Localization of Resonant Spherical Waves
This paper treats radial spherical resonant waves excited in the transresonant regime. An approximate general solution of a perturbedwave equation is presented here, which takes into account nonlinear, spatial, and dissipative effects. Then a boundary problem reduces to the perturbed compound...
Gespeichert in:
Datum: | 2002 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут проблем міцності ім. Г.С. Писаренко НАН України
2002
|
Schriftenreihe: | Проблемы прочности |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/46733 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Localization of Resonant Spherical Waves / Sh.U. Galieva, O.P. Panova // Проблемы прочности. — 2002. — № 1. — С. 102-111. — Бібліогр.: 17 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | This paper treats radial spherical resonant
waves excited in the transresonant regime. An
approximate general solution of a perturbedwave
equation is presented here, which takes
into account nonlinear, spatial, and dissipative
effects. Then a boundary problem reduces to
the perturbed compound Burgers-Kortewegde
Vries equation (BKdV) in time. Several solutions
to this equation are constructed. Shock
waves may be excited near resonance according
to the solutions for an inviscid medium.
However, both viscosity and spatial dispersion
begin to be important very close to resonance
and prevent the formation of shock discontinuity.
As a result, periodic localized excitations
are generated in resonators instead of shock
waves. |
---|