Experimental analysis of behavior and damage of sandwich composite materials in three-point bending. Part 1. Static tests and stiffness degradation at failure studies

The analysis of stiffness and the identification of rupture mechanisms during and after static tests of sandwich panels and their components have been investigated. The sandwich panels, having cross-ply laminates skins made of glass fibre and epoxy resin were manufactured by vacuum moulding an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2007
Hauptverfasser: Bezazi, A., El Mahi, A., Berthelot, J.-M., Bezzazi, B.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2007
Schriftenreihe:Проблемы прочности
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/48041
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Experimental analysis of behavior and damage of sandwich composite materials in three-point bending. Part 1. Static tests and stiffness degradation at failure studies / A. Bezazi, A. El Mahi, J.-M. Berthelot, B. Bezzazi // Проблемы прочности. — 2007. — № 2. — С. 88-98. — Бібліогр.: 29 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-48041
record_format dspace
spelling irk-123456789-480412013-08-13T20:06:54Z Experimental analysis of behavior and damage of sandwich composite materials in three-point bending. Part 1. Static tests and stiffness degradation at failure studies Bezazi, A. El Mahi, A. Berthelot, J.-M. Bezzazi, B. Научно-технический раздел The analysis of stiffness and the identification of rupture mechanisms during and after static tests of sandwich panels and their components have been investigated. The sandwich panels, having cross-ply laminates skins made of glass fibre and epoxy resin were manufactured by vacuum moulding and subjected to three-point bending tests. Two PVC cores of similar type but with differing densities were investigated. The effect of core density and its thickness on the behavior and the damage was highlighted. In terms of stiffness and load at failure, the sandwich structure has better mechanical characteristics compared to its components. Експериментально досліджено зміну жорсткості та проаналізовано механізми руйнування при статичних випробуваннях багатошарових композитних пластин і їх компонентів. Багатошарові композитні пластини з перехресними шарами зі скловолокна та епоксидної смоли, що виготовлені методом вакуумної відливки, піддавали навантаженню триточковим згином. Досліджували два варіанти пластин з однотипними наповнювачами з полі- вінілопласта різної щільності. Розглянуто вплив щільності і товщини внутрішнього шару наповнювача на поведінку та пошкодження композита. Показано, що композит із наповнювачем великої щільності має більш високі характеристики статичної міцності і стійкості порівняно з композитом із наповнювачем меншої щільності. Экспериментально исследовано изменение жесткости и проанализированы механизмы разрушения при статических испытаниях многослойных композитных пластин и их компонентов. Многослойные композитные пластины с перекрестными слоями из стекловолокна и эпоксидной смолы, изготовленные методом вакуумной отливки, подвергали нагружению трехточечным изгибом. Исследовали два варианта пластин с однотипными наполнителями из пеновинилопласта различной плотности. Рассмотрено влияние плотности и толщины внутреннего слоя наполнителя на поведение и повреждение композита. Показано, что композит с наполнителем большей плотности обладает более высокими характеристиками статической прочности и устойчивости по сравнению с композитом, имеющим наполнитель меньшей плотности. 2007 Article Experimental analysis of behavior and damage of sandwich composite materials in three-point bending. Part 1. Static tests and stiffness degradation at failure studies / A. Bezazi, A. El Mahi, J.-M. Berthelot, B. Bezzazi // Проблемы прочности. — 2007. — № 2. — С. 88-98. — Бібліогр.: 29 назв. — англ. 0556-171X http://dspace.nbuv.gov.ua/handle/123456789/48041 539.4 en Проблемы прочности Інститут проблем міцності ім. Г.С. Писаренко НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Научно-технический раздел
Научно-технический раздел
spellingShingle Научно-технический раздел
Научно-технический раздел
Bezazi, A.
El Mahi, A.
Berthelot, J.-M.
Bezzazi, B.
Experimental analysis of behavior and damage of sandwich composite materials in three-point bending. Part 1. Static tests and stiffness degradation at failure studies
Проблемы прочности
description The analysis of stiffness and the identification of rupture mechanisms during and after static tests of sandwich panels and their components have been investigated. The sandwich panels, having cross-ply laminates skins made of glass fibre and epoxy resin were manufactured by vacuum moulding and subjected to three-point bending tests. Two PVC cores of similar type but with differing densities were investigated. The effect of core density and its thickness on the behavior and the damage was highlighted. In terms of stiffness and load at failure, the sandwich structure has better mechanical characteristics compared to its components.
format Article
author Bezazi, A.
El Mahi, A.
Berthelot, J.-M.
Bezzazi, B.
author_facet Bezazi, A.
El Mahi, A.
Berthelot, J.-M.
Bezzazi, B.
author_sort Bezazi, A.
title Experimental analysis of behavior and damage of sandwich composite materials in three-point bending. Part 1. Static tests and stiffness degradation at failure studies
title_short Experimental analysis of behavior and damage of sandwich composite materials in three-point bending. Part 1. Static tests and stiffness degradation at failure studies
title_full Experimental analysis of behavior and damage of sandwich composite materials in three-point bending. Part 1. Static tests and stiffness degradation at failure studies
title_fullStr Experimental analysis of behavior and damage of sandwich composite materials in three-point bending. Part 1. Static tests and stiffness degradation at failure studies
title_full_unstemmed Experimental analysis of behavior and damage of sandwich composite materials in three-point bending. Part 1. Static tests and stiffness degradation at failure studies
title_sort experimental analysis of behavior and damage of sandwich composite materials in three-point bending. part 1. static tests and stiffness degradation at failure studies
publisher Інститут проблем міцності ім. Г.С. Писаренко НАН України
publishDate 2007
topic_facet Научно-технический раздел
url http://dspace.nbuv.gov.ua/handle/123456789/48041
citation_txt Experimental analysis of behavior and damage of sandwich composite materials in three-point bending. Part 1. Static tests and stiffness degradation at failure studies / A. Bezazi, A. El Mahi, J.-M. Berthelot, B. Bezzazi // Проблемы прочности. — 2007. — № 2. — С. 88-98. — Бібліогр.: 29 назв. — англ.
series Проблемы прочности
work_keys_str_mv AT bezazia experimentalanalysisofbehavioranddamageofsandwichcompositematerialsinthreepointbendingpart1statictestsandstiffnessdegradationatfailurestudies
AT elmahia experimentalanalysisofbehavioranddamageofsandwichcompositematerialsinthreepointbendingpart1statictestsandstiffnessdegradationatfailurestudies
AT berthelotjm experimentalanalysisofbehavioranddamageofsandwichcompositematerialsinthreepointbendingpart1statictestsandstiffnessdegradationatfailurestudies
AT bezzazib experimentalanalysisofbehavioranddamageofsandwichcompositematerialsinthreepointbendingpart1statictestsandstiffnessdegradationatfailurestudies
first_indexed 2025-07-04T08:12:02Z
last_indexed 2025-07-04T08:12:02Z
_version_ 1836703256724635648
fulltext UDC 539.4 Experimental Analysis of Behavior and Damage of Sandwich Composite Materials in Three-Point Bending. Part 1. Static Tests and Stiffness Degradation at Failure Studies A. Bezazi,ab A. E l M ah i,c J.-M . B erthelo t,d and B. B ezzazie a Laboratoire de Mécanique et Structure (LMS), Université de Guelma, Algeria b Department of Aerospace Engineering, University of Bristol, Bristol, UK c Université du Maine, Le Mans, France d ISMANS, Institute for Advanced Materials and Mechanics, Le Mans, France e Laboratoire des Matériaux Minéraux et Composite (LMMC), Université de Boumerdes, Boumerdes, Algeria УДК 539.4 Экспериментальное исследование прочности и повреждения многослойных композитных материалов при испытаниях на трехточечный изгиб. Сообщение 1. Исследование разрушения и понижения жесткости при статических испытаниях А. Б езази аб, А. Э ль М ахив, Дж.-М . Б ертелог, Б . Б еззазид а Университет г. Гуэльма, Алжир 6 Университет г. Бристоль, Великобритания в Университет г. Ле Манс, Франция г Институт перспективных материалов и механики, г. Ле Манс, Франция д Университет г. Бумэрди, Алжир Экспериментально исследовано изменение жесткости и проанализированы механизмы раз­ рушения при статических испытаниях многослойных композитных пластин и их компо­ нентов. Многослойные композитные пластины с перекрестными слоями из стекловолокна и эпоксидной смолы, изготовленные методом вакуумной отливки, подвергали нагружению трехточечным изгибом. Исследовали два варианта пластин с однотипными наполнителями из пеновинилопласта различной плотности. Рассмотрено влияние плотности и толщины внутреннего слоя наполнителя на поведение и повреждение композита. Показано, что композит с наполнителем большей плотности обладает более высокими характеристиками статической прочности и устойчивости по сравнению с композитом, имеющим наполни­ тель меньшей плотности. К л ю ч е в ы е с л о в а : пеновинилопласт, механизм разрушения, многослойные композитные пластины с перекрестными слоями, статический трехточечный изгиб, наполнитель. © A. BEZAZI, A. EL MAHI, J.-M. BERTHELOT, B. BEZZAZI, 2007 88 ISSN 0556-171X. Проблемы прочности, 2007, № 2 Experimental Analysis o f Behavior and Damage In tro d u c tio n . A sandwich composite material results from the bonded assembly (or welding) o f two thin skins typically m ade o f materials having good characteristics in tension (high strength and high Young’s modulus) and a much thicker core w ith low density possessing good compression properties [1]. The obtained sandwich structures combine lightness and stiffness. In the case of bending, the stiffness and resistance increase quickly with the structure thickness. Since only the external layers are taking m ost o f the imposed loads on the structure, considerable benefit can be obtained by replacing the inner part (i.e., between the outside layers) with a very light core to obtain a sandwich material. Sandwich structures are known to possess good resistance to weight ratios compared to conventional materials. However, these structures can present complicated failure mechanisms [2-4]. A lthough qualitatively it is well known from the classical work o f A llen [5] that compressed sandwich panels sometimes fail by a combination o f overall (Euler) buckling and local buckling (wrinkling) of face plates, it is only recently that this has been formulated in a geometrically non-linear framework. The interaction can lead to extremely unstable localized buckling which is highly sensitive to initial imperfections in the geometry [6]. Triantafillou and Gibson [7, 8] studied the various modes o f degradations o f a sandwich subjected to bending and classified them as follow: - plastic deformation o f the skin; - buckling o f the skin in compression (or wrinkling); - rupture in shear, tension or compression o f the foam; - indentation of the foam by the upper roller; - rupture o f the interface core/skin. It is found in the literature that the greater proportion of sandwich panels tested to failure tend to fail when the face plate comes apart from the core surface [9-11]. This type o f delamination was also noticed by Wadee and Blackmore [12]. In the last decade, sandwich structures have appeared as ideal candidates in m echanical applications where weight saving is of param ount importance to ensure a m aximum effectiveness. It is undoubtedly in the fields of launchers, shuttles and satellites that the problem o f w eight saving is m ost crucial. For example, each kilogram saved on the launcher represents for ARIANE E.S.A. (EUR) rocket a profit o f 30,000 US dollars in payload [13]. The first industrial interest in sandwich composites occurred at the Second World War (during the late 1940’s), when the use o f sandwich materials (laminated w ith a balsa core) as structural elements for the ‘M osquito’ aircraft [14, 15] was first investigated in Great Britain. Since then, the development of core materials continued in an effort to reduce the weight of the sandwich laminates. The late 1940’s saw the arrival of honeycomb core materials, developed mainly for aerospace industry. Honeycomb cores currently offer the greatest shear strength and stiffness to w eight ratios; but require care in ensuring a strong bond to the skin. The core materials have been produced in various forms and developed for a range of applications, generally using the hexagonal cell shape for an optimal effectiveness. The high cost of the cores in honeycomb limited their application m ainly to aerospace industry. The late 1950’s and early 1960’s saw the arrival o f the polyvinyl chloride (PVC) and ISSN 0556-171X. Проблемы прочности, 2007, № 2 89 A. Bezazi, A. El Mahi, J.-M. Berthelot, and B. Bezzazi polyurethane (PURE) core materials generally employed today in low and medium cost applications [15]. PVC found widespread applications: in medium and high velocity ocean liners [16, 17], in freezer trucks [18] and in numerous sandwich structures for civil and military applications. However, effective exploitation o f these cores require proper understanding o f their mechanical behavior and properties. For m arine applications, the sandwich structures are often used in hulls where high local stiffness exists to maintain the structural integrity and hydrodynamic effectiveness. The late 1960’s were the first time sandwich techniques were applied in m inesweepers o f the Swedish Royal Navy such as the ‘V ikste’. Sandwich structures have been used m ainly because o f their nonm agnetic properties and their resistance to underwater explosions [19]. Several researchers have indicated the insufficient reliability o f the standard available procedures used to characterize foam core materials, even for the basic properties such as shear strength and elasticity modulus [20, 21]. Moreover, very little is known about the behavior o f foam core under im pact loading, particularly significant for applications in mine counter-measure vessels and surface effect ships. Only fracture mechanics was applied to the core [22] in order to model delamination phenomena, frequent in the sandwich structures w ith thin coatings. The fundamental principles o f sandwich m anufacturing and the investigation of experimental and analytical methods have been originally described by A llen [5], while Zenkert [14, 15] and Clark et al. [23] undertook further w ork in this subject. Gibson and Ashby summarize in [24] the basic mechanical properties o f polymeric foam core and in the description o f their specific cellular structure. Because o f the critical applications o f composite sandwich materials, understanding o f damage mechanisms and the prediction o f the fatigue life in service are o f particular interest. Due to their constitution, the mechanical properties o f these materials can be adapted by using various materials for the skins (identical or not) and the core, and acting on the thickness o f each phase. Accordingly, our contribution consists o f an experimental investigation of composite sandwich materials behavior and the damage modes under three-point bending tests, both in static and fatigue. The m aterial investigated consists o f two cores o f expanded PVC foam, o f the same composition and o f different densities; the skins being a cross-ply laminate glass/epoxy. This type o f sandwich material, which associates good m echanical properties at a relatively low cost, is particularly adapted to a w ide range o f industrial applications. Our analysis is within an industrial context for w hich the means o f characterization and analysis o f materials m ay be easily implemented. 1. M ateria ls and E x p erim en ta l Technique. 1.1. M a te r ia ls . Two types o f sandwich materials w ith different kinds o f cores were investigated. The skins were cross-ply laminates (02/9 0 2 ) s consisting of unidirectional glass fibre fabric with a surface density o f 300 g /m 2 and epoxy resin SR 1500/SD whose principal characteristics are given in [25]. This lay-up’s stacking sequence is chosen for this work since it was found to have strong fatigue resistance compared to other stacking sequences investigated by the author [26, 27]. Two similar types o f PVC foam o f different density were used. Herex C70 55 and a C70 75 foams were expanded polyvinyl chloride (PVC) provided by the Airex company and m arketed by SICOM IN company in panels o f 15 and 90 ISSN 0556-171X. Проблемы прочности, 2007, N2 2 Experimental Analysis o f Behavior and Damage 3 25 mm thickness. The two foams used were different in density: 60 kg/m for the Herex C70 55 and 80 kg /m 3 for the Herex C70 75. The diameter o f the pores varied between 620 and 880 /im for the C70 55 and between 280 and 500 /im for the C70 75. These same types o f core were tested in shear, indentation and in tension by Lolive [28]. The principal characteristics o f these foams provided by SICOM IN are given in Table 1. T a b l e 1 Characteristics of the Foams Used Foam type Nominal Compression Bulk Tension Tension density stress modulus stress modulus (kg/m3) (MPa) (MPa) (MPa) (MPa) C70 55 60 0.85 58 1.30 45 C70 75 80 1.30 83 1.95 63 Foam type Shear Shear Shear Impact Thermal Maximal stress modulus failure resistance conductivity temperature (MPa) (MPa) (%) (kJ/m2) (W/m- K) (°C) C70 55 0.8 22 20 0.5 0.023 70 C70 75 1.2 30 30 0.9 0.025 75 The sandwich m anufacturing was carried out at the laboratory using a vacuum bag m oulding technique. The m anufacture o f the sandwich, the skins and the joining o f the core, was carried out at the same time w ith the laying up o f the skin plies and then by interposing the core and the second skin. The sandwich was im pregnated at room tem perature, and then was vacuum ed at a pressure o f 30 kPa for 10 hours inside the mould. Before any tests, the plates were left at room tem perature for 2 to 3 weeks in order to allow a complete polym erization of the epoxy resin. As previously carried out by the authors [29], the specimens (foams, skins and sandwich) were cut out using a diamond saw from plates o f 3 0 0 x 3 0 0 mm according to ASTM C393-00 standard. Dimensions o f these specimens are given in Table 2. Sandwich SD 1 and SD 2 have the same core thickness o f 15 mm; they are differentiated by the foam core density. The same foam (C70 75) core is used for SD 2 and SD 3; the only difference lays in the thicknesses o f the core w hich were respectively 15 and 25 mm. 1.2. E x p e r im e n ta l S e tu p a n d T est P ro c e d u re . Testing o f the specimens was carried out in three-point bending (Fig. 1) using a universal hydraulic monotonic testing m achine (INSTRON m odel 8516 o f capacity ± 100 kN) whose control and data acquisition were perform ed by a computer. The applied load was m onitored w ith a 5 kN load cell, the displacement by a LVDT sensor, and the deformation using an extensometer. The supports were o f cylindrical shape o f 10 mm diameter for the two lower supports and 15 m m for the central support. A m inimum o f five tests were carried out for each type o f specimen, the loading rates in the static tests being 5 m m /m in for the foam core and the sandwiches, and 2 m m /m in for the skins. ISSN 0556-171X. Проблемы прочности, 2007, № 2 91 A. Bezazi, A. El Mahi, J.-M. Berthelot, and B. Bezzazi T a b l e 2 Specimen Dimensions of the Sandwiches Used Specimen Dimension (mm) Total length L Span length l Width b Specimen thickness h SD 1 (C70 55) 300 280 40 18.9 SD 2 (C70 75) 300 280 40 18.9 SD 3 (C70 75) 460 435 50 29.0 Laminated skin [(02/902)̂ ] 300 280 40 4.0 Foams C70 55 and C70 75 300 280 40 15.0 Fig. 1. Three-point bending experimental setup. 2. S ta tic Tests. a) C ores. Foam core Herex C70 55 and C70 75 specimens were cut out with a diamond disk or with a cutter, w ith dimensions (length and width) similar to the sandwich specimens and were subjected to static flexural load tests. The resulting load-displacem ent curves are given in Fig. 2. It was observed that the behavior of the load versus displacement comprises three distinct stages: 60 15 0 ter------- ,---------1--------- ,---------1------ l_j-------- 0 10 20 30 40 50 60 Displacement (mm) Fig. 2. Influence of the 15 mm thickness cores [C70 55 (1) and C70 75 (2)] density on the load-displacement evolution. 92 ISSN 0556-171X. Проблемы прочности, 2007, N 2 Experimental Analysis o f Behavior and Damage - stage 1: for low values o f flexural displacements, the foam core has an elastic linear behavior; - stage 2: flexural stiffness decreases gradually in a nonlinear way; - stage 3: the curve reaches a pseudo steady state beyond w hich the force does not vary significantly, until catastrophic failure o f the specimen. The comparison between the two foams shows that C70 75, the densest, is m ost rigid w ith a larger displacement and load at failure. The presence o f the oscillations can be interpreted by the viscoelastic characteristic behavior o f the foam core. b) S k in s . The two sandwich’s skins laminates were bonded to each other using their curing resin, creating a new [(02/9 0 2 ) s ]s lay-up. A num ber of specimens o f 4 mm thick and 40 mm long were made up o f this lay-up and then subjected to a three-point bending static test w ith a distance between test rig supports o f 285 mm. The load-displacem ent behavior o f the two skins laminate o f sandwich elements SD 1 and SD 2 is presented in Fig. 3. It can be noticed that the specim ens’ load-displacem ent behavior is linear until a displacement of nearly 42 mm. Beyond this displacement, the behavior becomes nonlinear; this was more likely due to a slip o f the specimens under the lower supports. No catastrophic failure o f these specimens occurres during these tests. 800 600 i 400 o _i 200 0 0 20 40 60 Displacement (mm) Fig. 3. Load-displacement behavior of the laminated skins [(0^902)s ]s. c) S a n d w ic h e s . C o re T ype In flu e n c e . F igure 4 represents the load­ displacem ent behavior for both sandwich specimens SD 1 and SD 2, obtained from the three-point bending static tests. This evolution proceeded in various stages: at the beginning o f the test, the load F increased linearly with displacement, and then the behavior became nonlinear up to m aximum loading where it decreases non-linearly for a short period before linearly and gradually decreasing until the rupture o f the specimen. The latter occurred after an abrupt fall o f the load. The initial linear behavior corresponds to that o f the skin laminate in tension, whereas the nonlinear behavior depends on the properties o f the foam core under the effect o f the indentation and shearing forces. Sandwich SD 2 having the densest core C70 75 was m ost rigid and had the largest rupture load (Fig. 4). ISSN 0556-171X. Проблемы прочности, 2007, № 2 93 A. Bezazi, A. El Mahi, J.-M. Berthelot, and B. Bezzazi 1500 1200 <2 900 T3 03 .3 600 300 0 Fig. 4. Influence of the sandwich [SD 1 (/) and SD 2 (2)] core type on the load-displacement evolutions. C ore T h ick n ess In flu e n c e . In order to highlight the influence o f the core thickness on the static behavior o f the sandwich, two thicknesses o f foam core (15 and 25 mm) o f the same type C70 75 were investigated. Figure 5 represents the evolution o f the load versus the displacement for the sandwich specimens SD 2 and SD 3. From the obtained load-displacem ent curves, it can be possible to derive the following observations: 2000 1600 £ 1200 ~o 03 ° 800 400 - / '// i 0 \£.------------!------------- !------------- 1------------- !----- 0 5 10 15 20 Displacement (mm) Fig. 5. Influence of the sandwich [SD 2 (/) and SD 3 (2)] core thickness in the load-displacement evolutions. As noted earlier, the load-displacement evolution o f sandwich specimen SD 2 w hich has a 15 m m foam core thickness, proceeded as follows: linear then nonlinear passing by the m aximum loading followed by a small reduction in the force and finally it suddenly and catastrophically fails. W hereas in the case of sandwich specimen SD 3, which has a 25 mm foam core thickness, the load­ displacement curve behaves linearly until around 7 mm, then it becomes slightly non-linear until it reaches the m aximum load. Then the load-displacem ent curve decreases non-linearly for a shorter period compared to SD 2 behavior before a sudden drop in load and specimen rupture occurs. However, it can be noted that the specimen still withstands load at around 800 N until a displacement o f 25 mm where the test is then terminated. 94 ISSN 0556-171X. Проблемы прочности, 2007, № 2 Experimental Analysis o f Behavior and Damage In addition, it was observed that the rigidities o f sandwiches SD 2 and SD 3 were practically identical for lower displacements (below approximately 7 mm). The effect o f the thickness allowed an increase o f 37% o f the load at the rupture o f sandwich specim en SD 3 com pared to that o f sandwich specim en SD 2 (Table 3). T a b l e 3 Summary of the Sandwiches Mechanical Characteristics and Their Components Determined from the Experimental Static Tests Composite Mechanical characteristics Stiffness (N/mm) Load at failure (N) Displacement at failure (mm) Foam C70 55 1.01 28.86 47.38 C70 75 1.67 49.31 50.40 Laminate [(°2/9°2)s ]s 11.60 - > 60 Sandwich SD1 C70 55 168.31 1051.11 11.60 SD2 C70 75 185.01 1400.60 11.51 SD3 C70 75 193.05 1929.79 12.22 d) C o m p a r iso n b e tw e e n th e S a n d w ic h S p e c im e n s a n d T h e ir C o m p o n e n ts . Table 3 combined with the superposition o f the load-displacem ent evolution curves o f the sandwich specimens and those o f their components (Fig. 6) m ake it possible to compare their characteristics as detailed below: S ti f fn e s s : the load at rupture and the mass o f the foam core were negligible comparative to those o f the skins and those o f the sandwich specimen because of: - the stiffness o f sandwich SD 1 was 166 times higher than that o f foam core C70 55; - the stiffness o f sandwich SD 2 was 110 times higher than that o f foam core C70 75. 2000 1600 ~ 1200 "O ° 800 400 0 0 20 40 60 Displacement (mm) Fig. 6. Comparison of the sandwich load-displacement behaviors and their various components: (/) skin; (2) C70 55; (3) C70 75; (4) SD 1; (5) SD 2; (6) SD 3. ISSN 0556-171X. npoöneMbi npoHHocmu, 2007, № 2 95 A. Bezazi, A. El Mahi, J.-M. Berthelot, and B. Bezzazi S tiffn e s s va lu es o f the sandwich specimens were m uch higher than those of the skins although the difference o f the masses was not significant. Consequently: - stiffness and the load at rupture o f sandwich specimen SD 1 increased respectively by factors o f 15 and 1.5 times compared to those o f the skins; - stiffness and the load at rupture o f sandwich specimen SD 2 increased respectively by factors o f 16 and 2 times compared to those o f the skins. 2.1. O b se rv a tio n s o f th e F r a c tu r e T o p o g ra p h ies . The analysis o f optical m icroscopic observations o f the failed specimens under static tests shows that the rupture o f the sandwich strongly depends on the type o f foam core. Indeed, the failure o f sandwich specimens SD 1 was obtained essentially by the rupture o f the upper skin and compression with an indentation o f the foam core in the vicinity o f the central support (upper roller) as shown in Fig. 7a. On the other hand, the failure o f sandwich specimens SD 2 was prim arily by shearing o f the foam followed by a delamination between the two skins and the core (Fig. 7b). a b Fig. 7. Fracture topographies of Sd 1 (a) and SD 2 (b) sandwich specimens after static tests. C onclusions. The behavior and damage propagation under static loading in three-point bending o f three sandwich composite materials in one hand and their components (skins and cores) on the other hand have been presented. The static tests were able to determine the characteristics necessary for determining the types o f fatigue tests and to identify the resulting mechanisms o f damages. The load-displacem ent behavior o f the sandwich panels during static loading revealed three distinct phases, and the final failure was not obtained until a sudden fall of the load. Compared to its components, the sandwich structure possessed much m ore desirable m echanical characteristics in terms o f stiffness and load at failure. In addition to static studies, fatigue tests o f sandwich specimens were performed, their results will be presented in Part 2. Р е з ю м е Експериментально досліджено зміну жорсткості та проаналізовано меха­ нізми руйнування при статичних випробуваннях багатошарових композит­ них пластин і їх компонентів. Багатошарові композитні пластини з пере­ хресними шарами зі скловолокна та епоксидної смоли, що виготовлені методом вакуумної відливки, піддавали навантаженню триточковим згином. 96 ISSN 0556-171X. Проблемы прочности, 2007, № 2 Experimental Analysis o f Behavior and Damage Досліджували два варіанти пластин з однотипними наповнювачами з полі- вінілопласта різної щільності. Розглянуто вплив щільності і товщини внут­ рішнього шару наповнювача на поведінку та пошкодження композита. Пока­ зано, що композит із наповнювачем великої щільності має більш високі характеристики статичної міцності і стійкості порівняно з композитом із наповнювачем меншої щільності. 1. J.-M. Berthelot, C o m p o site M a ter ia ls . M e c h a n ic a l B e h a v io r a n d S tru c tu ra l A n a ly s is , Springer, New Y ork (1999). 2. G. W. Hunt, L. S. da Silva, and G. M. E. M anzocchi, “Interactive buckling in sandwich structures,” P roc . R oy . Soc. L o n d o n , A417, 155-177 (1988). 3. G. W. Hunt and M. A. Wadee, “Localization and mode interaction in sandwich structures,” P roc . R oy . Soc. L o n d o n , A454, 1197-1216 (1998). 4. V. Sokolinsky and Y. Frostig, “N onlinear behavior o f sandwich panels with a transversely flexible core,” A IA A J ., 37, 1474-1482 (1999). 5. H. G. Allen, A n a ly s is a n d D e s ig n o f S tru c tu ra l S a n d w ich P a n e ls , Pergamon Press, London (1969). 6. M. A. W adee, “Effects o f periodic and localized imperfections on struts on nonlinear foundations and compression sandwich panels,” In t. J. S o lid s S tru c t., 37, No. 8, 1191-1209 (2000). 7. T. C. Triantafillou and L. J. Gibson, “Instrumented im pact testing of aram ide-reinforced composite materials. Instrum ented im pact testing o f plastics and composites m aterials,” in: A S T M S T P 9 3 6 , Philadelphia (1987), pp. 219-235. 8. T. C. Triantafillou and L. J. Gibson, “Failure mode maps for foam core sandwich beam s,” M a ter . Sci. E n g ., 95, 37-53 (1987). 9. M. Somers, T. Weller, and H. Abramovich, “Influence o f predetermined delaminations on buckling and post buckling behavior o f composite sandwich beam s,” C om pos. S tru c t., 17, 295-329 (1991). 10. M. Somers, T. Weller, and H. Abramovich, “Buckling and postbuckling behavior o f delaminated sandwich beam s,” Ib id , 21, 211-232 (1992). 11. Y. Frostig, “Behavior o f delaminated sandwich beam w ith transversely flexible core - high-order theory,” Ib id , 20, 1-16 (1992). 12. M. A. W adee and A. Blackmore, “Delamination from localized instabilities in compression sandwich panels,” J. M ech . P hys. So lid s , 49, 1281-1299 (2001). 13. D. Gay, M a té r ia u x C o m p o sites , Hermès, Paris (1991). 14. D. Zenkert, A n In tro d u c tio n to S a n d w ic h C o n s tru c tio n , Emas Publishing, UK (1995). 15. D. Zenkert, T h e H a n d b o o k o f S a n d w ic h C o n s tru c tio n , Emas Publishing, UK (1997). 16. D. J. Hall and B. L. Robson, “A review o f the design and m aterial evaluation program for GRP/foam sandwich composite Hull o f the RAN M inehunter,” C o m p o sites , 15, No. 4 (1984). ISSN 0556-171X. Проблемы прочности, 2007, № 2 91 A. Bezazi, A. El Mahi, J.-M. Berthelot, and B. Bezzazi 17. S.-E. Hellbratt and O. Gullberg, “The development o f the GRP-sandwich technique for large m arine structures,” in: Proc. 1st Int. Conf. on S a n d w ich C o n s tru c tio n s (Stockholm, 19-21 June) (1989). 18. G. Caprino, R. Teti, C. Ghini, P. Pagliarani, “Applicazione delle structure sandwich per la relazzazione di fugonture isotherm iche autoporitanti,” in: Proc. Conf. on M a te r ia li p e r il T ra n sp o rto A lg o a lim e n ta re (Cesena, 9-12 M ay) (1990). 19. R. P. Reichard, “Enhanced shock perform ance o f FRP sandwich structures,” in: Proc. 1st Int. Conf. on F a s t S ea T ra n sp o rta tio n (Trondheim, June 1991) (1991), 1, pp. 399-411. 20. K.-A. Olsson and A. Lonno, “Test procedures for foam core m aterials,” in: Proc. 1st Int. Conf. on S a n d w ich C o n s tru c tio n s (Stockholm, 19-21 June) (1989). 21. K. A. Feinchtinger, “Test methods and perform ance o f structural core materials. I. Static properties,” in: Proc. 4th Annual ASM Int./Eng. Soc. of Detroit, A d v a n c in g C o m p o s ite C o n fe re n ce (Detroit, Sept. 1988) (1988). 22. D. Zenkert and J. Backlund, “PVC sandwich core materials: M ode I fracture toughness,” C om pos. Sci. T ech n o l., 34 (1989). 23. S. D. Clark, R. A. Shenoi, H. G. Allen, “M odeling the fatigue behavior of sandwich beams under monotonic, 2 step, and block loading regim es,” Ib id , 59, 471-486 (1999). 24. L. H. Gibson and M. F. Ashby, C e llu la r S o lid - S tru c tu re a n d P ro p er tie s , 2nd edition, Cambridge University Press, Cambridge (1997). 25. A. R. Bezazi, A. El Mahi, J.-M. Berthelot, and B. Bezzazi, “Influence of reinforcement in cross-ply laminates in flexural testing,” in: Proc. Congr. on N e w T ren d s in F a tig u e a n d F ra c tu re (8 -9 April 2002) (2002). 26. A. R. Bezazi, A. El Mahi, J.-M. Berthelot, B. and Bezzazi, “Flexural fatigue behavior o f cross-ply laminates: An experimental approach,” S tren g th M a ter ., 35, No. 2, 149-161 (2003). 27. A. R. Bezazi, A. El Mahi, J.-M. Berthelot, and A. Kondratas, “Investigation o f cross-ply laminates behavior in three-point bending tests. Part II: Cyclic fatigue tests,” M a ter . S c i., 9, No. 1, 128-133 (2003). 28. É. Lolive, A n a ly se d u C o m p o r te m e n t non lin é a ire d e P o u tre s en M a té r ia u x S a n d w ic h e s a v e c  m e en M o u sse , Thèse de Doctorat, Université du Maine (Le Mans, France) (2000). 29. A. R. Bezazi, A. El Mahi, J.-M. Berthelot, and B. Bezzazi, “Analyse du comportement et de l ’endommagement des matériaux composites sandwiches en flexion 3-points,” 16ème Congrès Français de M écanique (Nice, 1-5 septembre 2003) (2003). Received 10. 02. 2006 98 ISSN 0556-171X. npoôneMU npoHHoemu, 2007, № 2