayer / K. Cabanska-Placzkiewicz // Проблемы прочности. — 2001. — № 6. — С. 103-115. — Бібліогр.: 16 назв. — англ. 0556-171X http://dspace.nbuv.gov.ua/handle/123456789/46722 539.4 en Проблемы прочности Інститут проблем міцності ім. Г.С. Писаренко НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Научно-технический раздел
Научно-технический раздел
spellingShingle Научно-технический раздел
Научно-технический раздел
Cabanska-Placzkiewicz, K.
Vibrations of a Complex System with a Viscoelastic Inertial Interlayer
Проблемы прочности
description The paper presents an analytical method for solving problems of free and forced vibrations with damping of complex systems whose loaded layers are made of homogeneous elastic inertial materials, and the middle one is made of viscoelastic inertial material. Small lateral vibrations of the complex systems are caused by distributed and movable loads. A dynamic analysis of laminated structures for a wide range of variation of the geometrical and mechanical characteristics of a layer from viscoelastic inertial material was performed.
format Article
author Cabanska-Placzkiewicz, K.
author_facet Cabanska-Placzkiewicz, K.
author_sort Cabanska-Placzkiewicz, K.
title Vibrations of a Complex System with a Viscoelastic Inertial Interlayer
title_short Vibrations of a Complex System with a Viscoelastic Inertial Interlayer
title_full Vibrations of a Complex System with a Viscoelastic Inertial Interlayer
title_fullStr Vibrations of a Complex System with a Viscoelastic Inertial Interlayer
title_full_unstemmed Vibrations of a Complex System with a Viscoelastic Inertial Interlayer
title_sort vibrations of a complex system with a viscoelastic inertial interlayer
publisher Інститут проблем міцності ім. Г.С. Писаренко НАН України
publishDate 2001
topic_facet Научно-технический раздел
url http://dspace.nbuv.gov.ua/handle/123456789/46722
citation_txt Vibrations of a Complex System with a Viscoelastic Inertial Interlayer / K. Cabanska-Placzkiewicz // Проблемы прочности. — 2001. — № 6. — С. 103-115. — Бібліогр.: 16 назв. — англ.
series Проблемы прочности
work_keys_str_mv AT cabanskaplaczkiewiczk vibrationsofacomplexsystemwithaviscoelasticinertialinterlayer
first_indexed 2025-07-04T06:10:08Z
last_indexed 2025-07-04T06:10:08Z
_version_ 1836695588056334336
fulltext UDC 539.4 Vibrations of a Complex System with a Viscoelastic Inertial Interlayer K. Cabanska-Placzkiewicz Bydgoszcz Academy, Department of Mathematics, Technology, and Natural Science Institute of Technology, Bydgoszcz, Poland УДК 539.4 Колебания сложных систем с вязкоупругим инерционным заполнителем К. Цабанска-Плашкевич Академия, Отделение математических технологий и естественных наук Техничес­ кого института, Быдгощ, Польша Предложен аналитический метод решения задач о затухании свободных и вынужденных колебаний сложных систем, несущие слои которых выполнены из однородного упругого, а средний - из вязкоупругого инерционного материала. Малые поперечные колебания слож­ ных систем обусловлены распределенной и подвижной нагрузкой. Выполнен динамический анализ слоистых конструкций в широком диапазоне изменения геометрических и механи­ ческих характеристик слоя из вязкоупругого инерционного материала. К л ю ч е в ы е с л о в а : колебания, сложная система, вязкоупругий инерционный заполнитель, аналитическое решение. Introduction. Compound systems coupled together by elastic constraints play an important role in various engineering and building structures. Vibration problems in engineering were considered by Timoshenko [1]. Vibration analysis for laminated plates is presented in [2-3] and in many other works. The stress-strain state of laminated orthotropic nonhomogeneous plates and shells was considered in [4-5]. Vibrations of an elastically connected rectangular double-plate compound system with moving loads are given in [6 ]. Vibration analysis of layered systems with vibration damping is a difficult problem. In the above complex cases, especially where viscosity and discrete elements occur, it is recommended to adopt a method of solving a dynamic problem for such a system in complex functions [7-8]. For the first time the property of orthogonality of complex modes of free vibrations for discrete systems with damping was presented in [7], for discrete-continuous systems with damping in [8 ], and for continuous systems with damping in [1 5 , 16]. The goal of this paper is to present the solution and dynamic analysis of free and forced vibrations for a complex system with damping, which consists of a plate, viscoelastic inerlayer, and stiff foundation. Statement of the Problem. Let us consider a problem of free and forced vibrations for a complex system with a viscoelastic inertial interlayer. The external layers of the complex system are made from an elastic plate and stiff © K. CABANSKA-PLACZKIEWICZ, 2001 ISSN 0556-171X. Проблемы прочности, 2001, N 6 103 K. Cabanska-Placzkiewicz Fig. 1. Dynamic model for a complex system of an elastic plate with a viscoelastic inertial interlayer resting on stiff foundation. foundation and are shown in Fig. 1. The elastic plate is described by the Kirchhoff-Love model and is simply supported at its ends. The viscoelastic inertial interlayer has the characteristics of a homogeneous continuous unidirectional Winkler’s foundation and was described by the Voigt-Kelvin model [9-11]. In this paper, we consider two cases. In the first case, small-frequency transverse vibrations of a complex system are exited by a stationary dynamic load f 1 (x ,y , t ). In the second case, small-frequency transverse vibrations of a complex_ _ >ls system are exited by a non-inertial moving load f 1 (x , y , t ), y = v t with the speed v *. The phenomenon of small-frequency transverse vibrations for an elastic plate with a viscoelastic inertial interlayer resting on a stiff foundation is described by the following non-homogeneous system of conjugate partial differential equations: ̂2d W1 n r d ) ^dw 1 + c — \E — d t ) dz = f 1 (X ,y , t), ( 1 ) z= 0 1+ c — \Eh d 2 w d t ) dt = 0 , (2 ) where *1 4 n 4 n 4A 2 d Wi d Wi d Wi A2 w1 = ---- -- + 2— + ■ 1 dx dx 2 dy 2 dy (3) E 1 h3 D 1 = ---------- — , X 1 = P 1 h 1 , x = p h . 1 2 (1 - v ) (4) Here w1 = w1 (x , y , t ), w(x, y , z , t ) are the transverse deflections of the plate and the viscoelatic inertial interlayer, respectively, E 1 and E are Young’s moduli of the material of the plate and the interlayer, c is the damping coefficient of the 104 ISSN 0556-171X. npoôëeMbi nponnocmu, 2001, № 6 Vibrations o f a Complex System interlayer (retardation time), p j and p are the mass densities of the material of the plate and the interlayer, respectively, h j and h are the thickness of the plate and the interlayer, a and b are the dimensions of the plate, v lp is Poisson’s ratio, x and y are the coordinate axes, and f j(x , y , t ) is the dynamic load acting on the complex system. Separation of Variables. Presenting the solution of the problem under consideration in the form щ ( x , y , t ) W1 (x ,y ) _ 4 x , y , z , t )_ W ( x , y , z )_ exp( iv t ) (5) and substituting (5) in the system of differential equations (1), (2), by an assumption that f 1(x ,y , t ) = 0 , we obtain a homogeneous system of conjugate ordinary differential equations describing complex modes of free vibration of the plate and the viscoelastic inertial interlayer: 2 2 d ~W D 1A 2W 1 - u 1v 2 W1 - (1 + ic v ) E ----- dz = 0 , z=0 (6 ) where d 2W d z 2 + X2W = 0 , л 2 d 4 W, d 4 W, d 4 W, A2 W1 = -----Л + 2 „ \ +■ 1 dx dx 2dy 2 dy (7) (8 ) A = , i2 = - 1 (9) E h (1 + icv ) w Here W 1( x , y ) and W (x , y , z ) are the complex modes of free vibration of the plate and the interlayer, and v is the complex eigenfrequency of the complex system with damping. Solution of a Boundary Value Problem. The solution for the inertial viscoelastic interlayer (7) is presented in the following form: W ( x , y , z ) = C j(x , y )sin Xz + C 2( x , y )cos X z , (10) where C i(x ,y ) and C 2 (x ,y ) are constant coefficients. We have assumed the following geometric conditions: W|z= 0 = Wi, W|z=A = 0. (11) On substitution of (10) and (11) in (7), Eq. (10) can be rewritten in the following form: ISSN 0556-171X. Проблемы прочности, 2001, N2 6 105 K. Cabanska-Placzkiewicz W ( x ,y , z ) = W 1( x ,y ) (cos Xz — ctg Xz — ctg Xh sin X z). (1 2 ) Substituting (12) in Eq. (6 ), we obtain D 1A 2W 1 — [/m1v 2 + (1+ icv)E X ctg X h ]W1 = 0. (13) The solution for W i is similar to that in [1]: W 1 (x , y ) = X 1 (x ) ^ ( y ). (14) Substituting (9) and (14) in (13), we can rewrite Eq. (13) in the following form: X ( V Y 1 + 2 X 1 Y \ + X 1Y ( V — Z 4 X 1Y 1 = 0, (15) where Z 4 = - ^ [ м ^ 2 + (1 + ic v )EX ctg X h ]. (16) ^ 1 The quantities X 1(x ) and Y 1( y ) can be separated as follows [1]: Y II y i vY1 2 Y1 4 — = — d , — = g . ( 17) Representing the solution of the differential equation (15) in the forms of X 1 = A exp( r1x ) and Y1 = B exp( r2 y ), (18) we obtain a characteristic equation in the form of an algebraic equation [r 4 — 2 d 2 r12 + (d 4 — Z 4)]( r22 + d 2) = 0 , d 4 = g 4 (19) with the following roots: r = ± i a v , a v = y j—0 2 ± Z 2 , r2 = ± i 3 , 3 = d . (20) The solution of the differential equation (6 ) consists of a system of solutions: 2 W1 (x ,y ) = ^ [A * sina vx + A** cos a vx ][B* sin j3y + B ** cos j3y ], (2 1 ) U= 1 * * * * where A v , A v , B , and B are constant coefficients. 106 ISSN 0556-171X. Проблемы прочности, 2001, N 6 Vibrations o f a Complex System In order to solve the boundary value problem, the following boundary conditions are used: W 1 x= 0 = 0 Wll x=a = 0 W \ y= 0 = 0 W \ y=b = 0 d 2W 1 = 0 , d 2W 1 x= 0 = 0 , d 2W 1 dy* = 0 , d 2W 1 y= 0 d y = 0 . (2 2 ) y=b Substituting the sequences a 1n = a 2n = a and f i n in Eqs. (12) and (21), we obtain the following two complex sequences of free vibration modes for a plate and viscoelastic inertial interlayer: W 1 nln2 (x, y ) = sin a n x sin ß n2 y , W ^ ( x , y , z ) = sin a ni x sin ß „2 y[cos k h sin k z ], (23) (24) where a n i n „ n 2 n n1 = J ß n2 = ~r~> ni = 1,2, 3, ■■■, n 2 = 1, 2, 3, .... (25) For r1n = ± i a n and r2n = ± i 8 , on substituting Eqs. (16) and (25) in 1 n 1 2 n 2 (2 0 ) and carrying out the transformations, we obtain the following equation of frequency: where and 2 2 2 n 1 n , n 2 n = z 2 2 + , 2 = Z n1n 2 a b k =k n 1 n 2 n 1 n 2 E h (1 + icV n1 n2) (26) z «1 n2 (27) (28) from which a sequence of complex eigenfrequencies is determined: (29) Solution of the Initial Value Problem. Free vibration of a complex system with a viscoelastic inertial interlayer is represented in the form of a Fourier series based on the complex eigenfunctions, i.e., 2 ISSN 0556-171X. npoôneMbi npouuocmu, 2001, № 6 107 K. Cabanska-Placzkiewicz Wi(X,y , t ) w( X, y , z , t ) 2 2 W!«1«2 (X, y ) «1 = 1 «2 = 1 00 00 2 2 w «1«2 ( x ’ y ’z ) n = 1 « 2 = 1 $ n1 n2 exp( iv „ 1„ 2 t), (30) where $ is the Fourier coefficient.n1n 2 From the system of equations (6 ) and (7) performing some algebraic transformations, adding the equations together and then integrating them on both sides within the limits from 0 to l, we obtain the property of orthogonality of eigenfunctions for a complex system with an inertial viscoelastic interlayer: a b f f 0 0 i(V n + v m ) V1W1nW1m + f V W nW m d z d x d y + L a b d W d W + c f f f —Wn---- Wm d x d y d z = N n ô , 0 0 0 d z d z (31) where N nn2 = f f 0 0 d x d y + + c a b h / d W \m l tt r f „ I 0 0 0 dz d xd yd z . (32) Here ô nm is Kronecker’s delta, and n = (n 1, n 2), m = (m 1,m 2 ). The following initial conditions are the basis for solving the problem of free vibrations: W1 (x , y ,0 ) = W0 1 , W1 (x , y , z , o ) = w 0 1 , W0 (x , y ,0 ) = W0 . (33) By applying conditions (33) in series (30) and taking into account the property of orthogonality (31), the formula for the complex Fourier coefficient is obtained: $ = 1 n 1 n 2 N f f n1n 2 0 0 o V1 ( i v n1n2 W1n1n2 w 0 1 + W1n1n2 w0 1 ) + f MWn1n2 w 0 d z 0 a bc h dWn1n2 d w { + c f f f 0 0 0 _______ v_0_ d z d z d x d y d z . d x d y + (34) 0 0 2 108 ISSN 0556-171X. npoôneMbi npoHHoemu, 2001, № 6 Vibrations o f a Complex System Free vibration of the complex system with a viscoelastic inertial interlayer is obtained in the following form: 00 00 w 1 = 2 2 e" « ! = 1 «2 = 1 Ini «2 n 1 n 2 C0 s ( ° n , t + p n , + x 1«1 «2 )’ (35) 0 0 w = 2 2 ' ln1 n2 W,n1n 2 $ n1n 2 C0s(° m n2 t + P n1n2 + X n n2 ) ’ (36) where = modWi, Wnn1n2 = mod W n 1n1n 2 ’ X 1n2 n2 = arg W1n1n2 ’ X n1n2 = arg $ n ^ . (37) Solution of the Forced Vibration Problem. The first case concerns stationary forced vibrations. Small-frequency transverse vibrations of a complex system with damping are excited by dynamic loading f 1(x , y , t ) at the points x 0 and y 0 varying in time t (Fig. 1): f 1 (x ,y , t ) = p 1 ^ ( x - x o)d(y - y o )sinoo t , (38) where P 1 is the force, d(x — x 0) and d( y — y 0) are Dirac delta functions, and rn 0 is the real frequency of stationary forced vibrations. The solution for complex modes of stationary forced vibrations for a complex system with damping are written in the form W1 ( x , y ) = W1 (x , y ) + W1 (x , y ). (39) The general solution of the differential equation (1) consists of the system of solutions W1*(x ,y ) = 2 K * s i n + A * * cosa„x][B * sinßy + B ** cosß y ]. (4 0 ) U= 1 In the case v = 0 0 in Eq. (20) a ^ a 2 = V - ß 2 + Z 0 , ß = ’ (41) where Z 0 = ± J D [ ̂ 1° 2 + (1+ ic 0 o )EX o Ctg A 0 h ]. (42) w1 = 1 2̂ = 1 ISSN 0556-171X. npoôneMbi npounocmu, 2001, № 6 109 K. Cabanska-Placzkiewicz Here À o — /Wa 0 Eh( 1 + ica) o ) (43) from which the frequencies of real stationary forced vibrations are determined: m 0 = {0 ...1 0 0 0 0 0 }. The particular solution of the differential equation (1) consists of the system of solutions ** . W 1 (x,y ) = P ̂ 1 a b = 7 T 2 ----a / / sin a u (x — T 1 )^( T 1 — x 0 )sin 3( y — T 2 >̂ ( T 2 — y 0 )dT 1 dT 2 . D1 u= 1 a ^ 3 0 0 (44) On substituting (40) and (44) into (39), the complex modes of the stationary forced vibrations for a complex system with a viscoelastic inertial interlayer can be written in the following form: W1( x , y ) = (A* sin a 1x + A2* sin a 2 x )B* sin 3 y + + — sin a 1( x — x 0)H ( x — x o) + — sin a 2( x — x 0) a . a - x x ~fisin fi( y — y o)H ( y — y o). (45) In order to solve the problem of forced vibrations, the boundary conditions (22) have been applied. The constants occurring in Eq. (45) are described in the following form: A 1 — A 2 — 0 A 1 1 sin a 1( a — x o) A 2 — 1 sin a 2(a — x o) B — 0, B — a 1 sin a 1a a 2 sin a 2 a p 1 1 sin fi( b — y o) (46) D 1 fi sin fib Forced vibrations of a complex system with damping are stationary and have the following form: W1 ( x , y , t ) = W1 ( x , y )exp( im 0 1). (47) Substituting (39) into (47) and performing trigonometric and algebraic transformations, we obtain forced vibrations of a complex system with a viscoelastic inertial interlayer: 110 ISSN 0556-171X. npoôneMbi npouuocmu, 2001, № 6 Vibrations o f a Complex System w 1 = |W1 |sin( rn o t + # j), (48) where \W ^ is the amplitude of an elastic plate with a viscoelastic inertial interlayer and # 1 is argW ^x,y ). The second case concerns non-stationary forced vibrations. Small-frequency transverse vibrations of a complex system with damping are excited by a* non-inertial moving load f 1( x ,y , t) [12, 13] with the speed v (Fig. 1). f i (x ,y ,t) = P jd (y — y ). (49) _ _ * Here P 1 is the force, o ( y — y ) is the Dirac delta function, y = v t , x = 0.5a, and * v = const. In order to solve the differential equations (1), (2). the function of the load (49) is expanded by the operational method [14]: 00 00 f 1 (x , y, t) = (^1W1«1«2 + W ni « 2 ) f «1 « 2 , (50) n1 =1 2̂ = 1 where W \nini and have been described by Eqs. (23) and (24). The function of the displacement of a complex system with damping is presented in the form of a Fourier series as Wi w = 2 2 Wiini fto W nn 1 n 2 T -L (51) Substituting (50) and (51) into the differential equations (1), (2), we obtain the following equation of motion: T n1 n2 ni n^ ni n2 j ni n2 ^ (52) where T n n is the coefficient of the distribution of the dynamic loading function in the Fourier series. Applying the property of orthogonality of eigenfunction (31), we derive formulas for the coefficients of load distribution, namely: f = ----- i— i n 2 D i N n n -IV,nin 2 2 0 0 u W nin2 ( x , y ) + / Wnin2 (x , y , z ) d z Piô( y — y )d xd y . (53) ni=i n2=i 0 ISSN 0556-171X. npoôneMbi npounocmu, 2001, № 6 111 K. Cabanska-Placzkiewicz The solution of the differential equation (52) has the form [14] 1 t Tnin2 = ------- f [exp( iv n in i)( t _ r ) - 1 l/n in2 (T)dx. n1n 2 0 On substituting (53) and (54) into (51), Eq. (51) can be rewritten in the following form: 00 00 ^ 1 Klnin2 Tnin2 c° s(^ ini n2 nin2 ), n1= 1 n2 = 1 (55) where ^ ^ Tnin2 COs(̂ ni n2 nin2 ), (56) ^ 1nin2 ar§ W1nin2 ’ ^ nin2 ar§ Wnin2 ’ ^ nin2 arg Tnin2 ■ (57) Calculations. The calculations for a complex system with a viscoelastic inertial interlayer are presented. The external layers of the complex system are made of an elastic plate and stiff foundation. The thickness and mechanical characteristics of the plate, foundation, and the interlayer do not change.in _2 Numerical results are presented for the same parameters: E i = 10 N- m , p 1 = 2-103 N -s 2 -m_4, v 1p = 0.3, h 1 = 0.2 m, h = 0.5 m, P = 2-104 N, * o a = 10 m, b = 1000 m, c = 2.5 s, and v = 120 m-s . The amplitude-frequency diagrams for a complex system with damping for real stationary frequencies in the range 0 < r n 0 < 1 0 0 0 0 0 are presented in Figs. 2-3. In the first case, small-frequency transverse vibrations of the complex system are excited by the force f 1(x , y , t ) = P 1̂ ( x _ x 0 )d( y _ y 0 )sin( rn 0 1) acting at the point x 0 = 0.5a, y 0 = 0.5b and varying in time t. The amplitude-frequency diagrams of the complex system are presented in Fig. 2. Changes in the amplitude W1 I for the complex system at the point x = 0.55a, y = 0.55b (variant “a”) and at the point x = 0.7a, y = 0.8b (variant “b”) are also given there. In the case of variant “b” considered, the amplitude \W2 of the complex system is 50% smaller than the amplitude \W^ of the complex system for variant “a”. The changes in the amplitude of the viscoelastic inertial interlayer at the point x = 0.7a, y = 0.8b are shown in Fig. 3 for two thicknesses of the interlayer. In variant “a” for the thickness z = 0.2h, the amplitude \W^ of the interlayer is 36% smaller than the amplitude of the plate for z = 0. In variant “b” for the thickness z = 0.5h, the amplitude \W^ of the interlayer is 65% smaller than the amplitude of the plate for z = 0. After analyzing the results presented in Figs. 2-3, we state that a viscoelastic inertial interlayer can be a vibration damper for a plate loaded by the force f 1(x , y , t ) acting at the point x 0 , y 0 and varying in time t. ni= 1 n2 = 1 112 ISSN 0556-171X. npodneMbi npouuocmu, 2001, № 6 Vibrations o f a Complex System a b Fig. 2. The amplitude-frequency diagrams for an elastic plate with a viscoelastic inertial interlayer at the points: (a) x — 0.55a, y — 0.55b; (b) x — 0.7a, y — 0.8b. a Fig. 3. The amplitude-frequency diagrams for an elastic plate with a viscoelastic inertial interlayer at the points: (a) x — 0.7a, y — 0.8b, z — 0.2k; (b) x — 0.7a, y — 0.8b, z — 0.5h. ISSN 0556-171X. npoôëeMbi nponnocmu, 2001, № 6 113 K. Cabanska-Placzkiewicz 0 . 0 0 1 0 . 0 0 0 5 - 0 . 0 0 0 5 - 0 . 001 - 0 . 0 0 1 5 - 0 . 0 0 2 Fig. 4. The trajectory of dynamic displacement of a moving point of an elastic plate with a viscoelastic inertial interlayer for the concentrated non-inertial moving force for x = 0.5a for time t = 0.03 s. In the second case, small-frequency transverse vibrations of a complex system are exited by the moving concentrated force f 1 (x , y , t ) = P1d(y — y ) with *the speed v . The effect of the non-inertial moving force in the complex system with an inertial viscoelastic interlayer is presented in diagram 4. The diagram shows the real part of the trajectory of dynamic displacement of a moving point of* the complex system w 1( x ,y , t ) for x = 0.5a, y = v t for time t = 0.03 s. A model for a complex system consisting of an elastic plate with a viscoelastic inertial interlayer resting on a stiff foundation can play the role of a runway in an airport. In the first case, we might have been considering free and forced vibrations of an aircraft, which touches the runway of the airport. In the second case, we might have been considering the trajectory of dynamic displacement of an aircraft moving with the speed v * after touching the runway of the airport. A complex system with a viscoelastic inertial interlayer of big thickness can be used for damping vibrations in practical problems. Complex modes of free vibrations and the property of orthogonality of those modes presented in this paper are the basis for solving the problems of free and forced vibrations of a complex system with a viscoelastic inertial interlayer. Р е з ю м е Запропоновано аналітичний метод розв’язку задач щодо згасання вільних та вимушених коливань складних систем, несучі шари яких виконано з одно­ рідного пружного, а середній - з в’язкопружного інерційного матеріалу. Малі поперечні коливання складних систем зумовлені розподіленим і рухо­ мим навантаженням. Виконано динамічний аналіз шаруватих конструкцій у широкому діапазоні зміни геометричних і механічних характеристик шару з в’язкопружного інерційного матеріалу. 1. S. P. Timoshenko, V ibra tion P ro b le m s in E n g in e e r in g , D. Van Nostrand Company, New York, Toronto, London (1955). 2. R. A. Di Taranto and J. R. McGraw, “Vibratory bending of damped laminated plates,” Trans. A S M E , J. E ng . In d u s try , 91, 1081-1090 (1969). 114 ISSN 0556-171X. П роблеми прочности, 2001, № 6 Vibrations o f a Complex System 3. W. Kurnik and A. Tylikowski, M e c h a n ic s o f L a m in a te d E le m e n ts , Publ. Warsaw Univ. of Techn., Warsaw (1997). 4. V. Z. Vlasov and N. N. Leont’ev, B ea m s, P la te s , a n d S h e lls on an E la s tic F o u n d a tio n [in Russian], Glav. Izdat. Fiz.-Mat. Literatury (1960). 5. N. D. Pankratova, A. O. Rasskazov, A. Bondar’, and A. G. Bondarskii, “On the calculation of the stress state of shear-compliant multi-layer shells and plates,” P rik l. M e k h ., 23, No. 7, 55-61 (1987). 6 . W. Szczeæniak, “Vibration of elastic sandwich and elastically connected double-plate systems under moving loads,” B u ild in g E n g in e e r in g (Publ. of the Warsaw Univ. of Techn.), No. 132, 153-172 (1998). 7. F. Tse, I. Morse, and R. Hinkle, M e c h a n ic a l V ibra tions: T h eo ry a n d A p p lic a tio n s , Allyn & Bacon, Boston (1978). 8 . J. Niziol and J. Snamina, “Free vibration of the discrete-continuous system with damping,” J. T heor. A pp l. M e c h ., 28, No. 1-2, 149-160 (1990). 9. W. Nowacki, T h e B u ild in g D y n a m ic s , Arkady, Warsaw (1972). 10. Z. Osinski, D a m p in g o f th e M e c h a n ic a l V ib ra tion , PWN, Warsaw (1979). 11. D. Nashif, D. Jones, and J. Henderson, V ib ra tio n D a m p in g [Russian translation], Mir, Moscow (1988). 12. M. Renaudot, “Etude de l’influence des charges en mouvement sur la resistance, des ponts metallique droites,” A n n a le s d es P o n ts e t C h a u sses , No. 1, 145-204 (1861). 13. N. Z. Yakushev, “Some problems of beam dynamics under the action of moving loads,” in: In v e s tig a tio n in to th e T h eo ry o f P la te s a n d S h e lls [in Russian], Izd. Kazan. Univ., Kazan (1974), pp. 199-220. 14. J. Cabanski, “Vibration of Timoshenko-Kelvin beam,” T h e R e se a rc h C o pybook. M e c h a n ic s (Publ. of the Univ. of Techn. and Agriculture, Bydgoszcz), 221, No. 44, 27-37 (1999). 15. K. Cabanska-Placzkiewicz, “Free vibration of the system of two Timoshenko beams coupled by a viscoelastic interlayer,” J. E ng . T rans., 47, No. 1, 21-37 (1999). 16. K. Cabanska-Placzkiewicz, “Free vibration of three-layer constructional system with damping,” J. M ech . E n g ., 1, No. 31, 36-39 (2000). Received 30. 01. 2001 ISSN 0556-171X. npoôneMbi npouuocmu, 2001, № 6 115