Flexural Fatigue Behavior of Cross-Ply Laminates: An Experimental Approach

Within an experimental approach we describe the mechanical behavior of different resin-epoxy laminates reinforced with cross-ply Kevlar and glass fibers under the conditions of static and cyclic three-point bending. In static tests, we consider the effect of stacking sequence, the thickness of...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2003
Автори: Bezazi, A.R., Mahi, A.El, Berthelot, J.-M., Bezzazi, B.
Формат: Стаття
Мова:English
Опубліковано: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2003
Назва видання:Проблемы прочности
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/46964
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Flexural Fatigue Behavior of Cross-Ply Laminates: An Experimental Approach / A.R. Bezazi, A El Mahi, J.-M. Berthelot, B. Bezzazi // Проблемы прочности. — 2003. — № 2. — С. 66-83. — Бібліогр.: 43 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-46964
record_format dspace
spelling irk-123456789-469642013-08-31T12:53:25Z Flexural Fatigue Behavior of Cross-Ply Laminates: An Experimental Approach Bezazi, A.R. Mahi, A.El Berthelot, J.-M. Bezzazi, B. Научно-технический раздел Within an experimental approach we describe the mechanical behavior of different resin-epoxy laminates reinforced with cross-ply Kevlar and glass fibers under the conditions of static and cyclic three-point bending. In static tests, we consider the effect of stacking sequence, the thickness of 90°-oriented layers, reinforcement type on the mechanical behavior of laminates under loading and on realization of various damage modes leading to rupture. Cyclic loading studies have been performed in two steps. In the first stage, we inquire into the dependence of the behavior and durability of four glass fiber- reinforced laminate-types on the stacking sequence; the second stage is devoted to studying the dependence of cyclic strength and fatigue behavior of laminates on the reinforcement type. Fatigue tests are carried out in load-control regime for glass and hybrid (Kevlar + glass) fiber laminates. Fatigue curves are constructed in coordinates “stress - number of cycles until fracture” from the criteria corresponding to a drop in stiffness by 5 and 10%. Analysis of the results obtained permits evaluation of the effect of the stacking sequence and the reinforcement type on the behavior of cross-ply laminates in cyclic loading. The presence of Kevlar fibers accounts for nonlinear behavior of laminates in static tests and for low cyclic strength in fatigue tests under three-point bending. В рамках экспериментального подхода описано механическое поведение различных ламинатов с матрицей из эпоксидной смолы, перекрестно-армированных кевларовыми волокнами и стекловолокнами, в условиях статического и циклического трехточечного изгиба. При статических испытаниях рассматриваются последовательность укладки слоев и волокон, толщины слоев, ориентированных под углом 90° и влияние типа армирования на механическое поведение ламинатов в процессе нагружения, а также на реализацию различных режимов повреждения, приводящих к разрушению. Исследования при циклическом нагружении состоят из двух этапов. На первом этапе изучается влияние последовательности укладки слоев и волокон на поведение и долговечность четырех типов ламинатов, армированных стекловолокнами, на втором этапе - влияние типа армирования на циклическую прочность и сопротивление ламинатов при циклическом нагружении. Усталостные испытания выполнены в мягком режиме нагружения для ламинатов, армированных стекловолокнами и гибридными волокнами (кевлар+стекло). Кривые усталости были построены в координатах напряжение - число циклов до разрушения на основе критериев снижения жесткости на 5 и 10%. Анализ полученных результатов позволяет оценить влияние последовательности укладки слоев и типа армирования на поведение перекрестно-армированных ламинатов при циклическом нагружении. Наличие кевларовых волокон в ламинатах обеспечивает их нелинейное поведение при статических испытаниях и низкую циклическую прочность при усталостных испытаниях в условиях трехточечного изгиба. У рамках експериментального підходу описано механічну поведінку різних ламінатів із матрицею з епоксидної смоли, що перехресноармовані кевларо- вими волокнами і скловолокнами, в умовах статичного і циклічного три- точкового згину. При статичних випробуваннях розглядаються послідовність укладення шарів і волокон, товщини орієнтованих під кутом 90° шарів і вплив типу армування на механічну поведінку ламінатів у процесі навантаження, а також на реалізацію різних режимів пошкодження, що призводить до руйнування. Дослідження при циклічному навантаженні складається з двох етапів. На першому етапі розглядається вплив послідовності укладення шарів і волокон на поведінку і довговічність чотирьох типів армованих скловолокнами ламінатів, на другому етапі - вплив типу армування на циклічну міцність і опір ламінатів при циклічному навантаженні. Випробування на втому виконано у м ’якому режимі навантаження для армованих скловолокнами і гібридними волокнами (кевлар + скло) ламінатів. На основі критеріїв зниження жорсткості на 5 і 10% в координатах напруження - число циклів до руйнування побудовано криві утоми. Аналіз отриманих результатів дозволяє оцінити вплив послідовності укладення шарів і типу армування на поведінку перехресноармованих ламінатів при циклічному навантаженні. Наявність кевларових волокон у ламінатах запезчує їх нелінійну поведінку при статичних випробуваннях і низьку циклічну міцність при випробуваннях на втому в умовах триточкового згину. 2003 Article Flexural Fatigue Behavior of Cross-Ply Laminates: An Experimental Approach / A.R. Bezazi, A El Mahi, J.-M. Berthelot, B. Bezzazi // Проблемы прочности. — 2003. — № 2. — С. 66-83. — Бібліогр.: 43 назв. — англ. 0556-171X http://dspace.nbuv.gov.ua/handle/123456789/46964 en Проблемы прочности Інститут проблем міцності ім. Г.С. Писаренко НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Научно-технический раздел
Научно-технический раздел
spellingShingle Научно-технический раздел
Научно-технический раздел
Bezazi, A.R.
Mahi, A.El
Berthelot, J.-M.
Bezzazi, B.
Flexural Fatigue Behavior of Cross-Ply Laminates: An Experimental Approach
Проблемы прочности
description Within an experimental approach we describe the mechanical behavior of different resin-epoxy laminates reinforced with cross-ply Kevlar and glass fibers under the conditions of static and cyclic three-point bending. In static tests, we consider the effect of stacking sequence, the thickness of 90°-oriented layers, reinforcement type on the mechanical behavior of laminates under loading and on realization of various damage modes leading to rupture. Cyclic loading studies have been performed in two steps. In the first stage, we inquire into the dependence of the behavior and durability of four glass fiber- reinforced laminate-types on the stacking sequence; the second stage is devoted to studying the dependence of cyclic strength and fatigue behavior of laminates on the reinforcement type. Fatigue tests are carried out in load-control regime for glass and hybrid (Kevlar + glass) fiber laminates. Fatigue curves are constructed in coordinates “stress - number of cycles until fracture” from the criteria corresponding to a drop in stiffness by 5 and 10%. Analysis of the results obtained permits evaluation of the effect of the stacking sequence and the reinforcement type on the behavior of cross-ply laminates in cyclic loading. The presence of Kevlar fibers accounts for nonlinear behavior of laminates in static tests and for low cyclic strength in fatigue tests under three-point bending.
format Article
author Bezazi, A.R.
Mahi, A.El
Berthelot, J.-M.
Bezzazi, B.
author_facet Bezazi, A.R.
Mahi, A.El
Berthelot, J.-M.
Bezzazi, B.
author_sort Bezazi, A.R.
title Flexural Fatigue Behavior of Cross-Ply Laminates: An Experimental Approach
title_short Flexural Fatigue Behavior of Cross-Ply Laminates: An Experimental Approach
title_full Flexural Fatigue Behavior of Cross-Ply Laminates: An Experimental Approach
title_fullStr Flexural Fatigue Behavior of Cross-Ply Laminates: An Experimental Approach
title_full_unstemmed Flexural Fatigue Behavior of Cross-Ply Laminates: An Experimental Approach
title_sort flexural fatigue behavior of cross-ply laminates: an experimental approach
publisher Інститут проблем міцності ім. Г.С. Писаренко НАН України
publishDate 2003
topic_facet Научно-технический раздел
url http://dspace.nbuv.gov.ua/handle/123456789/46964
citation_txt Flexural Fatigue Behavior of Cross-Ply Laminates: An Experimental Approach / A.R. Bezazi, A El Mahi, J.-M. Berthelot, B. Bezzazi // Проблемы прочности. — 2003. — № 2. — С. 66-83. — Бібліогр.: 43 назв. — англ.
series Проблемы прочности
work_keys_str_mv AT bezaziar flexuralfatiguebehaviorofcrossplylaminatesanexperimentalapproach
AT mahiael flexuralfatiguebehaviorofcrossplylaminatesanexperimentalapproach
AT berthelotjm flexuralfatiguebehaviorofcrossplylaminatesanexperimentalapproach
AT bezzazib flexuralfatiguebehaviorofcrossplylaminatesanexperimentalapproach
first_indexed 2025-07-04T06:31:13Z
last_indexed 2025-07-04T06:31:13Z
_version_ 1836696914401165312
fulltext UDC 539.4 Flexural Fatigue Behavior of Cross-Ply Laminates: An Experimental Approach A. R. B ezazi,a A. E l M ah i,b J.-M . B erthelo t,b and B. Bezzazic a Laboratoire de Mécanique et de Structure (LMS), Université 08 Mai 1945, Guelma, Algeria b Institute of Acoustic and Mechanics Group of Composite and Mechanical Structures, University of Le Mans, Le Mans, France c Institute of the Materials of Constructions, University of Boumerdes, Boumerdes, Algeria УДК 539.4 Сопротивление усталости перекрестно-армированных ламинатов при изгибе А. Р. Б езази а, А. Э ль М ахи6, Дж.-М . Б ертело6, Б . Б еззази в а Университет г. Гуэльма, Алжир 6 Университет г. Ле Манс, Франция в Университет г. Бумэрди, Алжир В рамках экспериментального подхода описано механическое поведение различных лами­ натов с матрицей из эпоксидной смолы, перекрестно-армированных кевларовыми волокнами и стекловолокнами, в условиях статического и циклического трехточечного изгиба. При статических испытаниях рассматриваются последовательность укладки слоев и волокон, толщины слоев, ориентированных под углом 90° и влияние типа армирования на механи­ ческое поведение ламинатов в процессе нагружения, а также на реализацию различных режимов повреждения, приводящих к разрушению. Исследования при циклическом нагру­ жении состоят из двух этапов. На первом этапе изучается влияние последовательности укладки слоев и волокон на поведение и долговечность четырех типов ламинатов, армиро­ ванных стекловолокнами, на втором этапе - влияние типа армирования на циклическую прочность и сопротивление ламинатов при циклическом нагружении. Усталостные испы­ тания выполнены в мягком режиме нагружения для ламинатов, армированных стекло­ волокнами и гибридными волокнами (кевлар+стекло). Кривые усталости были построены в координатах напряжение - число циклов до разрушения на основе критериев снижения жесткости на 5 и 10%. Анализ полученных результатов позволяет оценить влияние после­ довательности укладки слоев и типа армирования на поведение перекрестно-армированных ламинатов при циклическом нагружении. Наличие кевларовых волокон в ламинатах обеспе­ чивает их нелинейное поведение при статических испытаниях и низкую циклическую проч­ ность при усталостных испытаниях в условиях трехточечного изгиба. К лю чевы е сл о ва : ламинаты, кевларовые волокна, гибридные волокна, эпоксидная матрица, трехточечный изгиб, усталость, повреждение, кривые усталости. © A. R. BEZAZI, A. EL MAHI, J.-M. BERTHELOT, B. BEZZAZI, 2003 66 ISSN 0556-171X. Проблемы прочности, 2003, N 2 Flexural Fatigue Behavior o f Cross-Ply Laminates In tro d u c tio n . M odem aerospace, aeronautical, naval, motor, and railway technologies require materials w ith high m echanical properties. However, the experience acquired in the use o f homogeneous traditional materials showed their lim ited potential applications. Fortunately, the alternative appeared with composite materials whose properties are very interesting: lightness, high directional stiffness, good resistance to fatigue, the absence o f corrosion for nonmetallic constituents, ease o f fabrication, etc. Such materials, despite the misunderstanding o f certain aspects o f their behavior, have stimulated a great interest in several industrial applications. Over the last three decades, several investigations have been carried out on the fatigue behavior o f composite materials with organic matrices (epoxy, polyester, etc.) and continuous fibers (glass, aramide, carbon, etc.) The prediction o f their fatigue life, however, is still difficult to achieve thus necessitating a better understanding o f many damage mechanisms that m ay lead to total rupture. A great num ber o f studies are reported in the literature on the traction and flexural fatigue o f composite materials. The influence o f fatigue behavior o f the components o f those materials was studied by several authors [1-3]. M andell [4] described the process o f rupture in fatigue in the case o f tensile tests o f glass fiber composites. It was shown that rupture depends only on the properties o f the fibers independently o f the matrix. In a review paper, Talreja [5] summarized various interpretations o f damage mechanisms in fatigue o f plastic matrix composites. Kim and Ebert [6] studied the influence o f cycling frequency, via 4-point bending, on unidirectional glass fiber composites; they found that an increase in frequency leads to a rise in the m aterial temperature without significant effects on fundamental fatigue mechanisms. They also put into evidence the influence o f the distance between supporting points, l, on the rupture mechanisms. D jebar et al. [7] studied, via 3-point bending, the influence o f the ratio l/h (where h is the specimen thickness) on the fatigue o f glass/epoxy composites. Several other studies o f composite materials and their damage behavior via 3- and 4-point bending and tension were also reported in [8-26]. Aramide (Kevlar) fibers possess high m echanical properties being 4 to 6 times cheaper than carbon fibers. Nevertheless, Kevlar fiber laminates have various weaknesses (weak compressive resistance to bending, to buckling, etc.) These weaknesses are generally attributed to a bad fiber-matrix adherence [27]. To overcome such a problem, hybrid composites (glass-Kevlar, carbon-Kevlar) are used. Only few investigations [28-33] are reported on Kevlar fibers and hybrids. In this context, we carry out an investigation in static and cyclic fatigue, using 3-point bending, on different cross-ply laminates made o f epoxy resin and glass fibers, Kevlar fibers, and hybrid (glass-Kevlar) fibers. Static tests are carried out on various lam inated composites allowing the analysis o f stacking sequence effects, o f (0o- and 90°-oriented) layer thickness ratios, and o f the reinforcement type on the behavior and on different types o f damages up to laminate rupture. Fatigue investigations consist o f two parts: (i) the influence o f the stacking sequence on both the behavior and fatigue life o f four types o f glass-fiber laminates and (ii) determination o f the reinforcement type effects on the laminate behavior and endurance. Hence, several glass fiber laminates and various loading ratios R are considered. Moreover, the endurance tests are perform ed not only with displacement control but also with load control ISSN 0556-171X. npoôëeMbi npounocmu, 2003, N 2 67 A. R. Bezazi, A. E l Mahi, J.-M. Berthelot, B. Bezzazi for Kevlar and glass fiber lam inates. Stress vs num ber o f cycles (S- N) endurance diagrams (Wu,hler’s curves) are plotted using the criteria o f fatigue life N 5 and N 10 corresponding, respectively, to 5% and 10% reduction in stiffness with respect to the initial value. 1. M ateria ls an d Tests. 1.1. M ateria ls. D ifferent cross-ply laminates were prepared by vacuum moulding from continuous glass fibers, Kevlar fibers, hybrid (glass-Kevlar) fibers, and epoxy resin. The obtained laminates differ by (i) the reinforcement type; (ii) the stacking sequence, and (iii) the (0o- and 90°-oriented) layer thickness ratios. N ine glass fiber laminates (GFL) consisting o f 16 plies each and designated by GFL 1 to GFL 9 were investigated. A hybrid glass and Kevlar fiber laminate (HGKFL) consists o f 8 plies o f glass and 4 plies o f Kevlar, and Kevlar-fiber laminate (KFL) consists o f 8 plies. The choice o f the num ber o f glass and Kevlar plies is dictated by the necessity o f keeping the specimen thickness almost constant. The ensemble o f these laminates and their stacking sequences are grouped in Table 1. The important characteristics o f laminate constituents are given in Tables 2 and 3 for epoxy resin SR 1500/SD 2505 and continuous fibers, respectively. T a b l e 1 Investigated Materials GFL 1 GFL 2 GFL 3 GFL 4 GFL 5 GFL 6 (9O4/O4X (04/904)s (906/02)s (06/902)s [(02/902)s]s [(0/90)4], GFL 7 GFL 8 GFL 9 HGKFL KFL [(02/902)2]s (902/06)s (02/906)s (02v/0k/902v/90k)s (02k/902k), T a b l e 2 Characteristics of Epoxy Resin SR 1500/SD 2505 Young’s modulus (GPa) Tensile strength (MPa) Flexural strength (MPa) 2.9-3.2 74-77 115-120 T a b l e 3 Characteristics of Kevlar and Glass Fibers Reinforce­ ment type Surface mass (g/m2) Density (kg/m3) Young’s modulus (GPa) Shear modulus (GPa) Poisson’s ratio Ultimate strength (MPa) Elongation at rupture Glass 300 2540 74 30 0.25 2500 4.8 Kevlar 400 1450 130 12 0.40 2900 2.6 The laminates are prepared in vacuum by m oulding with the use o f the so-called “technique o f the bag” to obtain 300 X 300 mm wafers. The plies are lam inated and im pregnated at room tem perature, then m oulded under vacuum (30 kPa) for 10 hours. The wafers were cut out with a diamond tip disk saw according to standard ASTM D 790-8a. 68 ISSN 0556-171X. npoôëeubi npounocmu, 2003, N 2 Flexural Fatigue Behavior o f Cross-Ply Laminates 1.2. Tests. 1.2.1. Static Tests. The investigation o f specimens (Table 1) is carried out in 3-point bending (Fig. 1) using a universal hydraulic m onotonic testing machine (INSTRON m odel 8516 o f capacity 100 kN) whose control and data acquisition are perform ed by a computer. A t least five tests are carried out for each type o f laminates w ith a test speed o f 2 mm/min. • - a b Fig. 1. Experimental setup: (a) Instron 8516 servo-hydraulic testing machine; (b) specimen under 3-point bending test. 1.2.2. Fatigue Tests. Two types o f tests types were carried out on specimens identical to those used in the previous static case with a sinusoidal waveform with a frequency o f 10 Hz. a) First test type. These tests, carried out in displacement control, allow the determination o f the influence o f the stacking sequence on fatigue resistance. To do so, we considered the laminates GFL 2 (04/904), GFL 5 [(02/902)s]s, GFL 6 [(0/90)4]s and GFL 7 [(02/902)2]s all o f w hich possess the same num ber o f plies at 0° and at 90° (the ratio o f the layer thickness equals to 1). These laminates are piled up so that the thickness o f the 90°-oriented layers is different. The loading level r (r = = d m x/ d rup ), representing the ratio o f the m axim um displacement to the static rupture displacement, is taken to have a constant value o f 60% o f that o f static rupture displacement. Several loading ratios, R, which is the ratio o f the minimum and m aximum displacements (R = d mî / d max = 0.1, 0.25, 0.4, 0.55, 0.7) are considered. b) Second test type. These tests are carried out by considering two load types: (i) the first m ethod consists o f carrying out displacement control tests. The average displacement (d av) is m aintained constant at 40% o f the static rupture displacement (d rup ). Several loading levels r are considered in order to plot Wu,hler’s curves for GFL 2 and HGKFL laminates, (ii) the second method is carried out in load control with a constant load ratio R equal to 0. To plot the endurance diagrams, we considered several loading levels ranging from 95% to 40% o f the static rupture load for GFL 2 and KFL laminates. ISSN 0556-171X. npoôëeMbi npounocmu, 2003, № 2 69 A. R. Bezazi, A. E l Mahi, J.-M. Berthelot, B. Bezzazi 2. R esults an d Discussion. 2.1. S ta tic Tests. Figure 2 represents load evolution as a function of displacement for various tested laminates. The results are analyzed by grouping each tim e a num ber o f lam inates. This makes it possible to reveal the effects o f (i) stacking sequence, (ii) the thickness and the interior or exterior disposition of the 0°- and 90°-oriented layers in the laminate, and (iii) finally, the type o f the reinforcement on stiffness, load, and displacement at rupture o f the laminate. Displacement (mm) Displacement (mm) b t ndac Displacement (mm) Displacement (mm) Displacement (mm) e Fig. 2. Load evolution as a function of displacement in 3-point bending. The influence of stacking sequences (a), effects of thickness of 90°-oriented layers (b), effects of thickness of 0°-oriented layers (c), effects of disposition of 0°-oriented plies (d), and reinforcement type effects (e). 70 ISSN 0556-171X. npo6n.eubi npounocmu, 2003, N 2 Flexural Fatigue Behavior o f Cross-Ply Laminates 2.1.1. Influence o f Stacking Sequences. The num ber o f plies with the layers oriented at 0° and at 90° is the same (the ratio o f the layer thickness equals to 1). The plies are piled up so that the thickness o f the layers oriented at 90° is different between GFL 2 (04/904)s, GFL 7 [(02/902)2]*, GFL 5 [(02/902)s]s and GFL 6 [(0/90)4]s. It is clear from Fig. 2a that the GFL 2 laminate is more rigid than the three others, while its load and displacement at rupture are the lowest. This can be attributed to the cracks initiated on GFL 2, thus occupying a very large surface proportional to the thickness o f the 90°-oriented layer (8 adjacent plies). Similar behavior was obtained for other materials GFL 5, GFL 6, and GFL 7. 2.1.2. Effects o f 9 0 °-Oriented Layer Thickness. To demonstrate the effect of the thickness o f layers oriented at 90° and externally disposed in the laminate, we considered GFL 8 (902/06)s, GFL 1 (904/04)s, and GFL 3 (906/02)s. Figure 2b shows that laminate GFL 8, with the smallest layer thickness oriented at 90° (2 plies), is the m ost rigid one, whose rupture load is the highest; followed by GFL 1 (4 plies) and then by GFL 3 (6 plies). In terms o f displacement, the least rigid laminate GFL 3 has the largest displacement at rupture followed by GFL 1 and then GFL 8. 2.1.3. Effects o f0 °-Oriented Layer Thickness. The laminates studied are GFL 9 (02/906)s, GFL 2 (04/904)s, and GFL 4 (06/902)s. They all possess the same num ber o f plies, w ith different thickness o f layers oriented at 0° and externally disposed in the lam inate. A n increase in the thickness o f 0°-oriented layers leads to an increase in both stiffness and load at rupture in bending and to a reduction in the displacement at rupture o f the laminate as illustrated in Fig. 2c, which shows that the m aterial o f the largest 0°-oriented layer thickness (6 plies), GFL 4, is the most rigid with the weakest displacement at rupture, followed by GFL 2 (4 plies) and then GFL 9 (2 plies). 2.1.4. Influence o f the 0 °-Oriented Layer Disposition. The laminates are gathered by couples: GFL 9 (02/906)s and GFL 3 (906/02)s, GFL 1 (904/04)s and GFL 2 (04/904)s, and GFL 4 (06/902)s and GFL 8 (902/06)s. Each couple has the same num ber o f plies oriented at 0° and 90°, the difference lies in the layer disposition in the laminate (externally or internally oriented at 0°). Figure 2d shows that, for the above three couples, the laminates w ith the layers externally oriented at 0° are the m ost rigid but have the weakest displacements at rupture. As an example, we consider a couple o f laminates GFL 9 and GFL 3, for which we note that (i) the laminate GFL 9 having the layers externally oriented at 0° is much more rigid than GFL 3, (ii) the load at rupture o f the laminate GFL 9 is four times larger than that o f GFL 3 while its displacement at rupture is three times less important. 2.1.5. Influence o f the Reinforcement Type. In order to study the effect o f the type o f reinforcement on the stiffness and load and displacement at rupture, we considered the following laminates: (i) glass fiber GFL 2 (04G/904G)s; (ii) Kevlar fiber KFL (02K/902K)s, and (iii) hybrid glass and Kevlar fiber HGKFL (02G/0K/902G/90K)s. The results obtained for these three laminates are shown in Fig. 2e. It is clear that the KFL laminate is the m ost rigid followed by GFL 2 and then HGKFL. It should also be noted that the presence o f Kevlar fibers leads to a nonlinear behavior o f the laminate, w hich is m uch more pronounced in the Kevlar laminate KFL. ISSN 0556-171X. npoôëeMbi npounocmu, 2003, N 2 71 A. R. Bezazi, A. E l Mahi, J.-M. Berthelot, B. Bezzazi 2.2. O bservation of R u p tu re Topographies. Optical and scanning electronic microscopes (SEM) have been used to observe the fracture topographies o f the broken specimens after static tests; the obtained m icrographs are illustrated in Fig. 3. This observation shows the presence o f three types o f damage, which lead to the total rupture o f the laminate: (i) delamination between the layers oriented at 90° and those oriented at 0°, (ii) transverse cracking in the layers oriented at 90° and (iii) finally, rupture o f fibers. Analysis o f ruptures o f various glass laminates, GFL 1 to GFL 9, in static tests allows us to classify them into two categories according to the disposition o f the layers externally or internally oriented at 0° in the laminate: ___ ._____ .... _ _ „ - _ i r . -4_ v ' ' ^ . h Fig. 3. Micrographs of different types of damage: optical (a, c, e-h) and SEM (b, d). (a, b) delamination and transverse crack; (c) delamination and rupture of compressed face; (d) transverse crack; (e) transverse crack in the tensile face; f) delamination, transverse crack, and rupture of compressed face; (g) laminate KFL; (h) hybrid laminate HGKFL. 72 ISSN 0556-171X. npoôëeuu npouHocmu, 2003, № 2 Flexural Fatigue Behavior o f Cross-Ply Laminates - layers externally oriented at 0 ° in the laminate: the specimens are little damaged by transverse cracking, whereas rupture is mainly due to delamination between the layers oriented at 0° and those at 90°. Beyond that, two cases o f final rupture o f the laminates are observed: (i) the externally oriented layers at 0° (Fig. 3a and 3b) rem ain without considerable damage in the laminates GFL 9 (02/906)s, GFL 2 (04/904)s, and GFL 4 (06/902)s; these laminates o f type (0n/90m)s consist o f three layers, in which the one oriented at 90° has the largest thickness that favors delamination; and (ii) the externally oriented layers at 0° (Fig. 3f) o f the compressed face break in the case o f laminates GFL 5 [(02/902)s]s, GFL 6 [(0/90)4]s, and GFL 7 [(02/902)2]s. This can be explained by the fact that the thickness o f the layers oriented at 90° is small since they are separated by layers oriented at 0°. In these two cases, brittle fracture o f the laminates is observed as confirmed by the evolution o f the load as a function o f the displacement given in Fig. 2. - layers externally oriented at 90 ° in the laminate: their damage (Fig. 3 c and 3d) is mainly due to transverse cracking leading to rupture o f fibers o f the compressed face in the laminates GFL 8 (902/06)s, GFL 1 (904/04)s, and GFL 3 (906/02)s. These laminates o f type (90n/0m)s do not exhibit brittle fracture. The presence o f K evlar fibers in the laminate changes the order o f the occurrence o f damage mechanisms as well as the rupture modes. For the Kevlar fiber laminate KFL (02K/902K)s shown in Fig. 3g, one initially observes delamination between the lower layer (strained) oriented at 0° and the layer oriented at 90°, followed by transverse cracking that propagates in the layer oriented at 90° to reach the higher layer oriented at 0°. This crack leads to delamination o f the above layer causing its rupture. For the hybrid glass-Kevlar fiber laminate HGKFL (02G/0K/902G/90K)s shown in Fig. 3h, brittle fracture was noted. This rupture is the result o f delamination and transverse cracking in the Kevlar fiber layer oriented at 90°, while a glass fiber layer oriented at 90° seems not to be affected. This behavior can be explained by a poor Kevlar fiber-matrix epoxy adherence [27]. 2.3. F atigue Tests. 2.3.1. Influence o f Stacking Sequences on Fatigue Behavior, During these tests, we recorded the evolution o f the m aximum load F as a function o f the num ber o f cycles N. The obtained results for various loading ratios R are shown in Figs. 4 and 5. The m axim um load F is norm alized by that obtained in the first cycle F0 . The description and analysis o f such results (Fig. 4) show that the loss o f load, F / F 0, extending until the rupture o f the specimen, can be divided into three stages: Stage I: corresponds to a sharp decrease, from the first cycles, in the ratio F / F 0 due to the cracking multiplication o f the resin. Stage II: shows a very slow decrease in the form o f a shelf corresponding to almost the total fatigue life o f the specimen due to a stable crack propagation. Stage III: a very short stage wherein we observe again a sudden growth o f damage until the total rupture o f the specimen. This behavior is in good agreement w ith the works o f Talreja [11] and Muc [34] who distinguished three phases in the development o f fatigue damage: in the first phase the matrix cracking, in the second the delamination or interfacial ISSN 0556-171X. npodrnMbi npounocmu, 2003, N2 2 73 A. R. Bezazi, A. E l Mahi, J.-M. Berthelot, B. Bezzazi debonding, and finally, the fiber breakage. It should be noted that the first stage is associated with less than 2 0 % o f the fatigue life but with about 80% o f the damage ratio (F /F 0 ). Figure 5 represents the development o f the damage ratio F /F 0 as a function o f the num ber o f cycles for different stacking sequences o f lam inates GFL 5, GFL 6 , GFL 7, and GFL 2 for various loading ratios R. Analysis o f the results shows that under cyclic loading, the fatigue life depends on the loading ratio R and the stacking sequence. Number of cycles N Fig. 4. A typical curve of rigidity evolution as a function of the number of cycles, N . Number of cycles N Number of cycles N c d Fig. 5. Evolution of the rigidity loss, F/F0, as a function of the number of cycles, N : (a) laminate GFL 2; (b) laminate GFL 5; (c) laminate GFL 6; (d) laminate GFL 7. 74 ISSN 0556-171X. Проблемы прочности, 2003, N 2 Flexural Fatigue Behavior o f Cross-Ply Laminates The average displacement determines the damage mechanisms activated at the beginning o f cycling, while the amplitude determines the propagation velocity o f the multiplication o f these mechanisms. For the same m aximum displacement, one notes for all laminates that: (i) for small R, corresponding to a large amplitude (weak average displacement), the initial damage is small with a considerably high growth rate leading to a very short fatigue life; the total rupture is quickly reached after only a few thousands o f cycles; (ii) for large R, corresponding to a small amplitude (high average displacement), a lot o f damage mechanisms are activated w ith a slow propagation, the fatigue life is very long and rupture is only partial even when the num ber o f cycles is larger than 106. To put into evidence the effects o f stacking sequences on the fatigue resistance o f the cross-ply laminates, we further compared (Fig. 6 ) the development o f the load as a function o f the num ber o f cycles for three loading ratios (R = 0.1, 0.4, and 0.7). The results obtained show that the laminates having plies oriented at 90° bounded by those oriented at 0° have good resistance to fatigue in three-point bending. In order to determine the performances o f the materials in fatigue, various damage criteria ( N s, N 3 , N 5 , N i0, and N r ) are considered in the literature from the curves giving the evolution o f the load as a function o f the num ber o f cycles. The m ost severe criterion is that characterizing the material by the value N s , which corresponds to the num ber o f cycles at the end o f the linear domain. The criteria N 3, N 5, and N 10 correspond to falls o f 3%, 5%, and 10% o f the load (or displacement) in relation to the initial load (or displacement), respectively. The criterion N R corresponds to the num ber o f cycles at the final rupture o f the specimen. Finally, the performances in fatigue can be characterized by the num ber o f cycles necessary to have rupture o f the m aterial when this num ber o f cycles is reached. In our study, we have chosen the criterion N 10, which is the m ost frequently used one in the literature [7, 9, 15, 20]. Moreover, beyond 10%, a lot o f mechanisms are involved and their description becomes more difficult, for example, for higher damage rates, the effect o f local heating in the specimen cannot be neglected [9]. In Table 4, we summarize the obtained values o f the fatigue life, using the criterion N 10, as functions o f the ratio R for various laminates (GFL 5, GFL 6 , GFL 7, and GFL 2) studied. T a b l e 4 Fatigue Life, N 10, as a Function of the Load Ratio, R, for Various Stacking Sequences Laminates Ratio R 0.1 0.25 0.4 0.55 0.7 GFL 2 (04/904)s 1.5 • 103 0.65 • 104 3.60 • 104 1.02 • 105 1.12 • 106 GFL 5 [(02/902)s]s 2.5-103 0.45 • 104 2.15 •104 4.00 • 105 1.40-106 GFL 7 [(02/902)2]s 1.5 • 103 1.80 • 104 7.30 • 104 1.67 • 105 1.27 •106 GFL 6 [(0/90)4]s 5.0 •103 1.30 • 104 4.80 • 104 0.82 • 105 0.95 • 106 ISSN 0556-171X. npoôëeMbi npounocmu, 2003, № 2 75 A. R. Bezazi, A. E l Mahi, J.-M. Berthelot, B. Bezzazi Number of cycles N a Number of cycles N b 0.6 0.5 1 '■ N > !< 0.75 ................ G FI. 5 ------------ G FI. 6 ------------ G FL 7 G FL 8 10 100 1000 100(H) |00(NN) 1000000 IF. 107 Number of cycles N c Fig. 6. Evolution of the rigidity loss, F/F0, as a function of the number of cycles, N , at different loading ratios, R: (a) R = 0.1; (b) R = 0.4; (c) R = 0.7. 2.2.2. Endurance Tests. The evolution o f stiffness is one o f the m ost widely used methods to follow the development o f damage by fatigue o f composites. In the case o f fatigue in bending w ith im posed displacement, a clear-cut rupture o f a specimen is not generally observed. Therefore, the definition o f the fatigue life rests on conventional criteria defined for a given rate o f stiffness loss (N 10 or 76 ISSN 0556-171X. npoôëeubi npounocmu, 2003, N 2 Flexural Fatigue Behavior o f Cross-Ply Laminates N 5). The fatigue life can be shown in a diagram o f endurance giving the maximum level o f the displacement or load as a function o f the fatigue life (N 10 or N 5). In this part o f our investigation, endurance tests are carried out in load control in the case o f laminates GFL 2 (04/904)5 and KFL (02K/902K)s and in displacement control in the case o f laminates GFL 2 and HGKFL (02G/0k/902G/90k)s w ith a 10 Hz frequency sinusoidal wave. The endurance curves are plotted for the load or displacement m aximum as a function o f the fatigue life N 10 and N 5 . Figure 7 represents W ohler’s curve for laminates GFL 2 and HGKFL. These results show the evolution o f the m aximum load norm alized to the static rupture load as a function o f the fatigue life N 10. In Fig. 8 , we present Wu,hler’s curve for laminates GFL 2 and KFL, representing the evolution o f the m aximum displacement norm alized to the static rupture displacement as a function o f the fatigue life N 10 . 1 10 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1E +07 Number of cycles N Fig. 7. S — N curves for laminates GFL 2 and HGKFL in displacement control using N i0 criterion. Number of cycles N Fig. 8. S — N curves of laminates GFL 2 and KFL in load control using N i0 criterion. Analysis o f the obtained results shows the influence o f reinforcement type on the fatigue life o f laminates. Indeed, the Wohler curve o f hybrid glass-K evlar fiber (HGKFL) laminates lies below that o f the glass-fiber laminate GFL 2 in displacement control (Fig. 7), whereas S - N curves for Kevlar-fiber laminates ISSN 0556-171X. npoôëeMbi npounocmu, 2003, N 2 77 A. R. Bezazi, A. E l Mahi, J.-M. Berthelot, B. Bezzazi (KFL) ones lie above those o f the GFL 2 laminates (Fig. 8) in load control. The presence o f Kevlar fibers in the laminate makes it more sensitive to fatigue in the case o f 3-point bending and this can be explained by the poor fiber-matrix adherence [27]. Figure 9 represents endurance diagrams for the criteria o f fatigue life N 10 and N 5 . The variation o f the loading level r as a function o f the num ber of cycles N can be described by a simple equation: r = 1 - K log N , (1) w here K is the slope o f the straight line o f the fitted experim ental data. This constant corresponds to the rate o f decrease in the m axim um load or the adm issible m axim um displacem ent expressed in % decrease per cycle. This form o f representation allows us to show the influence o f the reinforcem ent type and the criterion o f fatigue life on the rate o f independent deterioration o f the control type. Indeed, the value o f K is low er in the case o f K FL and H G K FL lam inates than that o f GFL 2 laminate. The rate o f deterioration increases w ith a decrease in the fatigue life criterion. W e also notice that the evolution o f the load or displacem ent loss w ith both m ethods o f control and in both cases o f fatigue life crosses the axis at about r = 1 that corresponds to the loading level equal to that o f the static rupture. r= 1046 9 -0 .0621 Inl}(i ) r= 10597 - 0.06 57 lniN.) ♦ N10 GFL2 4 N c, G FL 2 100 1000 10000 100000 E-t-06 £ 1-07 Number of cycles N r=lX6S -0.0562 Infl JD) # N ]Q KFL r= LD23S -O.OE33 ln(W:) *H 5 KFL ]00 3000 30000 100000 3E+06 3E+07 Number of cycles N Fig. 9. S — N curves for both modes of control using N 5 and Ni0 criteria: (a) displacement control for GFL 2 laminate; (b) displacement control for hybrid HGKFL laminate; (c) load control for GFL 2 laminate; (d) load control for hybrid HGKFL laminate. 78 ISSN 0556-171X. npo6neMbi npouHocmu, 2003, № 2 Flexural Fatigue Behavior o f Cross-Ply Laminates It should be noted that endurance tests are characterized by dispersion o f fatigue life values depending on the reinforcement type in the laminate. Indeed, the tests on the Kevlar fiber laminate are characterized by an appreciable dispersion o f fatigue life values as compared to other laminates. Generally, this dispersion m ay be attributed to the heterogeneous nature o f the laminates. Moreover, specimens do not always have the same characteristics: volume fraction, defect distribution, strength at static rupture, etc. Fatigue rupture depends on random processes whose combination results in dispersion o f the fatigue life values between the specimens subjected to the same loading level r . Furthermore, it is worth noting that both dispersion and rupture criteria have the same trend. Conclusions. This investigation deals with an experimental approach involving the m echanical behavior o f different Kevlar- and glass-fiber cross-ply laminates w ith epoxy resin in three-point bending under static and fatigue loading. Static study showed the influence o f the stacking sequence, the thickness effect o f the layers oriented at 0° and 90°, their internal or external disposition in the laminate, and the reinforcement type on the values o f the load and displacement at rupture o f the laminates. Analysis o f the observed fracture topographies o f specimens broken in static investigations via optical and SEM techniques made it possible to classify rupture as a function o f the internal or external disposition o f the layers oriented at 0° in the laminate: For glass-fiber laminates o f type (0n/90m)s, brittle fracture has been observed. The specimens are little damaged by transverse cracking w ith the rupture o f the laminate caused by delamination w ith and without rupture o f the compressed face. However, for KFL and HKGFL, non-brittle rupture was obtained mainly because o f the presence o f K evlar fibers. For the laminates o f type (90n/0m), damage is m ainly due to transverse cracking in the 90° externally oriented layers leading to rupture o f the fibers o f the compressed face. This type o f damage, inducing non-brittle rupture, is observed in the laminates. The influence o f the stacking sequence on the fatigue behavior has been studied by considering four types o f laminates for several loading ratios R in displacement control. The loading level r has been considered constant and equal to 60% o f the displacement at rupture. Analysis o f these results shows that (i) the behavior and the fatigue life depends on the ratio R and (ii) the laminates whose plies are oriented at 90° and separated by those at 0° resist better to fatigue. Indeed, the fatigue life N increases with R . Wu,hler’s curves are obtained by using the fatigue life criteria N 5 and N 10 in load control for lam inates GFL 2 and KFL, and in displacement control for laminates GFL 2 and HKGFL. It is noticed that in the case o f load control, damage o f the laminates is m ore pronounced than that in displacement control. Glass fiber laminates GFL 2 resist better to fatigue than HKGFL laminates in displacement control, whereas they seem to be less resistant to fatigue than the KFL laminates in load control. The presence o f the Kevlar fiber in the laminate makes it m ore sensitive to fatigue in three-point bending that can be attributed to the poor fiber-m atrix adherence [27]. ISSN 0556-171X. npoôëeMbi npounocmu, 2003, N 2 79 A. R. Bezazi, A. E l Mahi, J.-M. Berthelot, B. Bezzazi Rupture in fatigue depends on a series o f random processes leading to dispersed results due to the heterogeneous nature o f the laminates and manufacturing. Despite dispersions, which is more pronounced in load control, particularly for the K evlar fiber laminate KFL, the analysis o f these results shows clearly the influence o f the reinforcement type on the fatigue life o f the laminates studied. The evolution o f the loading level r as a function o f the logarithm o f the fatigue life N is described by the same relationship r = 1 — K log N , thus showing the influence o f the reinforcement type and the fatigue life criterion on the rate o f degradation. Acknowledgements. I would like to thank Professors A. Dogmane, B. Bencer, and A. Haddad. Р е з ю м е У рамках експериментального підходу описано механічну поведінку різних ламінатів із матрицею з епоксидної смоли, що перехресноармовані кевларо- вими волокнами і скловолокнами, в умовах статичного і циклічного три- точкового згину. При статичних випробуваннях розглядаються послідов­ ність укладення шарів і волокон, товщини орієнтованих під кутом 90° шарів і вплив типу армування на механічну поведінку ламінатів у процесі наванта­ ження, а також на реалізацію різних режимів пошкодження, що призводить до руйнування. Дослідження при циклічному навантаженні складається з двох етапів. На першому етапі розглядається вплив послідовності укладення шарів і волокон на поведінку і довговічність чотирьох типів армованих скловолокнами ламінатів, на другому етапі - вплив типу армування на циклічну міцність і опір ламінатів при циклічному навантаженні. Випробу­ вання на втому виконано у м ’якому режимі навантаження для армованих скловолокнами і гібридними волокнами (кевлар + скло) ламінатів. На основі критеріїв зниження жорсткості на 5 і 10% в координатах напруження - число циклів до руйнування побудовано криві утоми. Аналіз отриманих результатів дозволяє оцінити вплив послідовності укладення шарів і типу армування на поведінку перехресноармованих ламінатів при циклічному навантаженні. Наявність кевларових волокон у ламінатах запезчує їх нелі­ нійну поведінку при статичних випробуваннях і низьку циклічну міцність при випробуваннях на втому в умовах триточкового згину. 1. C. K. H. Dharan, “Fatigue failure in graphite fibers and glass fibers-polymer com posites,” J. Mater. Sci., 10, 1665-1670 (1975). 2. J. Awerbuch and H. T. Hahn, “Fatigue o f filamentary composite m aterials,” in: A STM STP 636 (1977), pp. 248-266. 3. H. T. Hahn and L. Lorenzo, “Fatigue failure mechanisms in composite laminates. Advances in fracture research,” in: Proc. 6th Inter. Conf. on Fracture (New Delhi, India, 4 -10 Dec.) (1984), pp. 549-568. 4. J. F. Mandell, “Fatigue behavior o f fiber resin composites, developments in reinforced plastics,” in: G. Pritchard (Ed.), Applied Science Publishers, London, N ew York (1982), pp. 67-107. 80 ISSN 0556-171X. Проблеми прочности, 2003, № 2 Flexural Fatigue Behavior o f Cross-Ply Laminates 5. R. Talreja, “Fatigue o f composite materials: damage m echanisms and fatigue-life diagram s,” Proc. Roy. Soc. London, A(378), 461-415 (1981). 6. H. C. Kim and L. J. Ebert, “Fatigue life limiting parameters in fiber glass com posites,” J. Mater. Sci., 14, 2616-2624 (1919). 1. A. Djebbar, F. Sidoroff, et L. Vincent, “Etude du couplage traction- cisaillement dans le cas de sollicitations en flexion de matériaux composites verre/époxyde,” Journée Nationale des Composites (JNC), 1 Nov., 81-90 (1990). 8. M. D ody, Modélisation des Caractéristiques Mécaniques et Études Expérimentales de l'Endommagement d'un Composite, Ph. D. Thesis, Université de Franche-Comté, Besançon, France (1985). 9. L. Fiore, Contribution à l'Étude du Comportement en Fatigue de Matériaux Composites à Renfort Verre Unidirectionnel, Ph. D. Thesis, Ecole Centrale de Lyon, France (1988). 10. J.-M. Berthelot, P. Leblond, A. El Mahi, and J.-F. Le Corre, “Transverse cracking o f cross-ply laminates. Part 1. Analysis,” J. Compos., 27A, 989­ 1001 (1996). 11. R. Talreja, Fatigue o f Composite Materials, Lancaster Technol. Publishing, (1990). 12. J.-M. Berthelot, “Analysis o f the transverse cracking o f cross-ply laminates: a generalized approach,” J. Compos. Mater., 31, 1180-1805 (1991). 13. A. D ’amore, G. Caprino, R. Stupak, J. Zhou, and L. Nicolais, “Effect of stress ratio on the flexural fatigue behavior of continuous stand mat reinforced plastics,” J. Sci. Eng. Compos. Mater., 5 (1), 1-8 (1996). 14. J. Li, B. Zhou, and T. He, “Residual properties of an infection-molded poly (phenylene enther ketone)/carbon composite during flexural fatigue,” J. Compos. Sci. Technol., 57, 669-616 (1991). 15. M. Salvia, L. Fiore, P. Fournier, and L. Vincent, “Flexural fatigue behavior o f UDGFRP - experimental approach,” Int. J. Fatigue, 19 (3), 253-262 (1991). 16. A. Salaün, Etude de l'Endommagement en Flexion 3 Points et en Flambage de Composites Carbone/Époxy 1D et 2D à Plis Croisés, Ph. D. Thesis, Université de Caen, France (1998). 11. A. Salaün and M. G om ia, “ S tatic fa tigue and cyclic b eh av io r o f unidirectional carbon/epoxy,” J. Compos. Ann. Chim. Sci. Mater., 23, 19-22 (1998). 18. G. C aprino and G. G iorleo, “Fatigue lifetim e o f glass fiber/epoxy com posites,” J. Compos., 30A, 299-304 (1999). 19. L. V. Griffin, J. C. Gibeling, R. B. Martin, V. A. Gibson, and S. M. Stover, “The effects of testing methods on the flexural fatigue life of human cortical bone,” J. Biomech, 30, 105-109 (1999). 20. S. Tamboura, H. Sidhom, et H. P. Lieurade, “M atériau composite à fibers de carbone et m atrice époxyde: étude du m écanisme d ’endommagement,” Matériau et Techniques, Nos. 3-4, 15-20 (1996). ISSN 0556-171X. npoôëeMbi npounocmu, 2003, N 2 81 A. R. Bezazi, A. E l Mahi, J.-M. Berthelot, B. Bezzazi 21. M. G. Stout, D. A. Koss, C. Liu, and J. Idasetima, “Damage development in carbon/epoxy laminates under quasi-static and dynamic loading,” Compos. Sci. Technol., 59, 2339-2350 (1999). 22. N. J. Lee, K. E. Fu, and J. N. Yang, “Prediction o f fatigue damage and life for composite laminates under service loading spectra,” Compos. Sci. Technol., 56, 635-648 (1996). 23. J. A. M. Ferreira, J. D. M. Costa, P. N. B. Reis, and M. O. W. Richardson, “Analysis o f fatigue and damage in glass-fiber reinforced polypropylene composite m aterials,” Compos. Sci. Technol., 59, 1461-1467 (1999). 24. A. El Mahi, A. R. Bezazi, and J.-M. Berthelot, “The fatigue behavior and damage development in cross-ply laminates in flexural tests,” in: Proc. Tenth European Conf. on Composite Materials (ECCM-10), Bruge, Belgium (3-5 June, 2002). 25. A. R. Bezazi, A. El Mahi, J. -M. Berthelot, and B. Bezzazi, “Influence of reinforcement in cross-ply laminates in flexural testing,” in: Proc. Conf. New Trends in Fatigue and Fracture, Metz, France (8 -9 April, 2002). 26. A. R. Bezazi, A. El Mahi, J.-M. Berthelot, et B. Bezzazi, “Analyse de l ’endommagement des stratifiés en flexion 3-points. Influence de la séquence d ’em pilement,” in: Proc. XVème Congrès Francais de M écanique, Nancy, France (3-7 Septembre, 2001). 27. J.-M. Berthelot, Composite Materials. Mechanical Behavior and Structural Analysis, Springer, N ew Y ork (1999). 28. R. H. Ericksen, “Room tem perature creep o f Kevlar 49/epoxy composites,” Compos., 6 (1976). 29. M. R. Piggott and B. Harris, “Compression strength of carbon, glass, and Kevlar 49 fiber reinforced polyester resins,” J. Mater. Sci., 15, 2523-2538 (1980). 30. B. Harris, J. Adam, et H. Reiter, “Composites hybrides carbone-Kevlar et carbone-verre, comportement en fatigue,” Journée Nationale des Composites (JNC), 6, 649-660 (1988). 31. S. M. Bleay and L. Humbertone, “Mechanical and electrical assessment of hybrid composites containing hollow glass reinforcement,” Compos. Sci. Technol, 59, 1321-1329 (1999). 32. A.-K. Akbar, L. Glyn, Y. Lin, and M. Y iu-W ing, “On the fracture mechanical behavior of fiber reinforced metal laminates (FRMLs),” in: Comp. Meth. Appl. Mech. Eng., 185, 173-190 (2000). 33. Y. Shan and K. Liao, “Environmental fatigue of unidirectional glass-carbon fiber reinforced hybrid composite,” Compos., Part B, 32, 355-363 (2001). 34. A. Muc, “Design o f composite structures under cyclic loads,” Comp. Struct., 76, 211-218 (2000). 35. A. Laksimi, A. Benyahia, M. L. Benzeggagh, and X. L. Gong, “Initiation and bifurcation mechanisms of cracks in multi-directional laminates,” Compos. Sci. Technol., 60, 597-604 (2000). 82 ISSN 0556-171X. npoôëeMbi npounocmu, 2003, № 2 Flexural Fatigue Behavior o f Cross-Ply Laminates 36. R. O lsson, J. C. Thesken, F. B randt, N. Jonsson, and S. N ilsson, “Investigations o f delamination criticality and the transferability o f growth criteria” Compos. Struct., 36, 221-247 (1996). 37. K.-L. Choy, P. S. Rogers, D. Churchman, and M. T. Pirzada, “The m echanical behavior o f glass-ceramic matrix composites,” Mater. Sci. Eng., A278, 187-194 (2000). 38. H. Plumtree and G. X. Cheng, “Fatigue param eter for off-axis unidirectional fiber reinforced com posites,” Int. J. Fatigue, 21, 844-856 (1999). 39. L. Andre, L. Kenneth, et al. “Prediction o f stress-rupture life o f glass/epoxy lam inates,” Int. J. Fatigue, 22, 467-480 (2000). 40. J.-M. Berthelot, and J.-F. Le Corre, “M odeling the transverse cracking in cross-ply laminates: application to fatigue,” J. Compos., 30B, 569-577 (1999). 41. J.-M. Berthelot and J.-F. Le Corre, “Statistical analysis o f the progression of transverse cracking and delamination in cross-ply laminates,” Compos. Sci. Technol, 60, 2659-2669 (2000). 42. J.-M. Berthelot and J.-F. Le Corre, “A m odel for transverse cracking and delamination in cross-ply lam inates,” Compos. Sci. Technol., 60, 1055-1066 (2000). 43. J.-M. Berthelot, A. El Mahi, and J. F. Le Corre, “Development o f transverse cracking in cross-ply laminates during fatigue tests,” Compos. Sci. Technol. (2001), to appear. Received 21. 10. 2002 ISSN 0556-171X. Проблемы прочности, 2003, № 2 83