Mechanical behavior of Zr-based bulk metallic glasses

Bulk metallic glasses have a very high corrosion resistance and mechanical strength. Bulk metallic glasses show elastic-perfectly plastic behavior with an extended region of elastic strain (≈ 2%). But at room temperature their macroscopic plasticity is weak even though a local plastic strain is obse...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Nowak, S., Ochin, P., Pasko, A., Guerin, S., Champion, Y.
Формат: Стаття
Мова:English
Опубліковано: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2008
Назва видання:Проблемы прочности
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/48417
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Mechanical behavior of Zr-based bulk metallic glasses / S. Nowak, P. Ochin, A. Pasko, S. Guérin, Y. Champion // Проблемы прочности. — 2008. — № 1. — С. 167-170. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-48417
record_format dspace
spelling irk-123456789-484172013-08-19T16:13:08Z Mechanical behavior of Zr-based bulk metallic glasses Nowak, S. Ochin, P. Pasko, A. Guerin, S. Champion, Y. Научно-технический раздел Bulk metallic glasses have a very high corrosion resistance and mechanical strength. Bulk metallic glasses show elastic-perfectly plastic behavior with an extended region of elastic strain (≈ 2%). But at room temperature their macroscopic plasticity is weak even though a local plastic strain is observed in shear bands. A relaxation analysis allowed studying micro-mechanisms of plastic deformation and estimating the apparent activation volume (≈ 2000 ³). Высокопрочные стекла на основе металлов имеют очень высокие характеристики коррозионной устойчивости и механической проч­ности. Их деформирование является абсолютно упругопластическим с протяженным участком упругости (≈ 2%). Однако при комнатной температуре их макропластичность проявляется слабо, несмотря на наличие локальных пластических деформаций в поло­сах скольжения. Анализ релаксации напряжений позволил исследовать микромеханиз­мы пластического деформирования и оценить значение объема активации (≈ 2000 ³). 2008 Article Mechanical behavior of Zr-based bulk metallic glasses / S. Nowak, P. Ochin, A. Pasko, S. Guérin, Y. Champion // Проблемы прочности. — 2008. — № 1. — С. 167-170. — Бібліогр.: 10 назв. — англ. 0556-171X http://dspace.nbuv.gov.ua/handle/123456789/48417 539.4 en Проблемы прочности Інститут проблем міцності ім. Г.С. Писаренко НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Научно-технический раздел
Научно-технический раздел
spellingShingle Научно-технический раздел
Научно-технический раздел
Nowak, S.
Ochin, P.
Pasko, A.
Guerin, S.
Champion, Y.
Mechanical behavior of Zr-based bulk metallic glasses
Проблемы прочности
description Bulk metallic glasses have a very high corrosion resistance and mechanical strength. Bulk metallic glasses show elastic-perfectly plastic behavior with an extended region of elastic strain (≈ 2%). But at room temperature their macroscopic plasticity is weak even though a local plastic strain is observed in shear bands. A relaxation analysis allowed studying micro-mechanisms of plastic deformation and estimating the apparent activation volume (≈ 2000 ³).
format Article
author Nowak, S.
Ochin, P.
Pasko, A.
Guerin, S.
Champion, Y.
author_facet Nowak, S.
Ochin, P.
Pasko, A.
Guerin, S.
Champion, Y.
author_sort Nowak, S.
title Mechanical behavior of Zr-based bulk metallic glasses
title_short Mechanical behavior of Zr-based bulk metallic glasses
title_full Mechanical behavior of Zr-based bulk metallic glasses
title_fullStr Mechanical behavior of Zr-based bulk metallic glasses
title_full_unstemmed Mechanical behavior of Zr-based bulk metallic glasses
title_sort mechanical behavior of zr-based bulk metallic glasses
publisher Інститут проблем міцності ім. Г.С. Писаренко НАН України
publishDate 2008
topic_facet Научно-технический раздел
url http://dspace.nbuv.gov.ua/handle/123456789/48417
citation_txt Mechanical behavior of Zr-based bulk metallic glasses / S. Nowak, P. Ochin, A. Pasko, S. Guérin, Y. Champion // Проблемы прочности. — 2008. — № 1. — С. 167-170. — Бібліогр.: 10 назв. — англ.
series Проблемы прочности
work_keys_str_mv AT nowaks mechanicalbehaviorofzrbasedbulkmetallicglasses
AT ochinp mechanicalbehaviorofzrbasedbulkmetallicglasses
AT paskoa mechanicalbehaviorofzrbasedbulkmetallicglasses
AT guerins mechanicalbehaviorofzrbasedbulkmetallicglasses
AT championy mechanicalbehaviorofzrbasedbulkmetallicglasses
first_indexed 2025-07-04T08:51:17Z
last_indexed 2025-07-04T08:51:17Z
_version_ 1836705726074978304
fulltext UDC 539. 4 M e c h a n ic a l B e h a v io r o f Z r -B a s e d B u lk M e ta l l ic G la s se s S. N ow ak ,1a P . O ch in ,1b A . P a sk o ,1 S. G u érin ,1 and Y . C h am p ion 1’0 1 ICMPE-CNRS UMR7182, Université Paris, Vitry-sur-Seine, France a nowak@icmpe.cnrs.fr, b ochin@icmpe.cnrs.fr, c champion@icmpe.cnrs.fr Bulk metallic glasses have a very high corrosion resistance and mechanical strength. Bulk metallic glasses show elastic-perfectly plastic behavior with an extended region o f elastic strain (~ 2%). But at room temperature their macroscopic plasticity is weak even though a local plastic strain is observed in shear bands. A relaxation analysis allowed studying micro-mechanisms o f plastic deformation and estimating the apparent activation volume (~ 2000 Â3). K eyw ords: bulk m etallic glasses, com pression test, stress relaxation, m echanical properties. Introduction . Amorphous m etallic alloys also called m etallic glasses are characterized by absence o f atom ic long-range order. B ulk m etallic g lasses (B M G ) exhibit a very h igh strength ( ~ 1,6 GPa) and elasticity ( ~ 2%). H ow ever, at room temperature, they have low ductility because of the localization of the plastic strain w hich is concentrated in a few thin shear bands. Deform ation behavior of B M G s is com pletely different than crystallized metals (no dislocation). Spaepen [1 ] and A rgon [2 ] describe the deformation as the result o f jumps o f respectively single-atom or group o f atoms in “h o les” (free volum es) large enough. Zr-based B M G have a h igh GFA (G lass Form ing A bility) and particularly the alloy Zr57Cu20A l10Ti8N i5 w hich is the studied alloy in this paper. B M G S yn th esis and C h aracteriza tion . Initially, the five pure elem ents are m elted by electrom agnetic induction heating in a w ater-cooled copper crucible under He atm osphere (Fig. 1a). From 20 to 35 g o f B M G s are obtained by re-m elting using electrom agnetic levitation under He atmosphere and casting into a copper m old (Fig. 1b). D ifferent shapes o f sam ples are produced, depending on the subsequent use: 2 0 X 35X 5 m m sheets for com pression tests, rods w ith 10 m m diameter for transm ission electron m icroscopy analysis and w edge shaped sam ples for the evaluation o f the glass form ing ability (GFA). For com pression tests, rectangular shaped sam ples, 4X 4 m m o f cross-sectional area and 6 m m height, were m achined and then polished. X -ray diffraction and TEM analysis were carried out to control the amorphous state o f the as-cast sam ples (presence o f broad diffuse peaks for X R D , and diffuse rings for TEM). The glass transition temperature (Tg = 660 K) and the crystallization temperature (Tx = 719 K) o f the alloy were m easured using differential scanning calorimeter (DSC) and the liqu idus tem perature T i = 1156 K) w as m easured u sin g DTA . H eating rate o f 20 K /m in w as applied for each analysis. M ech an ica l B ehavior. U niaxial com pression test under quasi-static loading at room temperature w as performed. B M G exhibits a perfect elastic deformation behavior follow ed by a catastrophic brittle fracture w ith no y ield ing (Fig. 2). The fracture stress is 1634 MPa and the region o f elastic strain is extended (~ 2%). Though m acroscopic p lasticity is low, local plastic strain is observed in shear bands (Fig. 3). Typical m orphology o f the fracture surface o f a BM G , at room-temperature in com pression, is show n in Fig. 4. Veins w ith liquid droplets were observed in the entire fracture surface. It w as demonstrated that shear localization induces a temperature rise (more than 900°C at the final-fracture m om ent, i.e ., higher than Ti ) and that deform ation is then related to a local decrease o f the v iscosity in the shear bands [3]. © S. N O W A K , P. O C H IN , A. PA SK O , S. GUÉRIN, Y. CHAMPION, 2008 ISSN 0556-171X. Проблемыг прочности, 2008, N 1 167 mailto:nowak@icmpe.cnrs.fr mailto:ochin@icmpe.cnrs.fr mailto:champion@icmpe.cnrs.fr S. Nowak, P. Ochin, A. Pasko, et al. Fig. 1 true strain (%) Fig. 2 Fig. 1. (a) water-cooled copper crucible (b) electromagnetic levitation. Fig. 2. Stress-strain curve of the Zr57Cu20A l10N i8Ti5 BMG deformed at room temperature at a strain rate o f 2 - 10_5 s_1. Fig. 3 Fig. 4 Fig. 3. View o f free surface, parallel to the compression direction, with visible shear bands. Shear band thickness is about 20 nm [5]. Fig. 4. Fracture surface with veins and liquid droplets (insert). The fracture angle w as measured for tw o samples: one w as 41° (Fig. 5), the other 45°. These values indicate that B M G fo llow s the M ohr-C oulom b criterion for plastic yielding in com pression. This behavior is observed for m any BM G , such as Zr574C u164N i82A l10 [4]. = 41° Fracture surface Fig. 5. Fractured sample. Stress R elaxation A n alysis . A relaxation test w as perform ed at room temperature to approach the m icrom echanism s o f deformation. In literature, m ost experim ents were conducted at temperatures close to Tg [1, 6], B M G having hom ogeneous deform ation at these temperatures. In our experim ent, an attempt is m ade to exam ine the localized 168 ISSN 0556-171X. npoÖÄeubi npounocmu, 2008, N 1 Mechanical Behavior o f Zr-Based Bulk Metallic Glasses deform ation in shear bands. R elaxation is a m ethod allow ing the m easurem ent o f the rheologic and the m echanistic parameters w ithout failure o f the sam ple and at a m acroscopic scale (in contrast to the nano-indentation investigating confine plasticity). The sam ple is loaded w ith a strain rate o f £ = 5 - 1 0 5 s 1. The displacem ent o f the cross head o f the testing m achine is stopped just before the catastrophic failure o f the sample. The total deform ation is remained constant until the end o f the experim ent (~ 160,000 s). Consequently, since total deform ation is the result o f plastic and elastic deformation: elastic ‘ (1) The shear stress variation as a function o f tim e is plotted in Fig. 6. Three domains are defined to describe the curve. B etw een 300 s (onset o f the relaxation) and 8000 s, the stress decreases slow ly (A r max = 7 M Pa) fo llow ing the classical logarithm ic relation. Then, after a transitory plateau, the curve g lobally increases until 100,000 s and finally stabilizes in the third part. ii in ♦ ц — 1 ._ _ frj-« ....... - , ._ ► I С ! Probably shear bands form ationлX о -1 -2 ra Cl -3 -4t-1 « -5 -6 -7 -8 0 3.4-10" 6.8 10* 110" 1.4 10' time (s) Fig. 6. Plot o f the shear stress variation as a function o f time. I. The first dom ain fo llow s the logarithm ic function [7]: Аг = г - г о = - y - ln ^ + C j , (2 ) where r is applied shear stress, r 0 is applied shear stress at the beginning o f the relaxation, t is tim e, Vapp is apparent activation volum e, C is tim e factor, k is Boltzm ann constant, and T absolute temperature. Vapp is the atom ic volum e involved in an elem entary therm ally activated event. A t the onset o f the relaxation, the slope is almost infinite and Vapp equal to zero. Then the curve can be perfectly fitted betw een 1000 and 3500 s by the logarithmic relation and the activation volum e Vapp is estim ated to 2000 A 3 (corresponding to 1 5 0 0 , w here O is the average atom ic volum e), w hich is reasonable compared to h igh temperature m easurem ent [8]. II. A n increase o f r is observed, w hich is probably related to an energy release. Such behavior is rather unusual. It w as verified that it w as not in relation w ith experim ent artifact: stress variations induced by the m achine w ere m easured as neglig ib le compared w ith the sam ple relaxation. M oreover, experim ents are perform ed in a room w ith constant temperature and the system (sam ple-m achine) dilatation cannot be taken into account to explain the phenom enon. ISSN 0556-171X. Проблемы прочности, 2008, № 1 169 S. Nowak, P. Ochin, A. Pasko, et al. So the change betw een dom ain I and II could be related to the variations in micro-structure w hich is m ost lik ely a crystallization in shear bands [9]. A t T > Tg , N ieh et al. [10] consider amorphous phase as a N ew tonian fluid and nanocrystalline particles as having a superplastic behavior. The plastic deform ation strain rate is consequently expressed by y plastic ~ (1 _ f v Jy am f vy cryst ~ (1 _ f v )Ar + f v B , (3) where f v is volum e fraction o f the crystalline phase, A and B are material constants, y am and y cryst strain rates caused by the am orphous and the crystalline phase, respectively , and r the applied flow stress. Though experim ent is carried out at room temperature, deform ation occurring in shear bands w here temperature rises should be described consisten tly by Eq. (3). Consequently, the plastic deformation induces a decrease o f the applied stress. Nevertheless the microstructure variation could be at the origin o f an internal stress release. The measured stress w hich increases g lobally w ould be the sum o f the internal stress and the applied stress. III. Finally, the stress reaches a value threshold, m eaning no longer plastic deform ation. C onclusions. B M G s are produced by rapid cooling o f a m etallic alloy, avoiding atom ic long-range order. That g ives specific properties to the material like no ductility because o f the localization o f the plastic strain in shear bands. Stress relaxation allow ed estim ating an apparent activation volum e associated to a p lastic deform ation and observing an evolution o f deform ation m ode involving m ost likely a partial crystallization phenom enon. Acknowledgments. This work was supported by the DGA within the framework o f a “Recherche Exploratoire et Innovation” (REI No. 05C0145) under the contract No. 0634030004707565 for the PHD of one o f the authors (SN). The authors are also grateful to J. L. Bonnentien, A. Valette, and M.-F. Trichet for technical support. 1. F. Spaepen, Acta Metall., 25, 407 (1977). 2. A. S. Argon, Acta Metall., 27, 47 (1979). 3. B. Yang, P. K. Liaw, G. Wang, et al., Intermetallics, 12, 1265 (2004). 4. R. T. Ott, F. Sanchez, T. Jiao, et al., Metall. Mater. Trans., 37A, 3251 (2006). 5. A. L. G. Y. Zhang, Appl. Phys. Lett., 89, 071907-1 (2006). 6. O. P. Bobrov, V. A. Khonik, K. Kitagawa, and S. N. Laptev, J. Non-Crystalline Solids, 342, 152 (2004). 7. J. Bonneville, P. Spaig, J.-L. Martin, Proc. M.R.S. Symp., 364, 369 (1995). 8. M. Bletry, P. Guyot, Y. Brechet, et al., Intermetallics, 12, 1051 (2004). 9. W. H. Jiang, F. E. Pinkerton, and M. Atzmon, Scripta Mater., 48, 1195 (2003). 10. T. G. Nieh, T. Mukai, C. T. Liu, and J. Wadsworth, Scripta Mater., 40, 1021 (1999). Received 28. 06. 2007 170 ISSN 0556-171X. npo6neMbi npouHocmu, 2008, № 1