Brittle Mixed-Mode (I+II) Fracture: Application of the Equivalent Notch Stress Intensity Factor to the Cracks Emanating From Notches

In the present paper, crack initiation in mixed-mode (I+II) fracture has been studied using notched circular ring specimens. A new criterion of brittle mixed-mode (I+II) fracture based on the notch tangential stress and the volumetric approach has been developed. The critical value of the equi...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2002
Автори: Minor, H. El, Louah, M., Azari, Z., Pluvinage, G., Kifani, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2002
Назва видання:Проблемы прочности
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/46929
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Brittle Mixed-Mode (I+II) Fracture: Application of the Equivalent Notch Stress Intensity Factor to the Cracks Emanating From Notches / H.El Minor, M. Louah, Z. Azari, G. Pluvinage, A. Kifani // Проблемы прочности. — 2002. — № 6. — С. 61-71. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-46929
record_format dspace
spelling irk-123456789-469292013-07-07T23:13:26Z Brittle Mixed-Mode (I+II) Fracture: Application of the Equivalent Notch Stress Intensity Factor to the Cracks Emanating From Notches Minor, H. El Louah, M. Azari, Z. Pluvinage, G. Kifani, A. Научно-технический раздел In the present paper, crack initiation in mixed-mode (I+II) fracture has been studied using notched circular ring specimens. A new criterion of brittle mixed-mode (I+II) fracture based on the notch tangential stress and the volumetric approach has been developed. The critical value of the equivalent notch stressintensity factor has been considered as fracture toughness in mixed-mode (I+II) fracture. Исследуется зарождение трещины по смешанному механизму разрушения (типа I+II) в образцах кольцевого типа с внутренним надрезом. Предложен новый критерий для описания хрупкого разрушения смешанного типа I+II, в основу которого положен объемный подход, а базовым параметром служит касательное напряжение в надрезе. Предлагается в качестве параметра вязкости разрушения для смешанного механизма разрушения по типу I+II использовать предельное значение эквивалентного коэффициента интенсивности напряжений в надрезе. Досліджується зародження тріщини за змішаним механізмом руйнування (типу І+ІІ) в зразках кільцевого типу з внутрішнім надрізом. Запропоновано новий критерій для описання крихкого руйнування змішаного типу І+ІІ, в основу якого покладено об’ємний підхід, а базовим параметром є дотичне напруження у надрізі. За параметр в ’язкості руйнування для змішаного механізму руйнування за типом І+ІІ пропонується використовувати граничне значення еквівалентного коефіцієнта інтенсивності напружень у надрізі. 2002 Article Brittle Mixed-Mode (I+II) Fracture: Application of the Equivalent Notch Stress Intensity Factor to the Cracks Emanating From Notches / H.El Minor, M. Louah, Z. Azari, G. Pluvinage, A. Kifani // Проблемы прочности. — 2002. — № 6. — С. 61-71. — Бібліогр.: 15 назв. — англ. 0556-171X http://dspace.nbuv.gov.ua/handle/123456789/46929 539.4 en Проблемы прочности Інститут проблем міцності ім. Г.С. Писаренко НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Научно-технический раздел
Научно-технический раздел
spellingShingle Научно-технический раздел
Научно-технический раздел
Minor, H. El
Louah, M.
Azari, Z.
Pluvinage, G.
Kifani, A.
Brittle Mixed-Mode (I+II) Fracture: Application of the Equivalent Notch Stress Intensity Factor to the Cracks Emanating From Notches
Проблемы прочности
description In the present paper, crack initiation in mixed-mode (I+II) fracture has been studied using notched circular ring specimens. A new criterion of brittle mixed-mode (I+II) fracture based on the notch tangential stress and the volumetric approach has been developed. The critical value of the equivalent notch stressintensity factor has been considered as fracture toughness in mixed-mode (I+II) fracture.
format Article
author Minor, H. El
Louah, M.
Azari, Z.
Pluvinage, G.
Kifani, A.
author_facet Minor, H. El
Louah, M.
Azari, Z.
Pluvinage, G.
Kifani, A.
author_sort Minor, H. El
title Brittle Mixed-Mode (I+II) Fracture: Application of the Equivalent Notch Stress Intensity Factor to the Cracks Emanating From Notches
title_short Brittle Mixed-Mode (I+II) Fracture: Application of the Equivalent Notch Stress Intensity Factor to the Cracks Emanating From Notches
title_full Brittle Mixed-Mode (I+II) Fracture: Application of the Equivalent Notch Stress Intensity Factor to the Cracks Emanating From Notches
title_fullStr Brittle Mixed-Mode (I+II) Fracture: Application of the Equivalent Notch Stress Intensity Factor to the Cracks Emanating From Notches
title_full_unstemmed Brittle Mixed-Mode (I+II) Fracture: Application of the Equivalent Notch Stress Intensity Factor to the Cracks Emanating From Notches
title_sort brittle mixed-mode (i+ii) fracture: application of the equivalent notch stress intensity factor to the cracks emanating from notches
publisher Інститут проблем міцності ім. Г.С. Писаренко НАН України
publishDate 2002
topic_facet Научно-технический раздел
url http://dspace.nbuv.gov.ua/handle/123456789/46929
citation_txt Brittle Mixed-Mode (I+II) Fracture: Application of the Equivalent Notch Stress Intensity Factor to the Cracks Emanating From Notches / H.El Minor, M. Louah, Z. Azari, G. Pluvinage, A. Kifani // Проблемы прочности. — 2002. — № 6. — С. 61-71. — Бібліогр.: 15 назв. — англ.
series Проблемы прочности
work_keys_str_mv AT minorhel brittlemixedmodeiiifractureapplicationoftheequivalentnotchstressintensityfactortothecracksemanatingfromnotches
AT louahm brittlemixedmodeiiifractureapplicationoftheequivalentnotchstressintensityfactortothecracksemanatingfromnotches
AT azariz brittlemixedmodeiiifractureapplicationoftheequivalentnotchstressintensityfactortothecracksemanatingfromnotches
AT pluvinageg brittlemixedmodeiiifractureapplicationoftheequivalentnotchstressintensityfactortothecracksemanatingfromnotches
AT kifania brittlemixedmodeiiifractureapplicationoftheequivalentnotchstressintensityfactortothecracksemanatingfromnotches
first_indexed 2025-07-04T06:28:18Z
last_indexed 2025-07-04T06:28:18Z
_version_ 1836696731213889536
fulltext UDC 539.4 Brittle Mixed-Mode (I+II) Fracture: Application of the Equivalent Notch Stress Intensity Factor to the Cracks Emanating From Notches H. El M inor,a M. Louah,a Z. A zari,b G. Pluvinage,b and A. K ifanic a Laboratory of Applied Mechanics and Applied Technology, Rabat, Morocco b L.F.M. Faculty of Sciences, University of Metz, Metz, France c Laboratory of Mechanics and Physics of Materials, Rabat’s Faculty of Sciences, University of Rabat, Rabat, Morocco У Д К 539.4 Хрупкий механизм разрушения смешанного типа I+II в трещинах, растущ их из концентраторов напряжения: эквивалентный коэффициент интенсивности напряжений в концентраторе напряжения Х. Эль М инора, М. Луаха, 3. Азари6, Г. П лю винаж 6, А. К иф анив а Лаборатория прикладной механики и технологии, Рабат, Марокко 6 Лаборатория механической надежности, Метц, Франция в Лаборатория механики и физики материалов, Рабат, Марокко Исследуется зарождение трещины по смешанному механизму разрушения (типа I+II) в образцах кольцевого типа с внутренним надрезом. Предложен новый критерий для описания хрупкого разрушения смешанного типа I+II, в основу которого положен объемный подход, а базовым параметром служит касательное напряжение в надрезе. Предлагается в качестве параметра вязкости разрушения для смешанного механизма разрушения по типу I+II использовать предельное значение эквивалентного коэффициента интенсивности напря­ жений в надрезе. К лю чевы е слова : хрупкий механизм разрушения смешанного типа I+II, влияние надреза, проблема угловой трещины, критерий максимального ка­ сательного напряжения, эффективное касательное напряжение, эффективная касательная протяженность, градиент относительного касательного напря­ жения, весовая функция, эквивалентный коэффициент интенсивности на­ пряжений, вязкость разрушения. Introduction. First studies of fracture mechanics were performed on precracked specimens loaded according to an elementary fracture mode I, because it is considered to be the most dangerous fracture mode. In reality, some situations result in a simultaneous presence of two modes of fracture: mode I (opening mode) and mode II (shear mode). In the latter case, no standardized test procedure exists. In recent years, a diversity of test conditions and types of specimens have been used in the fracture toughness investigations, which resulted in the development of © H. EL MINOR, M. LOUAH, Z. AZARI, G. PLUVINAGE, A. KIFANI, 2002 ISSN 0556-171X. Проблемы прочности, 2002, № 6 61 H. El Minor, M. Louah, Z. Azari, et al. various mixed-mode fracture criteria, techniques of measuring threshold values of fatigue and determining the crack growth laws applicable to multiaxial stress situations. Some of these types of specimens have been presented and critically analyzed by Richard [1]. Recent investigations [2, 3] have shown that precracked circular ring specimens are well suited for the mixed-mode tests. However, the above mentioned type of precracked specimens presents two inconveniences: (i) manufacturing of these specimens is regarded to be time-consuming and expensive; (ii) for very brittle materials, such as ceramics and high-strength steels, it is practically impossible to precrack specimens and, therefore, the use of a notched specimen is preferred instead. At present, Creager’s solution [4] is used for analytical representation of the stress intensity factor at the notch tip. This solution has been constructed by adding a geometrical correction factor to Irwin’s solution [5]. The respective method is based on the assumption that the characteristic distance (or the process volume diameter) is equal to p / 2 (where p is the notch radius). However, this procedure has a limited applicability. Recently it has been proposed [6, 7] to characterize fracture conditions for a notched specimen by using the actual stress gradient at the notch root. This stress gradient can be characterized by a relationship different from the crack-tip stress gradient. This method has been used in the present work to determine fracture resistance in the applied mixed-mode (I+II) fracture using notched circular ring specimens. The toughness of high-strength steel 45SCD6 was defined by a critical equivalent notch stress-intensity factor. This approach is based on the generic stress of the “notch fracture mechanics.” M aterial and Specimens. Here we propose to check the validity of this fracture criterion using experimental results obtained from notched high-strength steel specimens subjected to compression loading. Stress distribution in the specimen has been determined using the finite element method. The material studied is high-strength steel 45CDS6 according to the French standard. Its mechanical properties are listed in Table 1. Microanalysis of the material gives the following chemical composition: 0.45%C, 1.6%Si, 0.6%Mn, 0.6%Cr, and 0.25%Mo. T a b l e 1 Mechanical Properties of 45CDS6 Steel Density V A, % E , Rp0.2, R ,Rm , K Ic, (kg/m3) MPa MPa MPa MP^Vm 7800 0.28 2.8 210,0б5 1463 1662 97 Tests were performed using U-notched circular ring specimens (Fig. 1) with the external radius R e = 20 mm, internal radius R t = 10 mm, thickness B = 7 mm, and the notch length a = 4 mm. Different notch radii were obtained using a wire-cutting electrical discharge machine (EDM) and wires of different diameter. The notch-root radius was measured using a profile projector. 62 ISSN G556-Î7ÎX. Проблемыг прочности, 2GG2, № б Brittle Mixed-Mode (I+II) Fracture: Application o f the Fig. 1. U-notched circular ring specimen. Fig. 2. Mechanical testing. Definition o f D ifferent Fracture M odes: a) 0 = 0° - mode I [8]; b) 0 = 33° - mode II [2] and [3]; c) 0°< 0 < 33° - mixed mode (I+II) fracture. M echanical Testing. Figure 2 shows a scheme of mechanical testing of notched specimens subjected to compression loading. Experim ental Procedure and Results. Critical Load Pc. Figure 3 shows evolution of the experimental critical load Pc versus the notch radius p and inclination angle 0 (0 = 0° in mode I, and 0 = 33° in mode II). It is evident from Fig. 3 that the critical load Pc increases linearly with the notch radius p. Fig. 3. Critical load Pc versus notch radius p for various inclination angles 0. Bifurcation Angle. The experimental values of the bifurcation angle 0 o measured by an optical microscope (Fig. 4) are compared to the respective numerical values calculated using the maximum tangential stress criterion. M echanisms o f Crack Initiation: “Volumetric A p p r o a c h According to an engineering approach, crack initiation occurs under whatever high stress concentration conditions and is defined as an appearance of a short crack detectable with a magnification of X 50. Figure 5 shows that blunted notches are characterized by the short crack mechanism, which means increasing of the crack growth rate after a decreasing period. ISSN 0556-171X. npoôëeubi npounocmu, 2002, № 6 63 H. El Minor, M. Louah, Z Azari, et al. c Fig. 5. Fracture micromechanism: (a) short crack mechanism; (b) evolution of microcracks; (c) crack growth. The mechanisms of crack initiation have been described widely. These involve various intrusion and extrusion mechanisms in pure ductile metals or dislocation pile-up on inclusions, decohesion of the matrix and, finally, crack initiation. The following two considerations support the notion that a certain physical volume is required for the crack initiation mechanisms to take place: - The probability of crack initiation is proportional to the process volume, where the probability to find an initiation site (inclusion) is assumed to be uniform. - Crack resistance is influenced by the specimen dimensions and relative stress gradient (i.e., the stress gradient divided by the stress value), which are dimensional parameters. It has been proved that crack initiation mechanisms at the notch root cannot be explained by the spot approach, i.e., one of the key factors is the maximum local stress. We consider that the effective stress range acting in the crack­ initiation process volume plays an important role in this respect. 64 ISSN 0556-171X. npo6n.eubi npounocmu, 2002, N 6 Brittle Mixed-Mode (I+II) Fracture: Application o f the Within this volume, the average stress is high enough to promote crack initiation, while the relative stress gradient is not too high, which makes all points within this volume to be sufficiently stressed (by the so-called “effective tangential stress”). The role of the relative stress gradient in the crack-initiation process has been mentioned previously by Buch [9]. Proposed Criterion for the M ixed-M ode F ractu re Initiated from Notches: the Equivalent Notch Stress Intensity Factor. This criterion assumes that in mixed-mode (I+II) fracture crack initiation from notches is governed by the tangential stress. For various notch radii and inclination angles we have determined the maximum tangential stress points over the notch contour. We have analyzed the distribution of tangential stresses at the notch tip according to this approach. This analysis shows a “pseudo singularity” stress distribution governed by the equivalent notch stress-intensity factor K eq. We will show below that the critical values of this parameter can be used to determine the fracture toughness in mixed-mode (I+II) fracture. Direction o f the M axim um Tangential Stress at the Notch Tip. Finite element calculations (Castem 2000) have been used to determine the maximum tangential stress in all points of the notch contour. It is noteworthy that the respective direction varies linearly with the notch radius. This variation is given by the following correlations: Q0 = A (P ) ̂ + B (P ) (in degrees), (1) where A( p ) = -0 .0222P 2 + 1.4983P, (2) B( P ) = -0.0456P 2 + 3.6178P. (3) In mode II (3 = 33°) for p = 0: Q0 = B(33°) = 70.39°^ 70.5° (Sih and Erdogan [10]) or « 70.33° (Stroh [11]). The numerical values obtained according to the maximum tangential stress criterion [Eq. (1)] are compared to the experimental values measured by an optical microscope (Fig. 6). 3 (degree) Fig. 6. Direction of the maximum tangential stress в0 versus the inclination angle 3 ISSN 0556-Î7ÎX. Проблемы прочности, 2002, № 6 65 H. El Minor, M. Louah, Z. Azari, et al. Figure 6 shows that the propagation of the angled crack 6 0 described according to the maximum tangential stress criterion correlates closely with the experimental data, and the above criterion can be used to predict the bifurcation angle for cracks emanating from notches. Tangential Stress Distribution at the Notch Tip. In Fig. 7, we plot the evolution of the stress distribution at the notch tip versus the distance p according to the direction of the maximum tangential stress 6 o (for p = 0.5 mm and fl = 18°). Figure 7 shows that the tangential stress a 66 is appreciably higher than a rr, a zz, and r r6 . This important difference is observed for various notch radii p and inclination angles fl. Fig. 7. Distribution of stresses aee, arr, azz, and ггв at the notch tip. We assume that the mixed-mode (I+II) notch-initiated fracture is governed by the tangential stress (while a 66 plays the major role in the cracking process). Further, we have studied this stress distribution according to the maximum tangential stress direction. We have plotted the tangential stress distribution in a bilogarithmic graph (Fig. 8) according to the procedure described elsewhere [6, 7, 12]. log(r) 66 Fig. 8. Tangential stress distribution at the notch tip. ISSN 0556-171X. Проблемы прочности, 2002, № 6 Brittle Mixed-Mode (I+II) Fracture: Application o f the Zone I : “High-stress” region. Zone II: “Pseudo singularity” stress distribution governed by the equivalent notch stress-intensity factor. K o - = O r ■ <4) where o 00 is the tangential stress (MPa), r is the distance from the notch tip (mm), and K eqp is the equivalent notch stress intensity factor (MPaVm). Zone III : “distant” region. Effective Tangential D istance r0f . The upper limit of the “pseudo singularity” stress distribution has the following coordinates (r0ef , o 0f ), where r0f is the effective tangential distance and o 0ef is the effective tangential stress. By definition, the effective tangential distance is the diameter of the process volume assuming it has a cylindrical shape. A typical example of the tangential stress distribution is presented in Fig. 9. The relative tangential stress has also been plotted versus distance r . to Fig. 9. Tangential stress distribution at the notch tip. Relative tangential stress gradient versus the distance. Determination of the effective tangential distance. The relative tangential stress is defined as 1 d(°00 ( r ) X o 00( r) dr ' (5) The effective tangential distance can be determined using the following considerations: 1. According to [13], the effective tangential distance exceeds the plastic zone diameter [Rp (0 0 )]. 2. The effective tangential distance is located in the stressed region, where the stress gradient is not too high. Weight Function. All the stressed points in the process volume have a certain role in crack initiation from notches. This role is different for each point and depends both on the distance between this point and the notch, and on the stress gradient. We can define the weighted stress, which takes into account these roles, as follows: ISSN 0556-171X. npoôëeubi npounocmu, 2002, № 6 67 H. El Minor, M. Louah, Z. Azari, et al. ° ij = ° j p (r, xX (6) where p ( r , x ) is the weight function. According to Weixing [14], this function is defined by the following relationship: P ( r , X ) = 1_ r x. (7) Effective Tangential Stress a f . The effective tangential stress is the stress, which corresponds to the effective distance of stress distribution. It is defined as 1 ref — f ° e e p ( r , X)d r.a f = — J o ee<p(r, x )d r. (8) ef 0 This is the average value of the weighted tangential stress. Critical Equivalent Notch Stress-Intensity Factor K ceqp and Fracture Toughness K ic. In this section, we have determined the critical equivalent notch stress-intensity factor K ceqp in mode I, mode II, and mixed mode (I+II) fracture. We compared its value to the fracture toughness K Ic according to Jones [8], who considered a notch to be equivalent to a crack. For circular ring specimens, Jones [8] expressed the fracture toughness K Ic by the following relationship: 2.61Pc K Ic B r F ~ , (9) where 0.625< ( a + R i ) /R 0 < 0.845 and R i / R 0 = 0.5; a > 0.4b (b = R 0 — R i), while 2.61 corresponds to the value of the geometrical correction and the critical load Pc. According to [8], the fracture toughness K lc and the critical equivalent notch stress intensity factor K ceqp have been determined from experimental and numerical results and presented, respectively, in Figs. 10 and 11 versus the notch radius p. It is noteworthy that if the notch radius is less than p c, the critical equivalent notch stress-intensity factor K ^ is practically constant and independent of both the notch radius and the inclination angle. The critical value of this parameter is nearly equal to the notch stress intensity factor K IP in mode I fracture: K cqp ~ K Ip « K Ic (for p < p c = 0.75 mm) « 97 MPaVm. (10) However, according to [8], for p > p c = 0.75 mm, the fracture toughness K ic exhibits a linear relationship with the notch radius p and is not an intrinsic material characteristic. 68 ISSN 0556-171X. npoôëeubi npounocmu, 2002, N2 6 Brittle Mixed-Mode (I+II) Fracture: Application o f the p (mm) Fig. 10. The influence of the notch radius p on the fracture toughness K lc. p (mm) Fig. 11. The influence of the notch radius p on the critical equivalent-notch stress intensity factor K c .Keqp• M ixed-M ode (I+II) Criterion Based on the Equivalent Notch Stress- Intensity Factor KCqp • The tangential stress distribution at the notch tip can be described by two types of fracture criteria: global and local. In the case of a notch, there is no stress singularity at the crack tip, but the maximum stress is followed by a “pseudo singularity,” where the stress distribution is governed by the equivalent notch stress-intensity factor. Global Fracture Criterion. It is assumed that crack initiation occurs: (i) in the direction perpendicular to the tangential stress when it reaches its maximum value; (ii) when the equivalent notch stress-intensity factor K c reaches its critical value: K<eqp= ° Ce f ^ = K Ip . (11) Local Fracture Criterion (Volumetric Approach). The local fracture criterion is based on the following considerations: for physical reasons, a certain volume (called “effective volume”) is required for the fracture process to occur. Within ISSN 0556-171X. npoôëeubi npounocmu, 2002, № 6 69 H. El Minor, M. Louah, Z. Azari, et al. this volume, the effective tangential stress can be considered as an average stress tangential weight, which takes into account the tangential stress distribution. This process volume can be described by the distance r f , or the so-called “effective tangential distance” considering that the specimen thickness is constant and the process volume is cylindrical. The crack initiation is assumed to occur when both the effective tangential stress o f and the effective tangential distance reach their critical values. Conclusions. For brittle mixed-mode (I+II) fracture emanating from notches, the maximum tangential stress criterion, which is based on the effective tangential stress and the equivalent notch stress-intensity factor, agrees well with the experimental data and can be used to predict the bifurcation angle for cracks emanating from notches. The volumetric approach envisages that the cracking process requires a physical volume to occur. The effective tangential stress acting in this volume (called the effective volume) is given by the value of the minimum relative tangential stress. The results of this work and some other ones [6, 12, 15] indicate that this approach provides a relatively good description of the notch effect. Р е з ю м е Досліджується зародження тріщини за змішаним механізмом руйнування (типу І+ІІ) в зразках кільцевого типу з внутрішнім надрізом. Запропоновано новий критерій для описання крихкого руйнування змішаного типу І+ІІ, в основу якого покладено об’ємний підхід, а базовим параметром є дотичне напруження у надрізі. За параметр в ’язкості руйнування для змішаного механізму руйнування за типом І+ІІ пропонується використовувати гра­ ничне значення еквівалентного коефіцієнта інтенсивності напружень у над­ різі. 1. H. A. Richard, “Specimens for investigating biaxial fracture and fatigue processes,” in: Biaxial and M ultiaxial Fatigue, Mechanical Engineering Publications (1989), pp. 217-229. 2. T. Tamine, C. Chehimi, T. Boukharouba, and G. Pluvinage, “Crack initiation in pure shear mode II,” Problems o f Strength, Special Publication, 71-79 (1996). 3. T. Tamine, Amorçage de Fissures p a r Fatigue-Contact, Thèse de Doctorat, Université de Metz, France (1994). 4. M. Creager and P. C. Paris, “Elastic field equations for blunt cracks with reference to stress corrosion cracking,” Int. J. Fract. M ech., 3, 247-252 (1967). 5. G. R. Irwin, “Analysis of stresses and strains near the end of crack traversing a plate,” Trans. ASM E, J. Appl. Mech. (1957). 6. G. Pluvinage, “Rupture et fatigue amorcée à partir d’entailles - application du facteur d’intensité d’entaille,” Revue Franç. M éca n , No. 1, 53-61 (1997). 70 ISSN 0556-171X. Проблеми прочности, 2002, № 6 Brittle Mixed-Mode (I+II) Fracture: Application o f the 7. G. Pluvinage, Notch E ffect and Effective Stress in H igh-Cycle Fatigue, Universite de Metz, France (1999). 8. A. T. Jones, “A radially cracked, cylindrical fracture toughness specimen,” Eng. Fract. M ech., 6, 435-446 (1974). 9. A. Buch, “Analytical approach to size and notch-size effects in fatigue of aircraft material specimens,” Mat. Sci. Eng., 15, 75-85 (1974). 10. G. C. Sih and F. Erdogan, “On the crack extension in plates under plane loading and transverse shear,” J. Basic Eng. (1963). 11. G. Stroh, “La rupture des materiaux,” in: D. Francois and L. Joly (Eds.), Masson and Co (1972). 12. N. Kadi, Rupture p a r Fatigue des Arbres Entaillés et Clavetés, Université de Metz, France (1997). 13. H. El Minor, Rupture Fragile en M ode M ixte Am orcée à Partir d'Entaille, Thèse de Doctorat, Université de Rabat, Morocco (in print). 14. Y. Weixing, “Stress field intensity approach for predicting fatigue life,” Int. J. Fract., 17, No. 4, 245-251 (1995). 15. Z. Azari, N. Kadi, M. G. Jonaj, and G. Pluvinage, “Application of a new model proposal for the fatigue life prediction on notches and key-seats,” Int. J. Fatigue, 21, 53 (1999). Received 19. 03. 2002 ISSN 0556-171X. npoôëeubi npounocmu, 2002, N 6 71