Effects of Lattice Relaxation and Limiting Shear Stress of fcc Metals at High-Rate Deformation

The results of calculations of the theoretical limiting shear stress for fcc metals Cu, Ni, Ag, Au, Pd, and Pt performed using “universal” empirical potentials of interatomic interactions of the embedded-atom type are presented. The effects of lattice relaxation are shown to play an important role i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2002
Hauptverfasser: Kamyshenko, V.V., Kartuzov, V.V., Shevchenko, V.I., Gooch, W.A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2002
Schriftenreihe:Проблемы прочности
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/46765
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Effects of Lattice Relaxation and Limiting Shear Stress of fcc Metals at High-Rate Deformation / V.V. Kamyshenko, V.V. Kartuzov, V.I. Shevchenko, W.A. Gooch // Проблемы прочности. — 2002. — № 3. — С. 73-76. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-46765
record_format dspace
spelling irk-123456789-467652013-07-06T19:19:25Z Effects of Lattice Relaxation and Limiting Shear Stress of fcc Metals at High-Rate Deformation Kamyshenko, V.V. Kartuzov, V.V. Shevchenko, V.I. Gooch, W.A. Научно-технический раздел The results of calculations of the theoretical limiting shear stress for fcc metals Cu, Ni, Ag, Au, Pd, and Pt performed using “universal” empirical potentials of interatomic interactions of the embedded-atom type are presented. The effects of lattice relaxation are shown to play an important role in the formation of intermediate defect structures and lead to a considerable decrease in the theoretical yield point. Qualitative effects of the “anti-adiabatic” influence on the material ultimate strength under conditions of high-velocity loading are discussed. Наведено результати розрахунків теоретичної границі напруження зсуву для ГЦК-металів Cu, Ni, Ag, Au, Pd, Pt з використанням “універсальних” емпіричних потенціалів міжатомної взаємодії типу зануреного атома. Показано, що ефекти граткової релаксації відіграють важливу роль у формуванні проміжних дефектних структур і приводять до значного зменшення відповідних значень теоретичної границі текучості. Обговорюються ефекти “антиадіабатичного” впливу на граничну міцність матеріалу в умовах високошвидкісного навантаження. Представлены результаты расчетов теоретического предела сдвига для ГЦК-металлов Сu, Ni, Ag, Au, Pd, Pt с применением "универсальных” эмпирических потенциалов межатомного взаимодействия типа погруженного атома. Показано, что эффекты релаксации решетки играют важную роль в формировании промежуточних дефектных структур и приводят к значительному уменьшению соответствующих значений теоретического предела текучести. Обсуждаются эффекты “антиадиабатического” влияния на предельную прочность материала в условиях высокоскоростного нагружения. 2002 Article Effects of Lattice Relaxation and Limiting Shear Stress of fcc Metals at High-Rate Deformation / V.V. Kamyshenko, V.V. Kartuzov, V.I. Shevchenko, W.A. Gooch // Проблемы прочности. — 2002. — № 3. — С. 73-76. — Бібліогр.: 5 назв. — англ. 0556-171X http://dspace.nbuv.gov.ua/handle/123456789/46765 539.4 en Проблемы прочности Інститут проблем міцності ім. Г.С. Писаренко НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Научно-технический раздел
Научно-технический раздел
spellingShingle Научно-технический раздел
Научно-технический раздел
Kamyshenko, V.V.
Kartuzov, V.V.
Shevchenko, V.I.
Gooch, W.A.
Effects of Lattice Relaxation and Limiting Shear Stress of fcc Metals at High-Rate Deformation
Проблемы прочности
description The results of calculations of the theoretical limiting shear stress for fcc metals Cu, Ni, Ag, Au, Pd, and Pt performed using “universal” empirical potentials of interatomic interactions of the embedded-atom type are presented. The effects of lattice relaxation are shown to play an important role in the formation of intermediate defect structures and lead to a considerable decrease in the theoretical yield point. Qualitative effects of the “anti-adiabatic” influence on the material ultimate strength under conditions of high-velocity loading are discussed.
format Article
author Kamyshenko, V.V.
Kartuzov, V.V.
Shevchenko, V.I.
Gooch, W.A.
author_facet Kamyshenko, V.V.
Kartuzov, V.V.
Shevchenko, V.I.
Gooch, W.A.
author_sort Kamyshenko, V.V.
title Effects of Lattice Relaxation and Limiting Shear Stress of fcc Metals at High-Rate Deformation
title_short Effects of Lattice Relaxation and Limiting Shear Stress of fcc Metals at High-Rate Deformation
title_full Effects of Lattice Relaxation and Limiting Shear Stress of fcc Metals at High-Rate Deformation
title_fullStr Effects of Lattice Relaxation and Limiting Shear Stress of fcc Metals at High-Rate Deformation
title_full_unstemmed Effects of Lattice Relaxation and Limiting Shear Stress of fcc Metals at High-Rate Deformation
title_sort effects of lattice relaxation and limiting shear stress of fcc metals at high-rate deformation
publisher Інститут проблем міцності ім. Г.С. Писаренко НАН України
publishDate 2002
topic_facet Научно-технический раздел
url http://dspace.nbuv.gov.ua/handle/123456789/46765
citation_txt Effects of Lattice Relaxation and Limiting Shear Stress of fcc Metals at High-Rate Deformation / V.V. Kamyshenko, V.V. Kartuzov, V.I. Shevchenko, W.A. Gooch // Проблемы прочности. — 2002. — № 3. — С. 73-76. — Бібліогр.: 5 назв. — англ.
series Проблемы прочности
work_keys_str_mv AT kamyshenkovv effectsoflatticerelaxationandlimitingshearstressoffccmetalsathighratedeformation
AT kartuzovvv effectsoflatticerelaxationandlimitingshearstressoffccmetalsathighratedeformation
AT shevchenkovi effectsoflatticerelaxationandlimitingshearstressoffccmetalsathighratedeformation
AT goochwa effectsoflatticerelaxationandlimitingshearstressoffccmetalsathighratedeformation
first_indexed 2025-07-04T06:13:25Z
last_indexed 2025-07-04T06:13:25Z
_version_ 1836695795613564928
fulltext UDC 539.4 Effects of Lattice Relaxation and Limiting Shear Stress of fcc Metals at High-Rate Deformation V. V. Kamyshenko,a V. V. Kartuzov,a V. I. Shevchenko,a and W. A. Goochb a Institute of Problems in Material Science, National Academy of Sciences of Ukraine, Kiev, Ukraine b U.S. Army Research Laboratory, USA УДК 539.4 Влияние релаксации решетки и предельного напряжения сдвига ГЦК-металлов при высокоскоростном деформировании В. В. Камышенкоа, В. В. Картузова, В. И. Шевченкоа, В. А. Гуч6 а Институт проблем материаловедения НАН Украины, Киев, Украина 6 Исследовательская лаборатория армии США, США Представлены результаты расчетов теоретического предела сдвига для ГЦК-металлов Си, Ni, Ag, Au, Pd, Pt с применением "универсальных” эмпирических потенциалов межатомного взаимодействия типа погруженного атома. Показано, что эффекты релаксации решетки играют важную роль в формировании промежуточних дефектных структур и приводят к значительному уменьшению соответствующих значений теоретического предела текучес­ ти. Обсуждаются эффекты “антиадиабатического” влияния на предельную прочность материала в условиях высокоскоростного нагружения. Introduction. The existence of the limiting shear stress plays an important role in the processes of formation and propagation of shock waves in solids. Therefore, for each quantitative theory of impact, it is necessary to take into account impingement or other high-rate deformation processes, where a solid material is present. An important feature of the limiting shear stress in the process of high-rate deformation is its dependence on the strain rate. Under conditions of impact, this dependence may be quite strong (note, for example, that in [1] the concept of “the ultimate velocity of deformation” has been proposed), but its physical nature is not yet clear. To address this problem, we consider the simplest model for r max similar to the classical Frenkel model [2]. The difference is that we take specific crystallographic structure (fcc structure), use true model of interatomic interactions (“universal” embedded atom potentials [3, 4] from [5]), and allow for full atomic relaxation during the shear process. The purpose is to investigate quantitatively the influence of the effects of lattice relaxation on the magnitude of r max. With the assumption that r max is limited by its “theoretical limit” (in the sense that neither cracks nor plastic deformation are present), one can distinguish the “low-rate” and “high-rate” regions by the ability of atoms to follow the most preferable (energetically) path of the deformation process. In the limiting cases of infinitely slow and infinitely fast deformation, this corresponds © V. V. KAMYSHENKO, V. V. KARTUZOV, V. I. SHEVCHENKO, W. A. GOOCH, 2002 ISSN 0556-171X. Проблемы прочности, 2002, N 3 73 V. V. Kamyshenko, V. V. Kartuzov, V. I. Shevchenko, and W. A. Gooch to the “adiabatic” (for a given macroscopic deformation, the atomic configuration corresponds to the global minimum of potential energy) and “anti-adiabatic” (atomic positions are fixed by external conditions and no local relaxation is allowed) limits. The actual relation r(£) must lie somewhere between those limits. Results of Modeling. Six materials with fcc lattices were investigated. Two shear planes were considered with two directions of shear in each plane: [100] and [110] for the (001) plane, and [1 1 0] and [211] for the (111) plane. In Fig. 1, the energies of non-relaxed sheared configurations are presented. In order to omit obvious dependence of U on the lattice parameter and shear modulus G, the units G ■ b and b were used for U and x, respectively; b is the atomic lattice parameter in the shear direction. As it could be expected, the peaks of the curves in Fig. 1 are in agreement with Frenkel’s estimation (according to the latter, the maximum of the curves in Fig. 1 would be at the level of 1/2n2). The lattice relaxation, if it takes place during the process of deformation, changes significantly the values of the limiting shear stress. This is illustrated in Fig. 2. Fig. 1. D ependence o f the strain-energy density U on the value o f the relative shear x fo r six fcc m etals (no atom ic relaxation). H ere and in Fig. 2: G is the shear m odulus and d is the atom ic lattice param eter in shear direction; (a) shear plane (111), shear d irection [1 1 0 ] (b) shear p lane (111), shear d irection [211]; (c) shear plane (001), shear direction [100]; (d) shear p lane (001), shear direction [110]. 74 ISSN 0556-171X. npoôëeuu npouHocmu, 2002, № 3 Effects o f Lattice Relaxation and Limiting Shear Stress Fig. 2. D ependence o f the strain-energy density U on the value o f the relative shear x fo r six fcc m etals (full atom ic relaxation). As can be seen from these Figures, the effect of lattice relaxation decreases the “theoretical” value of the limiting shear stress by a factor of 30 and brings it to_3the order of 10 G, which is only 100 times higher than the experimental value typical of metals. This difference can be even smaller. The local minimum between the peaks corresponds to the formation of the stacking fault, and the height of the left minimum corresponds to the minimum energy spent for its formation. If the direction of deformation changes at the point of the minimum energy, one can get resulting deformation in [110] or [ 110] directions and, as a combination of the latter, in an arbitrary direction in the (111) plane. The energy needed for such processes is now completely determined by the height of the first peak in Figs. 1b and 2b and is, for the relaxed case, of the order of 10_4 G ■ b. Discussion and Conclusions. Let us discuss now possible applications of these results. There are situations where the “ideal” mechanism of inelastic deformation may play an important role. This is the case of high-rate deformation, where the rate of deformation exceeds the velocity of cracks (of course, other defects intrinsically present in a real material such as grain boundaries, dislocations, and point defects are still to be taken into account). It follows from our considerations that the deformation rate is higher than the rate of lattice relaxation and the limiting shear stress generally increases by a factor of 30-50. ISSN 0556-171X. npo6n.eubi npounocmu, 2002, N 3 75 V. V. Kamyshenko, V. V. Kartuzov, V. I. Shevchenko, and W. A. Gooch v/(k c j Fig. 3. Possible dependence o f the lim iting shear stress r max on the strain rate. Simple estimations of the lattice-relaxation rate give the value, which is about the speed of sound. Thus, one can expect that the dependence r max( v) will be similar to the dependence shown in Fig. 3 (where k is of the order of unity and c± is the speed of sound). In all probability, the results obtained here for six fcc metals can be directly generalized for other metallic systems due to the similarity of the chemical bonds these materials possess. Systems with covalent bonding need special investigation, and such investigations are now in progress. Резюме Наведено результати розрахунків теоретичної границі напруження зсуву для ГЦК-металів Cu, Ni, Ag, Au, Pd, Pt з використанням “універсальних” емпі­ ричних потенціалів міжатомної взаємодії типу зануреного атома. Показано, що ефекти граткової релаксації відіграють важливу роль у формуванні проміжних дефектних структур і приводять до значного зменшення відповід­ них значень теоретичної границі текучості. Обговорюються ефекти “анти- адіабатичного” впливу на граничну міцність матеріалу в умовах високо- швидкісного навантаження. 1. V. P. Alekseevskii, “Penetration of a rod into a plate at high velocity,” Fiz. goren. vzryva, No. 2, 99 - 106 (1966). 2. J. Frenkel, Z. Fiz., 37, 572-609 (1926). 3. M. S. Daw and M. I. Baskes, “Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals,” Phys. Rev. B, 29, No. 12, 6443 - 6453 (1984). 4. M. W. Finnis and J. E. Sinclair, “A simple empirical n-body potential for transition metals,” Phil. Mag. A, 50, 45 (1984). 5. S. M. Foiles, M. J. Baskes, and M. S. Daw, “Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys,” Phys. Rev. B, 33, No. 12, 7983 - 7991 (1986). R eceived 14. 11. 2001 76 ISSN 0556-171X. Проблеми прочности, 2002, № 3