Investigation of Fracture of Spheroplastics under Static and Dynamic Loading Conditions

An experimental study of static and dynamic fracture properties of a spheroplastics (SPH) that has a matrix of polyester resin containing a filler of glass microspheres was conducted. Crack propagation was investigated under loading conditions generated by pulse magnetic field. Microstructure featur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2002
Hauptverfasser: Atroshenko, S.A., Krivosheev, S.I., Petrov, Yu.A., Utkin, A.A., Fedorovskii, G.D.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2002
Schriftenreihe:Проблемы прочности
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/46796
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Investigation of Fracture of Spheroplastics under Static and Dynamic Loading Conditions / S.A. Atroshenko, S.I. Krivosheev, Yu.A. Petrov, A.A. Utkin, and G.D. Fedorovskii // Проблемы прочности. — 2002. — № 3. — С. 92-95. — Бібліогр.: 3 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-46796
record_format dspace
spelling irk-123456789-467962013-07-06T21:32:22Z Investigation of Fracture of Spheroplastics under Static and Dynamic Loading Conditions Atroshenko, S.A. Krivosheev, S.I. Petrov, Yu.A. Utkin, A.A. Fedorovskii, G.D. Научно-технический раздел An experimental study of static and dynamic fracture properties of a spheroplastics (SPH) that has a matrix of polyester resin containing a filler of glass microspheres was conducted. Crack propagation was investigated under loading conditions generated by pulse magnetic field. Microstructure features of dynamic fracture were analyzed. Проведено экспериментальное исследование статического и динамического разрушения композиционного материала (сферопластика), состоящего из матрицы (полиэстер) с наполнителем в виде стеклосфер. Распространение трещины исследовано при нагружении импульсным магнитным полем. Проанализированы микроструктурные особенности динамического разрушения. Проведено експериментальне дослідження статичного і динамічного руйнування композиційного матеріалу (сферопластик), що складається з матриці (поліестер) з наповнювачем у вигляді скляних сфер. Поширення тріщини досліджувалося при навантаженні імпульсним магнітним полем. Проаналізовано мікроструктурні особливості динамічного руйнування. 2002 Article Investigation of Fracture of Spheroplastics under Static and Dynamic Loading Conditions / S.A. Atroshenko, S.I. Krivosheev, Yu.A. Petrov, A.A. Utkin, and G.D. Fedorovskii // Проблемы прочности. — 2002. — № 3. — С. 92-95. — Бібліогр.: 3 назв. — англ. 0556-171X http://dspace.nbuv.gov.ua/handle/123456789/46796 539.4 en Проблемы прочности Інститут проблем міцності ім. Г.С. Писаренко НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Научно-технический раздел
Научно-технический раздел
spellingShingle Научно-технический раздел
Научно-технический раздел
Atroshenko, S.A.
Krivosheev, S.I.
Petrov, Yu.A.
Utkin, A.A.
Fedorovskii, G.D.
Investigation of Fracture of Spheroplastics under Static and Dynamic Loading Conditions
Проблемы прочности
description An experimental study of static and dynamic fracture properties of a spheroplastics (SPH) that has a matrix of polyester resin containing a filler of glass microspheres was conducted. Crack propagation was investigated under loading conditions generated by pulse magnetic field. Microstructure features of dynamic fracture were analyzed.
format Article
author Atroshenko, S.A.
Krivosheev, S.I.
Petrov, Yu.A.
Utkin, A.A.
Fedorovskii, G.D.
author_facet Atroshenko, S.A.
Krivosheev, S.I.
Petrov, Yu.A.
Utkin, A.A.
Fedorovskii, G.D.
author_sort Atroshenko, S.A.
title Investigation of Fracture of Spheroplastics under Static and Dynamic Loading Conditions
title_short Investigation of Fracture of Spheroplastics under Static and Dynamic Loading Conditions
title_full Investigation of Fracture of Spheroplastics under Static and Dynamic Loading Conditions
title_fullStr Investigation of Fracture of Spheroplastics under Static and Dynamic Loading Conditions
title_full_unstemmed Investigation of Fracture of Spheroplastics under Static and Dynamic Loading Conditions
title_sort investigation of fracture of spheroplastics under static and dynamic loading conditions
publisher Інститут проблем міцності ім. Г.С. Писаренко НАН України
publishDate 2002
topic_facet Научно-технический раздел
url http://dspace.nbuv.gov.ua/handle/123456789/46796
citation_txt Investigation of Fracture of Spheroplastics under Static and Dynamic Loading Conditions / S.A. Atroshenko, S.I. Krivosheev, Yu.A. Petrov, A.A. Utkin, and G.D. Fedorovskii // Проблемы прочности. — 2002. — № 3. — С. 92-95. — Бібліогр.: 3 назв. — англ.
series Проблемы прочности
work_keys_str_mv AT atroshenkosa investigationoffractureofspheroplasticsunderstaticanddynamicloadingconditions
AT krivosheevsi investigationoffractureofspheroplasticsunderstaticanddynamicloadingconditions
AT petrovyua investigationoffractureofspheroplasticsunderstaticanddynamicloadingconditions
AT utkinaa investigationoffractureofspheroplasticsunderstaticanddynamicloadingconditions
AT fedorovskiigd investigationoffractureofspheroplasticsunderstaticanddynamicloadingconditions
first_indexed 2025-07-04T06:16:59Z
last_indexed 2025-07-04T06:16:59Z
_version_ 1836696052555579392
fulltext UDC 539.4 Investigation of Fracture of Spheroplastics under Static and Dynamic Loading Conditions S. A. Atroshenko, S. I. Krivosheev, Yu. A. Petrov, A. A. Utkin, and G. D. Fedorovskii St. Petersburg State University, St. Petersburg, Russia УДК 539.4 Исследование разрушения сферопластика при статическом и динамическом нагружении С. А. Атрошенко, С. И. Кривошеев, Ю. А. Петров, А. А. Уткин, Г. Д. Федоровский Санкт-Петербургский госуниверситет, Санкт-Петербург, Россия Проведено экспериментальное исследование статического и динамического разрушения композиционного материала (сферопластика), состоящего из матрицы (полиэстер) с на­ полнителем в виде стеклосфер. Распространение трещины исследовано при нагружении импульсным магнитным полем. Проанализированы микроструктурные особенности динами­ ческого разрушения. Ключевые слова: сферопластик, разрушение, импульс, инкубационное время. Introduction. The effect of pulse loading on heterogeneous porous medium is not studied in full, although shock compression of porous matters is widely used in shock wave physics. Interest in porous materials is caused by the necessity to describe their behavior within the framework of the thermonuclear synthesis and, moreover, with the needs of creation of new materials for damping of pulse loads. Porous heterogeneous materials containing glass microspheres are of great practical interest. Such materials show good constructional and dielectric properties, as well as high resistance to shock loads. Dynamic strength of materials containing 42% of glass microspheres by volume or 27.7% by weight with epoxy binder was analyzed in [1] and assessed as 0.24 GPa. Due to the reinforcement of plastic binder by glass microspheres, density of the new material decreases significantly, while the damping properties are improved as well. Addition of microspheres is a proper method to creation of heterogeneous materials with controlled properties. An approach based on the notion of incubation time [1] and a new testing method were used to evaluate the dynamic crack resistance of the material. According to the applied approach, the principal parameter responsible for critical characteristics of dynamic fracture is the incubation time r, which has to be determined individually for each material and can be found from tests on macrocracked specimens. Material and Experimental Technique. The specimens were manufactured as square plates 120 X120 X (9 — 16) mm containing a precracked notch that was loaded on its faces by a controllable uniform pulse pressure with semi-sinusoidal © S. A. ATROSHENKO, S. I. KRIVOSHEEV, Yu. A. PETROV, A. A. UTKIN, G. D. FEDOROVSKII, 2002 92 ISSN 0556-171X. Проблемы прочности, 2002, N 3 Investigation o f Fracture o f Spheroplastics history. The controllable impact loading was provided by an installation [2], based on the pulse current generator, so that the magnetic field produced a mechanical pressure, which generated dynamic stress waves, fracture and crack propagation processes. In the present paper, the basic principles and characteristics of the above installation, which is able to produce controllable pulses of the order of 1 GPa with duration of the order 1 is, are described. The material under investigation was spheroplastics (SPH) that has a matrix of polyester resin containing a filler of glass microspheres. In different specimens, the size of spheres varied in intervals from 6-60 /im and also from 12-60 fim with average diameters of 21-31 im. The SPH density was p = (0.79± 0.01)-103 kg/m3. The static characteristics of the material are established on the basis of data obtained by a standard static testing machine. The elastic modulus obtained from a standard test is E = 2400 ± 50 MPa. The material ultimate strength turned out to be equal o c = 12.4 ± 0.9 MPa. The critical value of the stress intensity factor (or static fracture toughness) obtained from static tensile tests on specimens containing central cracks is Kic = 0.52 ± 0.03 MPaVm. The longitudinal wave velocity is c± = 2450 m/s. Results and Discussion. Two values of pulse duration T were considered: 2.76 is and 4.4 is. The basic characteristic taken from experiments is threshold amplitude of pulse that turned out to be equal 16.8 MPa and 11.2 MPa correspondingly for the above durations. The incubation time of the SPH, that was found from values of threshold amplitudes according to the method described in [1, 2], is r = 5.0 ± 0.3 is. In compliance with the incubation time approach, two material constants KIc and r describe static and dynamic crack resistance of the material on the given scale level, respectively. The critical parameters of the external loading for the given construction, which is loaded symmetrically (regarding the crack line) can be evaluated by means of the criterion [1, 2]: t f Ki(s)ds < rKIc,t-r where Ki( t) is the stress intensity factor as a function of time, which is to be found from the solution of the appropriate dynamic boundary problem. The dynamic fracture toughness Kw = KI( t*), where t* is time to fracture, can be considered as a calculated parameter that generally is not needed for solving a fracture problem. Within the framework of the incubation time theory, the dynamic fracture toughness is an unstable characteristic depending on the history of loading and other conditions of problem. The same is confirmed by numerous experimental observations. In our particular case for the above threshold pulses, we got: Kw = 0.7KIc for T = 2.76 is, and Ku = 0.74KIc for T = 4.4 is. It is important that for the threshold pulses the fracture occurs in the stage of decreasing of the stress intensity factor at the crack tip. The SPH fracture mainly took place in-between glass microspheres. Crack propagated along the binder rounding spheres. Only in separate cases, it crossed sphere as illustrated in Fig. 1. Uneven grains of filler can be seen in this figure. ISSN 0556-171X. npo6n.eubi npounocmu, 2002, N 3 93 S. A. Atroshenko, S. I. Krivosheev, Yu. A. Petrov, et al. T a b l e 1 Crack Length and Filler Size Specim en C rack length, m m Filler size, fimFirst crack Second crack 1 24.0 27.0 48.5 3 9.6 11.9 35.1 4 7.0 11.0 21.1 6 9.0 11.2 30.5 Fig. 1. C rack propagation in the com posite m aterial filled w ith glass m icrosheres. Two cracks, as a rule, propagate from the notch tip in specimens: one goes along the notch, another - under some angle to the notch. Their sizes vary in the range of 7-27 mm depending on the loading conditions. The crack abruptly changes the direction of its propagation in different specimens at the distance 2 or 4 mm from the fracture starting to deviate from the previous one at the angle of 8-10°. Then crack changes its direction once again approximately at the same distance and under the same angles. A summary of fractographic SPH investigations is given in Table 1. As it follows from the results given in Table 1, the smaller filler grain size, the smaller crack length. It can be explained in the following way: higher quantity of glass spheres creates more barriers for crack movement. More detailed microstructure is shown in Fig. 2. Traces of plastic flow of binder and microcracks can be seen in some places around glass spheres. Under more magnification binder deformation can be seen with pronounced features of hackle or parabolic fracture. Fig. 2. M icrostructure o f the fracture surface o f the com posite m aterial filled w ith glass m icrosheres. 94 ISSN 0556-171X. npo6neMbi npouHocmu, 2002, № 3 Investigation o f Fracture o f Spheroplastics C o n c l u s i o n s 1. A new testing method was proposed, which allows qualitative and quantitative evaluation of the dynamic crack resistance of materials. 2. A new approach was developed, according to which the principal parameter controlling the critical characteristics of dynamic fracture is the incubation time r that is to be determined individually for each material and can be found from tests on macrocracked specimens. 3. It has been found that for threshold pulses, the fracture event occurs at the stage of decreasing of the stress intensity factor Ki(t) at the crack tip. 4. Comparison of fracture properties of various materials demonstrates that the heterogeneous composite material such as a composite material filled with glass microspheres has similar characteristics as PMMA. 5. The peculiarities of dynamic crack propagation in the composite materials filled with glass microsphere and the microstructural aspects of their fracture were defined: • The smaller filler grain size, the smaller crack length. This can be attributed to the fact that more quantity of glass microspheres creates more barriers for the crack propagation. • Two cracks, as a rule, propagate from the specimen notch: the first one propagates along the notch, while the second - under some angle to the notch. Their sizes change in the range of 7-27 mm depending on the loading conditions. Acknowledgements. The work was supported by the RFBR (Grants 99-01-00718, 97-01-05009, 00-01-00484), the Federal Special Program “Integration,” and the Educational Fundamental Research Center (Grant 97-0-4.3-28). Р е з ю м е Проведено експериментальне дослідження статичного і динамічного руйну­ вання композиційного матеріалу (сферопластик), що складається з матриці (поліестер) з наповнювачем у вигляді скляних сфер. Поширення тріщини досліджувалося при навантаженні імпульсним магнітним полем. Проаналі­ зовано мікроструктурні особливості динамічного руйнування. 1. L. J. Weirick, “Shock characterization of epoxy - 42 volume percent glass microballoons,” in: Shock Compression of Condensed Matter, Elsevier Science Publishers B.V. (1992), pp. 99 - 102. 2. N. Morozov and Yu. Petrov, Dynamics of Fracture, Springer-Verlag. Berlin-Heidelberg-New York (2000). 3. S. I. Krivosheev and Yu. A. Petrov, Experimental Unit and the Method of Investigation of Threshold Fracture Loads for Macrocracked Specimens under Impact Loading Produced by Pulse Magnetic Field [in Russian], IPME, St. Petersburg (1997). R eceived 14. 11. 2001 ISSN 0556-171X. Проблеми прочности, 2002, № 3 95