Localization of Resonant Spherical Waves

This paper treats radial spherical resonant waves excited in the transresonant regime. An approximate general solution of a perturbedwave equation is presented here, which takes into account nonlinear, spatial, and dissipative effects. Then a boundary problem reduces to the perturbed compound...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2002
Hauptverfasser: Galiev, Sh.U., Panova, O.P.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2002
Schriftenreihe:Проблемы прочности
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/46733
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Localization of Resonant Spherical Waves / Sh.U. Galieva, O.P. Panova // Проблемы прочности. — 2002. — № 1. — С. 102-111. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:This paper treats radial spherical resonant waves excited in the transresonant regime. An approximate general solution of a perturbedwave equation is presented here, which takes into account nonlinear, spatial, and dissipative effects. Then a boundary problem reduces to the perturbed compound Burgers-Kortewegde Vries equation (BKdV) in time. Several solutions to this equation are constructed. Shock waves may be excited near resonance according to the solutions for an inviscid medium. However, both viscosity and spatial dispersion begin to be important very close to resonance and prevent the formation of shock discontinuity. As a result, periodic localized excitations are generated in resonators instead of shock waves.