Flow Characteristics of Metal with Phase Transformation and Prediction of Its Microstructure
We propose a flow stress characteristic of SUS430F steel that takes in account the effects of temperature, strain rate and their deformation history. In the framework of this characteristic, the history effects of strain rate and temperature are estimated through the plastic strain energy stor...
Gespeichert in:
Datum: | 2002 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут проблем міцності ім. Г.С. Писаренко НАН України
2002
|
Schriftenreihe: | Проблемы прочности |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/46757 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Flow Characteristics of Metal with Phase Transformation and Prediction of Its Microstructure / T. Shirakashi, M. Yoshino // Проблемы прочности. — 2002. — № 3. — С. 22-29. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-46757 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-467572013-07-07T12:11:08Z Flow Characteristics of Metal with Phase Transformation and Prediction of Its Microstructure Shirakashi, Т. Yoshino, М. Научно-технический раздел We propose a flow stress characteristic of SUS430F steel that takes in account the effects of temperature, strain rate and their deformation history. In the framework of this characteristic, the history effects of strain rate and temperature are estimated through the plastic strain energy stored. The formulated characteristic (σ) may be shown as the function of temperature (θ), strain rate (ε), and the stored energy (W) or the reference stress (σst). The energy is stored through plastic deformation and released during annealing process. The energy is also re ferred by the yield flow stress (ost), which is measured under the reference condition. The discussion on the characteristic is extended to the material under high temperature (1073-1473 K) with α + γ phase in the given phase ratio. The equilibrium ratio of α or γ phase under given temperature can be estimated on the basis of an equilibrium phase diagram. In order to introduce the flow stress characteristic with phase transformation using the proposed formulation, we also analyze the phase transformation rate from α to α + γ with temperature elevation, and from α to γ + α in cooling process based on “time-temperature- transformation” diagram that includes the quenching process as well. The flow stress characteristic and phase ratio are estimated simultaneously for a hot forging process. Предложена новая характеристика текучести стали SUS430F, учитывающая влияние температуры, скорости деформации и истории деформирования материала. В рамках данного подхода влияние истории деформирования на скорость деформации и температуру оценивается по величине накопленной энергии пластической деформации. Предложенная характеристика текучести (σ) может быть представлена в виде функции температуры (θ), скорости деформации (ε), накопленной энергии (W) или базового напряжения (σst). Энергия накапливается в процессе пластического деформирования, а выделяется при отжиге. Ее величина соотносится с пределом текучести, измеряемым в исходных условиях деформирования. Анализ предложенной характеристики распространен на данный материал для высоких температур (1073...1473 К) при наличии (α + γ)-фазы с определенным соотношением фаз. Равновесное распределение соотношения α- или γ-фазы при любой температуре может быть оценено на основе диаграммы равновесия фаз. Новая характеристика текучести для случая фазового превращения может быть использована по предложенной формулировке с учетом скорости фазового превращения из α- в (α + γ)-фазу при повышении температуры и из α- в (γ + α)-фазу при охлаждении. При этом основой служит диаграмма время-температура-фазовое превращение, учитывающая также процесс закалки. Выполнена оценка предложенной характеристики текучести с учетом соотношения фаз для случая горячей ковки материала. Запропоновано нову характеристику текучості сталі SUS430F, яка враховує вплив температури, швидкості деформування та історії деформування матеріалу. У рамках даного підходу вплив історії деформування на швидкість деформації і температуру оцінюється по величині накопиченої енергії пластичної деформації. Характеристика текучості (σ) може бути представлена у вигляді функції температури (θ), швидкості деформації (ε), накопиченої енергії (W) або базового напруження (σst). Енергія накопичується в процесі пластичного деформування, а виділяється при відпалу. Її величина співвідноситься з границею текучості, що вимірюється в початкових умовах деформування. Аналіз запропонованої характеристики розповсюджується на даний матеріал для високих температур (1073...1473 К), якщо має місце (α + γ )-фаза з визначеним співвідношенням фаз. Рівноважний розподіл співвідношення α- або γ-фази за любої температури можна визначити на основі діаграми рівноваги фаз. Нова характеристика текучості у випадку фазового перетворення може бути використана за запропонованим формулюванням з урахуванням швидкості фазового перетворення з α- у (α + γ )-фазу при підвищенні температури та з α- у (γ + α)-фазу при охолодженні. При цьому за основу береться діаграма час-температура-фазове перетворення, яка враховує також процес загартування. У випадку гарячого кування матеріалу оцінено характеристику текучості з урахуванням співвідношення фаз. 2002 Article Flow Characteristics of Metal with Phase Transformation and Prediction of Its Microstructure / T. Shirakashi, M. Yoshino // Проблемы прочности. — 2002. — № 3. — С. 22-29. — Бібліогр.: 6 назв. — англ. 0556-171X http://dspace.nbuv.gov.ua/handle/123456789/46757 539.4 en Проблемы прочности Інститут проблем міцності ім. Г.С. Писаренко НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Научно-технический раздел Научно-технический раздел |
spellingShingle |
Научно-технический раздел Научно-технический раздел Shirakashi, Т. Yoshino, М. Flow Characteristics of Metal with Phase Transformation and Prediction of Its Microstructure Проблемы прочности |
description |
We propose a flow stress characteristic of
SUS430F steel that takes in account the effects
of temperature, strain rate and their deformation
history. In the framework of this characteristic,
the history effects of strain rate and
temperature are estimated through the plastic
strain energy stored. The formulated characteristic
(σ) may be shown as the function of temperature
(θ), strain rate (ε), and the stored energy
(W) or the reference stress (σst). The energy is
stored through plastic deformation and released
during annealing process. The energy is also re ferred
by the yield flow stress (ost), which is
measured under the reference condition. The
discussion on the characteristic is extended to
the material under high temperature
(1073-1473 K) with α + γ phase in the given
phase ratio. The equilibrium ratio of α or γ
phase under given temperature can be estimated
on the basis of an equilibrium phase diagram.
In order to introduce the flow stress
characteristic with phase transformation using
the proposed formulation, we also analyze the
phase transformation rate from α to α + γ with
temperature elevation, and from α to γ + α in
cooling process based on “time-temperature-
transformation” diagram that includes the
quenching process as well. The flow stress characteristic
and phase ratio are estimated simultaneously
for a hot forging process. |
format |
Article |
author |
Shirakashi, Т. Yoshino, М. |
author_facet |
Shirakashi, Т. Yoshino, М. |
author_sort |
Shirakashi, Т. |
title |
Flow Characteristics of Metal with Phase Transformation and Prediction of Its Microstructure |
title_short |
Flow Characteristics of Metal with Phase Transformation and Prediction of Its Microstructure |
title_full |
Flow Characteristics of Metal with Phase Transformation and Prediction of Its Microstructure |
title_fullStr |
Flow Characteristics of Metal with Phase Transformation and Prediction of Its Microstructure |
title_full_unstemmed |
Flow Characteristics of Metal with Phase Transformation and Prediction of Its Microstructure |
title_sort |
flow characteristics of metal with phase transformation and prediction of its microstructure |
publisher |
Інститут проблем міцності ім. Г.С. Писаренко НАН України |
publishDate |
2002 |
topic_facet |
Научно-технический раздел |
url |
http://dspace.nbuv.gov.ua/handle/123456789/46757 |
citation_txt |
Flow Characteristics of Metal with Phase Transformation and
Prediction of Its Microstructure / T. Shirakashi, M. Yoshino // Проблемы прочности. — 2002. — № 3. — С. 22-29. — Бібліогр.: 6 назв. — англ. |
series |
Проблемы прочности |
work_keys_str_mv |
AT shirakashit flowcharacteristicsofmetalwithphasetransformationandpredictionofitsmicrostructure AT yoshinom flowcharacteristicsofmetalwithphasetransformationandpredictionofitsmicrostructure |
first_indexed |
2025-07-04T06:12:49Z |
last_indexed |
2025-07-04T06:12:49Z |
_version_ |
1836695756312936448 |
fulltext |
UDC 539.4
Flow Characteristics of Metal with Phase Transformation and
Prediction of Its Microstructure
T. Shirakashia and M. Yoshinob
a Department of Precision Machinery Engineering, Tokyo Denki University, Tokyo, Japan
b Department of Mechano-Aerospace Engineering, Tokyo Institute of Technology, Tokyo,
Japan
УДК 539.4
Реологические свойства металла с фазовым превращением и
прогнозированием его микроструктуры
Т. Ширакашиа, М. Йошино6
а Отделение точного машиностроения, Токийский университет, Токио, Япония
6 Отделение механико-аэрокосмической техники, Токийский технологический
институт, Токио, Япония
Предложена новая характеристика текучести стали SUS430F, учитывающая влияние
температуры, скорости деформации и истории деформирования материала. В рамках
данного подхода влияние истории деформирования на скорость деформации и температуру
оценивается по величине накопленной энергии пластической деформации. Предложенная
характеристика текучести (а) может быть представлена в виде функции температуры
(в), скорости деформации (е), накопленной энергии (W) или базового напряжения (аst).
Энергия накапливается в процессе пластического деформирования, а выделяется при от
жиге. Ее величина соотносится с пределом текучести, измеряемым в исходных условиях
деформирования. Анализ предложенной характеристики распространен на данный мате
риал для высоких температур (1073...1473 К) при наличии (а + у)-фазы с определенным
соотношением фаз. Равновесное распределение соотношения а- или у-фазы при любой
температуре может быть оценено на основе диаграммы равновесия фаз. Новая характе
ристика текучести для случая фазового превращения может быть использована по предло
женной формулировке с учетом скорости фазового превращения из а- в (а + у)-фазу при
повышении температуры и из а- в (у + а)-фазу при охлаждении. При этом основой служит
диаграмма время-температура-фазовое превращение, учитывающая также процесс закал
ки. Выполнена оценка предложенной характеристики текучести с учетом соотношения фаз
для случая горячей ковки материала.
Ключевые слова: характеристика текучести, скорость деформации, темпера
тура, история деформирования, энергия деформации, фазовое превращение.
Introduction. The flow stress characteristic provides a very important
information for the analysis of a metal forming process. During this process, a
material is deformed under variable strain rate, temperature and their deformation
histories, and when temperature is high enough, phase transformation is also to be
expected. However, no useful flow stress characteristic equation, which can be
applied to a complex deformation process, is available yet.
© T. SHIRAKASHI, M. YOSHINO, 2002
22 ISSN 0556-171X. Проблемы прочности, 2002, № 3
Flow Characteristics o f Metal with Phase Transformation
Metals deformed under various strain rates show different work hardening
rates even if their total equivalent strains are the same [1-5]. This means that the
deformation history affects the flow stress characteristic. The same feature is also
present in the temperature history, because metallurgical phenomena in hot
forming processes (e.g., recovery, phase transformation, or re-crystallization) can
be expected. Since conventional flow stress equation is only a function of the
equivalent strain, strain rate and temperature, but does not depend on deformation
histories of temperature and strain rate, the equation is not used to analyze the
usual hot forming process.
In this paper, the effects of strain rate and temperature histories on the flow
stress are discussed, and a new flow stress equation, which can be applied to any
kind of deformation process, is proposed. The equation is expressed to the hot forming process, where phase transformation is expected, and the microstructure
(phase ratio) combined with the flow stress is also estimated.
Flow Stress Characteristics of Multiphase Metals with Effect of Strain Rate and Temperature Histories without Phase Transformation. In this paper,
the flow stress characteristic of SUS430F metal (ferrite stainless steel) is
discussed, as an example. Figure 1 shows the equilibrium phase diagram for
SUS430F material, which has three regions: ferrite phase (a) for temperatures less
than 1073 K, ferrite and austenite phase (a + y) for temperatures from 1073 to
1473 K, and ferrite phase (a) once again for temperatures over 1473 K.
Fig. 1. E quilibrium phase d iagram o f Fe and Cr. Fig. 2. C om bined effect o f strain rate and
tem perature on the flow stress.
If phase transformation is not expected (at temperatures less than 1073 K),
the flow stress characteristics with effect of histories of both strain rate and
temperature have been proposed as the function of strain rate/temperature at the moment of straining and material state (work hardening rate) shown by Eq. (1)
[6], and the material state is estimated by the stored energy (W) in straining
through the forming process shown in Fig. 2,
a = f (e, T, W), (1)
where £, T, and W are strain rate, temperature and stored energy, respectively.
ISSN 0556-171X. Проблемы прочности, 2002, N2 3 23
T. Shirakashi and M. Yoshino
The energy is stored through plastic deformation and released by annealing
process as shown in Eq. (2),
dw = ode — kwpdt, (2)
where o, e, k, p, w, and t are flow stress, strain, material constants, stored
energy, and time, respectively. The energy released during annealing is shown in
Fig. 3 and also expressed by Eq. (3) and Fig. 4,
dw/dt =—kWn, k = ks exp(—C/T), (3)
where ks and C are the material constants.
Equation (1) is also applicable to a + y phase of given ratio under high
temperatures between 1073 and 1473 K shown in Figs. 4 and 5. The stored energy
(W) is uniquely estimated by the reference stress sst, which is measured under the
reference condition such as room temperature and high strain rate 1500 s—1 shown
in Fig. 5.
Fig. 3. B ehavior o f stress-strain relation by
annealing (room tem perature).
Fig. 4. Stress strain relation o f a + y phase
(high tem perature T = 1273 K).
Open symbol 0 T = 1273K
- £ = 1 Cr'sec"' A T = 1173K
Solid symbol □ T = 1073K
_ £ = 1 0 2sec-1
nDo a o = ° “ ° DDDn
■ o f . — — “"
V AA A A A ^ A A M
loooooooooo
_L
SUS430F
i . i .
Fig. 5. R elation betw een plastic deform ation
energy and reference stress.
0 20 40 60 80 100
Deformotion energy W / MJrrf3
Fig. 6. Plastic deform ation energy and reference
energy relation o f a + y under h igh tem perature.
24 ISSN 0556-171X. npo6n.eubi npounocmu, 2002, N2 3
Flow Characteristics o f Metal with Phase Transformation
The general flow stress characteristic under given phase ratio is expressed by
Fig. 6 and Eq. (4) as follows:
a = f (e, T, ast ). (4)
Phase Transformation Rate. The flow stress under given condition is easily
obtained as shown by Eqs. (1) or (4) when the phase ratio is known. In order to
estimate the flow stress, the phase ratio must be obtained.
o
CL
2000
SUS430F
1500 -
« . 10001h a ‘to T ^ i
1 1500.Çü
I
a w I ■ ■■ ■
AA A
Annealed
OT = 1073K
AT = 1173K
Heat treatment time d T = 1273K
Open symbol: 600s y t *= 1373K
Sol i d symboi : 1800s <> T - 1 473K
I i I__i I ■ 7 ■
v0 200 400 600 800 1000
D efo rm atio n en ergy W / MJm” 3
o 1000
CL 2
3 ^ 800
” 5
8 < 600
o
'S 400
's
s 200
an
' SUS430F O
O
C*
1 0 1273K -
A1123K A1373K -
O 1173K ■ 1473K
V1223K
MAmoxO 1273K 1373K .
1
1223K
1173K □ -
& 1 1 1 1 1 . ' 1 1 1 O '
1.0
0 .8 s
o
0.6'Su
o
0.4~
-<
0.0
0 500' 1000 1500 ~ 2000
Heat tim e t / s
Fig . 7. V a ria tio n o f re fe re n c e stress fo r
quenching at various tem peratures.
Fig. 8. V ariation o f Aast and austenite ratio
annealed under various tem peratures.
Fig. 9. R eference stress and stored energy
relation (m artensite phase).
Fig. 10. Effect o f strain rate on flow stress (a
and m artensite phase).
Temperature increase up to 1073 K results in a-phase transformation into
a + y phase, while in the case where the austenite phase is cooled down quickly
enough (quenched), the phase transforms to martensite phase. The ratio of
austenite phase is measured by the increase of the reference stress Ao st caused
by the transformed martensite as shown in Fig. 7. The maximum austenite ratio is
determined by the temperature and annealing time as shown in Fig. 8. Based on
latter, the transformation rate from ferrite phase (a) to austenite phase (y) is
expressed in Eq. (5)
dMAldt = h( Ma max - MA ) f , (5)
ISSN 0556-171X. npoôëeMbi npounocmu, 2002, N 3 25
T. Shirakashi and M. Yoshino
where MA and MA max are, respectively, the austenite ratio and its maximum
value which depends on temperature, while h is the material constant. For the
martensite phase, the deformation energy can be measured by the reference stress
shown in Fig. 9, and flow stress is also obtained from the reference stress, strain
rate, and temperature as shown in Fig. 10. Equation (4) is also valid for the
martensite phase.
Fig. 11. E ffect o f annealing tim e on residual
austenite ( a + y ^ a transform ation).
F ig. 12. “ T im e -te m p e ra tu re -tra n sfo rm a tio n ”
diagram o f ferritic stainless steel.
Under temperatures changing from 1123 K (point Ae) and 573 K (point Ms),
the a + y phase transforms to ferrite phase (a). Figure 11 shows variation of the
austenite ratio with heat treatment time. This change in ratio is shown as “time -temperature-transformation” diagram in Fig. 12 plotted from Fig. 11. The
austenite ratio (Ma ) is represented with the use of nondimensional time %
defined from the following relation:
% _ tj( t fin ~ tstr ), (6)
where tfin and tstr are the final and starting time of the transformation,
respectively, and t is the transformation time.
MA = ( M A ) str expM% Ht X (7)
where X and n are the material constants. When temperature changes with time,
% in Eq. (6) is rewritten as follows,
% = / dt/( tfin - tstr ). (8)
The austenite ratio can be estimated using Eqs. (7) and (8).
Prediction of Flow Stress and Microstructure. Since phase ratio during
forming process can be estimated through Eqs. (5) to (8), the flow stress
characteristic can be also obtained using Eqs. (1) to (4). The average flow stress
26 ISSN 0556-171X. npodxeMbi npounocmu, 2002, № 3
Flow Characteristics o f Metal with Phase Transformation
characteristic of mixed phase with given ratio is estimated using mixing rule as
follows:
a= Mf o f + Ma o a
or
a = (1- M a IM a 50 )o f + ( M a IM a 50)o a 50. (9)
where M f and Ma are the phase ratios of ferrite and austenite, respectively,
while af and oa are flow stresses of ferrite and austenite phases, respectively.
Now we can estimate changes in the flow stress and microstructure during
the forming process. Figure 13 shows the outline of this method. When the stored
energy and the phase ratio are known at the moment of forming process, the
reference stress o st is obtained. The flow stress is also estimated based on the reference stress, temperature, and strain rate.
Fig. 13. O utline o f the estim ation system o f the m aterial structure and flow stress.
Figure 14 shows variation of the flow stress and ferrite ratio during the
deformation process with the following loading program. SUS430F material is
initially annealed under 1273 K for 1800 s, then it is cooled down to 973 K with
cooling speed of 2 K/s, after that the material is compressed with a strain rate of
0.001 s-1 at constant temperature of 973 K. Under these conditions, both work
hardening and annealing effects are expected, while phase transformation also
occurs. In Fig. 14, both solid lines show the estimated results for the flow stress
and ferrite ratio, whereas symbols represent the experimental results for the flow
stress and ferrite ratio. Good correlation can be seen between the estimated and
experimental results.
ISSN 0556-171X. npoôëeMbi npounocmu, 2002, N 3 27
T. Shirakashi and M. Yoshino
0.0 0.2
Fig. 14. E stim ated structure and flow stress.
It can be concluded that the proposed flow stress characteristic including
phase transformation and deformation history is available to estimate flow stress
and microstructure.
Conclusions. In order to provide numerical simulation of the deformation
process under given condition, mechanical properties of material, such as flow
stress during deformation, should be obtained. In this paper, the effects of strain,
strain rate, temperature, and their histories on flow stress are discussed, and the
available flow stress equation is proposed. In the equation proposed, the energy
accumulated during the deformation process, which can take account for the
effect of strain rate and temperature histories on flow stress, is included combined with strain rate and temperature at the moment of deformation. The energy is also
estimated by the reference stress, which is measured under the reference condition
such as high strain rate 1500 s 1 and room temperature. The equation is also
applied to the condition with phase transformation, when the phase ratio is given
during forming process based on both equilibrium phase diagram and
“time-temperature-transformation” diagram. Using this approach, both the flow
stress and microstructure during forming process can be estimated. The flow
stress equation is applied to simulate a forming process. Moreover, changes in
microstructure and phase ratio are also simulated using the proposed system.
Good agreement between the simulated and experimental results is shown.
Р е з ю м е
Запропоновано нову характеристику текучості сталі SUS430F, яка враховує
вплив температури, швидкості деформування та історії деформування ма
теріалу. У рамках даного підходу вплив історії деформування на швидкість
28 ISSN 0556-171X. Проблемы прочности, 2002, № 3
Flow Characteristics o f Metal with Phase Transformation
деформації і температуру оцінюється по величині накопиченої енергії плас
тичної деформації. Характеристика текучості (а) може бути представлена у
вигляді функції температури (б), швидкості деформації (г), накопиченої
енергії (W) або базового напруження (аst). Енергія накопичується в процесі
пластичного деформування, а виділяється при відпалу. Її величина спів
відноситься з границею текучості, що вимірюється в початкових умовах
деформування. Аналіз запропонованої характеристики розповсюджується на
даний матеріал для високих температур (1073...1473 К), якщо має місце
(а + у )-фаза з визначеним співвідношенням фаз. Рівноважний розподіл спів
відношення а- або у-фази за любої температури можна визначити на основі
діаграми рівноваги фаз. Нова характеристика текучості у випадку фазового
перетворення може бути використана за запропонованим формулюванням з
урахуванням швидкості фазового перетворення з а- у (а + у )-фазу при
підвищенні температури та з а- у (у + а)-фазу при охолодженні. При цьому
за основу береться діаграма час-температура-фазове перетворення, яка вра
ховує також процес загартування. У випадку гарячого кування матеріалу
оцінено характеристику текучості з урахуванням співвідношення фаз.
1. S. S. Hecker and M. G. Stout, Met. Trans., 13A, 619 (1982).
2. K. S. Chan, Trans. ASME, J. Eng. Mater. Technology, No. 110, 1 (1988).
3. K. E. Hughes, K. D. Nair, and C. M. Sellars, Metal Technology, 1, No. 14,
161 (1974).
4. J. Klepaczko and C. Y. Chiem, Mech. Physics Solids, No. 34, 29 (1986).
5. J. Klepaczko, Mechanics for Working Technologist, No. 5, 143 (1987).
6. T. Shirakashi and E. Usui, Int. J. JSPE, 4, No. 4, 91 (1970).
R eceived 14. 11. 2001
ISSN 0556-171X. Проблеми прочности, 2002, № 3 29
|