Radiation-Induced Embrittlement of WWER-440 Reactor Pressure Vessel Steel under Loading

Приведены результаты определения эталонной температуры T0 и построена "Master curve” на основе экспериментов, выполненных для стали марки 15Х2МФА (основной металл корпуса реактора типа ВВЭР-440) в трех состояниях: необлученном, облученном и облученном под нагрузкой. Показано, что механическая н...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2003
Hauptverfasser: Grinik, E.U., Chirko, L.I., Gul’chuk, Yu.S., Strizhalo, V. A., Novogrudskii, L.S., Ballesteros, A., Debarberis, L., Sevini, F.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2003
Schriftenreihe:Проблемы прочности
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/46940
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Radiation-Induced Embrittlement of WWER-440 Reactor Pressure Vessel Steel under Loading / E.U. Grinik , L.I. Chirko , Yu.S. Gul’chuk, V.A. Strizhalo, L.S. Novogrudskii, A. Ballesteros, L. Debarberis, F. Sevini // Проблемы прочности. — 2003. — № 1. — С. 39-47. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-46940
record_format dspace
spelling irk-123456789-469402013-07-08T08:46:25Z Radiation-Induced Embrittlement of WWER-440 Reactor Pressure Vessel Steel under Loading Grinik, E.U. Chirko, L.I. Gul’chuk, Yu.S. Strizhalo, V. A. Novogrudskii, L.S. Ballesteros, A. Debarberis, L. Sevini, F. Научно-технический раздел Приведены результаты определения эталонной температуры T0 и построена "Master curve” на основе экспериментов, выполненных для стали марки 15Х2МФА (основной металл корпуса реактора типа ВВЭР-440) в трех состояниях: необлученном, облученном и облученном под нагрузкой. Показано, что механическая нагрузка, имитирующая давление теплоносителя, ускоряет радиационное охрупчивание, причем вклад ее сравним с вкладом нейтронного облучения. Наведено результати визначення еталонної температури T0 та побудовано “Master curve” на основі експериментів, проведених для сталі марки 15Х2МФА (основний метал корпусу реактора типу ВВЕР-440) в неопроміненому, опроміненому й опроміненому під навантаженням стані. Показано, що механічне навантаження, яке імітує тиск теплоносія, прискорює радіаційне окрих- чення, при цьому його внесок можна порівняти з внеском нейтронного опромінення. 2003 Article Radiation-Induced Embrittlement of WWER-440 Reactor Pressure Vessel Steel under Loading / E.U. Grinik , L.I. Chirko , Yu.S. Gul’chuk, V.A. Strizhalo, L.S. Novogrudskii, A. Ballesteros, L. Debarberis, F. Sevini // Проблемы прочности. — 2003. — № 1. — С. 39-47. — Бібліогр.: 10 назв. — англ. 0556-171X http://dspace.nbuv.gov.ua/handle/123456789/46940 539.4 en Проблемы прочности Інститут проблем міцності ім. Г.С. Писаренко НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Научно-технический раздел
Научно-технический раздел
spellingShingle Научно-технический раздел
Научно-технический раздел
Grinik, E.U.
Chirko, L.I.
Gul’chuk, Yu.S.
Strizhalo, V. A.
Novogrudskii, L.S.
Ballesteros, A.
Debarberis, L.
Sevini, F.
Radiation-Induced Embrittlement of WWER-440 Reactor Pressure Vessel Steel under Loading
Проблемы прочности
description Приведены результаты определения эталонной температуры T0 и построена "Master curve” на основе экспериментов, выполненных для стали марки 15Х2МФА (основной металл корпуса реактора типа ВВЭР-440) в трех состояниях: необлученном, облученном и облученном под нагрузкой. Показано, что механическая нагрузка, имитирующая давление теплоносителя, ускоряет радиационное охрупчивание, причем вклад ее сравним с вкладом нейтронного облучения.
format Article
author Grinik, E.U.
Chirko, L.I.
Gul’chuk, Yu.S.
Strizhalo, V. A.
Novogrudskii, L.S.
Ballesteros, A.
Debarberis, L.
Sevini, F.
author_facet Grinik, E.U.
Chirko, L.I.
Gul’chuk, Yu.S.
Strizhalo, V. A.
Novogrudskii, L.S.
Ballesteros, A.
Debarberis, L.
Sevini, F.
author_sort Grinik, E.U.
title Radiation-Induced Embrittlement of WWER-440 Reactor Pressure Vessel Steel under Loading
title_short Radiation-Induced Embrittlement of WWER-440 Reactor Pressure Vessel Steel under Loading
title_full Radiation-Induced Embrittlement of WWER-440 Reactor Pressure Vessel Steel under Loading
title_fullStr Radiation-Induced Embrittlement of WWER-440 Reactor Pressure Vessel Steel under Loading
title_full_unstemmed Radiation-Induced Embrittlement of WWER-440 Reactor Pressure Vessel Steel under Loading
title_sort radiation-induced embrittlement of wwer-440 reactor pressure vessel steel under loading
publisher Інститут проблем міцності ім. Г.С. Писаренко НАН України
publishDate 2003
topic_facet Научно-технический раздел
url http://dspace.nbuv.gov.ua/handle/123456789/46940
citation_txt Radiation-Induced Embrittlement of WWER-440 Reactor Pressure Vessel Steel under Loading / E.U. Grinik , L.I. Chirko , Yu.S. Gul’chuk, V.A. Strizhalo, L.S. Novogrudskii, A. Ballesteros, L. Debarberis, F. Sevini // Проблемы прочности. — 2003. — № 1. — С. 39-47. — Бібліогр.: 10 назв. — англ.
series Проблемы прочности
work_keys_str_mv AT grinikeu radiationinducedembrittlementofwwer440reactorpressurevesselsteelunderloading
AT chirkoli radiationinducedembrittlementofwwer440reactorpressurevesselsteelunderloading
AT gulchukyus radiationinducedembrittlementofwwer440reactorpressurevesselsteelunderloading
AT strizhalova radiationinducedembrittlementofwwer440reactorpressurevesselsteelunderloading
AT novogrudskiils radiationinducedembrittlementofwwer440reactorpressurevesselsteelunderloading
AT ballesterosa radiationinducedembrittlementofwwer440reactorpressurevesselsteelunderloading
AT debarberisl radiationinducedembrittlementofwwer440reactorpressurevesselsteelunderloading
AT sevinif radiationinducedembrittlementofwwer440reactorpressurevesselsteelunderloading
first_indexed 2025-07-04T06:29:12Z
last_indexed 2025-07-04T06:29:12Z
_version_ 1836696787763593216
fulltext UDC 539.4 Radiation-Induced Embrittlement of WWER-440 Reactor Pressure Vessel Steel under Loading E. U. G rin ik ,a L. I. C h irk o ,a Y u. S. G u l’chuk ,a V. A. S trizhalo ,b L. S. N ovogrudskii,b A. B allesteros,c L. D eb arb eris ,d F. Sevinid a Institute for Nuclear Researches, National Academy of Sciences of Ukraine, Kiev, Ukraine b Pisarenko Institute of Problems of Strength, National Academy of Sciences of Ukraine, Kiev, Ukraine c Tecnatom S.A., Madrid, Spain d JRC, Institute for Energy, Petten, Netherlands УДК 539.4 Радиационное охрупчивание корпусной стали реактора ВВЭР-440, находящейся под нагрузкой Э. У. Г р и н и к а, Л . И. Ч и р к о а, Ю . C. Г у л ьч у к а, В. А. С тр и ж ал о 6, Л . С. Н овогрудски й 6, А. Б аллестеросв, Л . Д е6a р 6 ерисг, Ф. С евин и г а Научный центр “Институт ядерных исследований” НАН Украины, Киев, Украина 6 Институт проблем прочности им. Г. С. Писаренко НАН Украины, Киев, Украина в “Tecnatom S.A.”, Мадрид, Испания г Энергетический институт, Петен, Нидерланды Приведены результаты определения эталонной температуры Г0 и построена "Master curve” на основе экспериментов, выполненных для стали марки 15Х2МФА (основной металл корпуса реактора типа ВВЭР-440) в трех состояниях: необлученном, облученном и облученном под нагрузкой. Показано, что механическая нагрузка, имитирующая давление теплоносителя, ускоряет радиационное охрупчивание, причем вклад ее сравним с вкладом нейтронного облучения. Ключевые слова : нейтронное облучение, радиационное охрупчивание, кор­ пусная сталь, “Master curve”, механическая нагрузка, давление теплоносителя. In troduc tion . A t the time being, the radiation embrittlement o f the reactor vessel materials is evaluated by the results o f the Charpy-type surveillance specimens or fatigue pre-cracked compact tension specimens. The surveillance specimens are irradiated in the hermetically closed container assemblies without stress. The reactor vessel m aterial is actually subjected to the pressure o f the coolant. © E. U. GRINIK, L. I. CHIRKO, Yu. S. GUL’CHUK, V. A. STRIZHALO, L. S. NOVOGRUDSKII, A. BALLESTEROS, L. DEBARBERIS, F. SEVINI, 2003 ISSN 0556-171X. Проблемы прочности, 2003, N2 1 39 É. U. Grinik, L. I. Chirko, Yu. S. G u l’chuk, et al. For determining the effect o f m echanical load under irradiation on the embrittlement rate o f the reactor vessel m aterials two container assemblies were irradiated in commercial unit. They were completed w ith the specimens cut of four various grades o f steel, having been utilized for manufacturing reactor pressure vessels in the former Soviet Union. Three kinds o f specimens were prepared o f each type o f steel, namely: - static tensile specimens; - Charpy-V type im pact specimens; - T-L-oriented stressed and unstressed compact tension specimens. The specimens o f each steel were located in three layers. There were 2 tensile, 2 Charpy-V and 4 CT (2 stressed and 2 unstressed) specimens in every layer o f each assembly. Thus, each assembly was completed w ith six stressed and six unstressed 1/2T compact tension specimens m anufactured o f each type of vessel steel. Irradiation was perform ed on such a level o f the reactor core that within one year o f irradiation to accumulate the dose comparable w ith that accumulated by the reactor core in the center o f the active zone during the design service life (40 years). The prim ary material property, determining its susceptibility to spalling, is the ability o f the material to resist the propagation o f a crack. For reactor steels the ductile-brittle transition tem perature shift in the irradiated state has to be defined as compared to the unirradiated one, therefore the application o f large- size surveillance specimens is unacceptable. Employing the M aster Curve approach for ferritic steels enables to obtain credible values o f the critical stress-intensity factor K jc in the wide temperature range testing small-size specimens [1]. According to the recent standardizing documents, M aster Curve is constructed on the basis o f the results o f testing small-size specimens at a single temperature such that steady growth o f a crack before the beginning o f the fracture is practically precluded. This allows to simplify considerably the procedure o f defining j -integral and use experimental basic approach o f nonlinear fracture mechanics. The paper presents the results o f determining the reference tem perature TO and constructing a M aster Curve proceeding from the experiments, carried out for the steel 15Cr2MoVA (base metal o f W W ER-440 reactor vessel metal) in irradiated, unirradiated, and irradiated stressed states. M ate ria l an d Specim ens. Chemical composition o f the investigated steel is presented in Table 1. 1/2T CT specimens were studied. Fatigue cracks (a 0) on them were initiated in line w ith the requirements o f the State Standard 25.506-85 [2 ]. T a b l e 1 Chemical Composition of 15Cr2MoVA Steel C Si Mn Ni Cr S P Cu V Mo 0.14 0.2 0.36 0.11 2.0 0.012 0.007 0.09 0.2 0.6 The vessel metal o f an operating W W ER-type reactor is under the pressure o f the coolant. In W W ER-1000 it equals 16 MPa, that results in the stress o f the 40 ISSN Ü556-171X. Проблемыг прочности, 2ÜÜ3, N 1 Radiation-Induced Embrittlement o f WWER-440 Reactor vessel m etal o f about 173 MPa. For imitating such stresses m echanical load was created on CT specimens by means o f the loading screw and m etallic bellows. Stressed specimens were assembled into two chains, linked w ith two bellows, next to unstressed specimens, enabling the correct comparison o f the data for both groups o f specimens. The design o f the assemblies allowed water o f the prim ary circuit to wash the specimens, so their irradiation tem perature was equal to the tem perature o f the coolant, i.e., ~ 2 9 0 oC. Fast neutron fluences (E > 0.5 MeV) accumulated by the studied specimens in experimental assemblies are calculated by the Kurchatov Institute in the framework o f the Project TACIS PCP-IV [3] and are illustrated in Table 2. T a b l e 2 Calculated Fluences Defined for Middle Areas of Each Assembly Layer Steel grade Layer number Neutron fluence (E > 0.5 MeV), n/cm2 Assembly No. 1 Assembly No. 2 Base metal 15Cr2MoVA 7 9.15 •Ю19 9.24 •1019 8 1.04 -1020 1.05 •Ю20 9 1.16-1020 1.17 •Ю20 M ethods o f Testing. Static tensile testing was conducted in accordance with the State Standard 1497-73 [4]. Rem ote-controlled tensile-testing machine installed in the “hot” chamber was applied as experimental equipment. The error o f the breaking stress determining was ± 25 MPa. The active grip m oved with the speed o f 1 mm/min. Tests were perform ed at room temperature and at 350OC. Keeping tem perature was w ith the accuracy ±2OC. The m aximum error of determining strength characteristics is 5% and that o f plasticity - 2%. The results o f static tensile tests are shown in Table 3. T a b l e 3 Radiation-Induced Changes of Mechanical Characteristics of Base Metal 15Cr2MoVA Averaged over Specimens of Both Assemblies Test , OC Rp0.2, MPa ,am P R M A>,% %%SA Z, % 20 333 441 17.0 7.3 77 601 670 5.1 2.2 44 Change, % 80 51 -70 -70 -43 350 316 387 12.3 3.6 80 449 506 5.0 2.5 43 Change, % 42 31 -59 -31 -46 Note. Over the line are given results for unirradiated specimens and under the line - for irradiated specimens. Fracture toughness tests were carried out in line w ith ASTM Standard 1921-97 [1] on the testing electromechanically-driven m achine Instron-8500 with the critical load 100 kN. The m achine is remote-controlled and it is installed in ISSN 0556-171X. Проблемыг прочности, 2003, N І 41 E. U. Grinik, L. I. Chirko, Yu. S. G u l’chuk, et al. the “hot” chamber o f the Institute for N uclear Research o f the National Academy o f Sciences o f Ukraine in the framework o f the program TACIS PCP-IV. The procedure o f m easuring temperature, load and crack opening satisfied the requirements [1] that provided determination o f the above characteristics with high accuracy and obtaining reliable P — V diagrams. Since crack opening was m easured on the front surface o f a specimen, according to p. 7.1 [1] the correction for displacement o f the loaded line was applied by m ultiplying the m easured values by 0.73. Fracture toughness testing temperature was found as where C = —28°C for 1/2T specimens [1]. The temperature T28j was defined by the results o f Charpy im pact testing (1 0 X1 0 X55 mm) on the pendulum hammer KM D-30D with im pact accumulated energy 300 J in the temperature range (—80°C)-(+ 100°C) in line with the standard [5] (Fig. 1). The processing o f impact toughness data (E ab) w as conducted according to [6 ] by m eans o f the approximation function o f hyperbolic tangent, the equation o f w hich looks like where E ab is the absorbed energy (J), A is the average value o f E ab between the maxim um (Emax) and minimum (Emin) values, B = (E max — E min ) /2 , Tk0 is the temperature corresponding to the value A, and C is the empiric constant. Parameters A, B , C , and Tk0 are defined by the processing o f the experimental points by the methods o f least squares. Ductile-brittle transition temperature for unirradiated specimens (Tk0) is — 62°C and for irradiated ones it is TkF = — 7°C. T = T28 J + C , ( 1) 1— |— r— i— r— i— r 1 1 ) 1 1 l '" " T ..... | , I , M1...... 1...... 1 -100 -50 0 50 100 Test temperature (°C) Fig. 1. The temperature dependence of absorbed energy of base metal 15Cr2MoVA. 42 ISSN 0556-171X. npoÖÄeubi npounocmu, 2003, N2 1 Radiation-Induced Embrittlement o f WWER-440 Reactor From the data o f Fig. 1 the fracture toughness test temperature = — 11.5°C. Thus, according to the standard [1] and on the basis o f Eq. (1) fracture toughness tests have to be perform ed at the temperature T = — 90°C and T = — 40°C for unirradiated and irradiated specimens, respectively. O b ta in ed R esults. As a result o f testing seven unirradiated specimens at — 90°C P — V diagrams, characteristic for cleavage cracking, have been got. By the results o f processing these diagrams the values o f /- in teg ra l were defined as the sum o f elastic and plastic components. The values o f the stress intensity factor (K Jc) were calculated from the j c values obtained for each individual specimen. The values o f J c and K jc for unirradiated specimens o f steel 15Cr2MoVA are illustrated in Table 4. P — V diagram and the fracture surface in first irradiated specimen at the testing temperature Ttest = — 40°C testify the considerable stable growth o f a crack. The value o f K jc for this specimen is equal to 129.95 MPaVm (Table 4). According to the recommendations o f CSRIEM “Prom etei” on the assessment of fracture toughness in W W ER-440, W W ER-1000 reactor vessel materials, the testing temperature was lowered by 20°C, but at Ttest = — 60°C the stable crack growth was also more intensive. A t Ttest = — 80°C cleavage cracking took place in the irradiated specimens. Therefore all the rest irradiated (stressed and unstressed) specimens were tested at Ttest = — 80°C. The results o f testing all the specimens are shown in Table 4. None o f the K j c values should be qualified as all the values do not exceed K jc(limit) value for the above testing temperature. M aste r C urve A p p ro ach A pplication. M aster Curve approach is used for construction tem perature dependence o f fracture toughness on the basis o f test results o f lim ited quantity o f specimens [7, 8 ]. The position o f the curve K j c(T ) on the tem perature coordinate is established from experim ental determ ination o f the tem perature T0 at w hich the m edian value K jc( med) for 1T specimens is 100 M P aV m . Ferritic steels are known to be very heterogeneous due to the orientation o f individual grains as well as to heterogeneities o f the grain boundaries. Carbides and different non-metallic inclusions on the grain boundaries m ay be nucleus o f microcracks. Their random location relative to the crack front in the m aterial conditions the large spread in values o f fracture toughness testing small-size specimens. As it is shown by Weibull [9] the curve shape for ferritic steels w ith yield strength from 275 to 825 M Pa is determined by the index o f the exponential curve b = 4 and K min = 20 MPaVm. These data are received on the basis o f the statistic analysis o f a huge num ber o f experimental data, obtained by various researchers all over the world on the specimens o f different sizes. According to the requirements [1], whose adequacy has been confirmed in [10], the values obtained on specimens o f size 0.5T were recalculated into the values equivalent to those obtained on specimens o f size 1T by the formula = T 35J/cm2 for unirradiated specimens was — 62°C and for irradiated ones it was (3) ISSN 0556-171X. npo6n.eubi npounocmu, 2003, № 1 43 E. U. Grinik, L. I. Chirko, Yu. S. G u l’chuk, et al. T a b l e 4 Results of Fracture Toughness Testing of Base Metal 15Cr2MoVA No. State P3 KJc (1/2T), MPaVm KJc (1TH MPaVm K 0, MPaVm K ,KJc (med) • MPaVm 0̂E-? 1 Unirradiated -90 77.57 68.42 85.58 79.83 - 72.1 2 -90 85.53 75.11 3 -90 93.65 81.94 4 -90 98.09 85.67 5 -90 98.93 86.38 6 -90 106.12 92.44 7 -90 107.09 93.24 1 Irradiated -80 67.24 59.73 81.98 76.56 - 58.5 2 unstressed -80 67.92 60.30 3 -80 73.98 64.81 4 -80 80.02 70.47 5 -80 86.28 71.84 6 -80 98.42 85.95 7 -80 103.83 88.92 8 -80 101.95 90.50 9 -80 104.93 91.43 10 -80 106.48 92.73 11 -40 129.95 112.46 12 -60 144.78 124.94 1 Irradiated -80 51.51 46.50 68.60 64.35 - 42.5 2 stressed -80 55.17 49.58 3 -80 56.45 50.66 4 -80 58.30 52.21 5 -80 67.64 60.07 6 -80 68.15 60.50 7 -80 69.26 61.42 8 -80 82.22 72.33 9 -80 82.24 72.34 10 -80 86.94 76.30 11 -80 91.83 80.41 12 -80 94.55 82.70 and then we calculated the scale parameter K 0 = N ( K Jc(1T)) i=1 N - 0.3068 1/4 + 2 0 , (4) 44 ISSN 0556-171X. npo6n.eubi npounocmu, 2003, N2 1 Radiation-Induced Embrittlement o f WWER-440 Reactor 15Cr2M oVA unirrad iated IV I .a 2 3 4 KJc (i) - Km Master Curve for unirradiated 15Cr2MoVA sleel Test temperature (0C) a 15Cr2MoVA irradiated IV I _0 £ MKJc(i) - Kmini b 15Cr2MoVA irradiated under stress 0 1 2 3 4 5 6 7 ln[KJc (i) - Kmin] M aster Curve lor irradiated under stress 15Cr2MoVA steel Test temperature (0C) c Fig. 2. Weibull’s plots and Master Curves for three states of specimens: unirradiated (a), irradiated without stress (b) and irradiated under mechanical load (c): (1, 3) tolerance bounds 95% and 5%, respectively; (2) Master Curves. and the m ean value o f the sample: K M med) = (K 0 - 20)[ln2 ]1/4 + 20. (5) The magnitude o f the reference tem perature (70) was determined using the following expression: t - T - 1 i ( Kjc(med) 0 test 0.019 n , 30 70 (6 ) ISSN 0556-171X. npoÖÄeubi npounocmu, 2003, N 1 45 E. U. Grinik, L. I. Chirko, Yu. S. G u l’chuk, et al. The values o f the parameters calculated according to formulas (3)-(5) for three states o f steel 15Kh2MFA are listed in Table 4. M aster Curves (Fig. 2) were constructed by the equation [1]: Kjc(med) = 3 0 + 70exp[0 .019(r- r 0 )]. (7) For visual representation o f the results o f testing, W eibull’s m odel was used according to w hich the probability o f fracture is evaluated by the formula P f = 1 - ex p { -[(K jc - K min ) /(K 0 - K min ) f }, (8) where K min = 20 MPaVm and b = 4. Figure 2 demonstrates that the data o f K Jc lie within ± 5 % confidence interval o f M aster Curve approach. M ean-square deviations T0 estimated according to [1] are equal ±7°C for unirradiated specimens and ± 6°C for irradiated ones in both states. Figure 3 illustrates M aster Curves for three states o f steel 15Cr2MoVA: unirradiated (1), after irradiation unloaded (2), and irradiated loaded (3). Reference temperature T0 for irradiated unstressed specimens exceeds its value for unirradiated specimens. Total effect o f neutron irradiation and stress results in the increase o f the reference tem perature in this case by 30°C. Test temperature (°C) Fig. 3. Master Curves for three states of specimens: (7) unirradiated, (2) irradiated, and (3) irradiated under mechanical load. C onclusions. The effect o f neutron irradiation on radiation em brittlement of N i-free vessel steel 15Cr2MoVA is studied in two states: under m echanical load and without it. The effect o f stressed state due to m echanical load, im itating the pressure o f the coolant, on the ductile-brittle transition temperature o f the fatigue pre-cracked specimens o f steel is discovered. The above effect is revealed in the reference temperature T0 for stressed irradiated specimens being higher than for irradiated unstressed ones. The effect o f the stressed state caused by m echanical load, 46 ISSN 0556-171X. npo6n.eubi npounocmu, 2003, № 1 Radiation-Induced Embrittlement o f WWER-440 Reactor imitating the pressure o f the coolant, on the ductile-brittle transition temperature is qualitatively comparable with the effect o f neutron irradiation. From the physical point o f view, this phenom enon is conditioned by the higher rate o f the formation o f radiation defects due to the total effects o f neutron irradiation and stress. Р е з ю м е Наведено результати визначення еталонної температури Г0 та побудовано “Master curve” на основі експериментів, проведених для сталі марки 15Х2МФА (основний метал корпусу реактора типу ВВЕР-440) в неопроміненому, опро­ міненому й опроміненому під навантаженням стані. Показано, що механічне навантаження, яке імітує тиск теплоносія, прискорює радіаційне окрих- чення, при цьому його внесок можна порівняти з внеском нейтронного опромінення. 1. ASTM Standard E 1921-97. Standard Test M ethod fo r Determination o f Reference Temperature To fo r Ferritic Steels in the Transition Range, Annual Book o f ASTM Standards, Vol. 03.01 (1998). 2. All-Union State Standard 25.506-85. Strength Analysis and Tests. Methods fo r M echanical Testing o f Metals. Determination o f Crack Resistance (Fracture Toughness) Characteristics in Static Loading [in Russian], Gosstandart USSR, M oscow (1985). 3. Report on the Irradiation Conditions, NPP/PCP-4-IRLA(99)-D1 [in Russian], U nit 5, Novovoronezh (1999). 4. All-Union State Standard 1497-73 (ST SEV 471-77). Metals. M ethods o f Tensile Testing [in Russian], Izd. Standartov, M oscow (1983). 5. All-Union State Standard 9454-78 (ST SEV 472-77, ST SEV 473-77). Metals. A M ethod o f Testing fo r Impact Bending at Low, Room, and Elevated Tempeatures [in Russian], Izd. Standartov, M oscow (1982). 6 . Standards fo r Strength Analysis o f PNAE G-7-002-86 Nuclear Pow er Plant Equipment and Pipelines [in Russian], Energoatomizdat, M oscow (1989). 7. Steinstra D. I. A., Stochastic M icromechanical M odeling o f Cleavage Fracture in the Ductile-Brittle Transition Region , M M 6013-90-11, Ph.D. Thesis, Texas A& M University, College Station (1990). 8 . W allin K., “A simple theoretical Charpy V — K Ic correlation for irradiation em brittlem ent,” in: A SM E Pressure V essels and P iping C onference, Innovative Approaches to Irradiation Damage and Fracture Analysis, PVP, Vol. 170, ASM E, New York (1989). 9. W allin K., “The scatter in K Ic results,” Eng. Fract. Mech., 19, No. 6 , 1085-1093 (1984). 10. Ballesteros A., Strizhalo V. A., Grinik E. U., et al., “Determ ination of reference tem perature T0 for steel JRQ in an unirradiated state and construction o f a M aster Curve,” Probl. Prochn., No. 1, 41-51 (2002). Received 05. 04. 2002 ISSN 0556-171X. Проблеми прочности, 2003, № 1 47