Estimation of anisotropy of mechanical properties in Mg alloys by means of compressive creep tests

A detailed knowledge of dependence of mechanical properties on orientation in materials prepared by directional processes may present an important factor influencing the design of construction parts. Toward this end, the compressive creep testing of short specimens may be useful. Three different mag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2008
Hauptverfasser: Dobes, F., Perez, P., Milieka, K., Garces, G., Adeva, P.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2008
Schriftenreihe:Проблемы прочности
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/48436
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Estimation of anisotropy of mechanical properties in Mg alloys by means of compressive creep tests / F. Dobes, P. Perez, K. Milicka, G. Garces, P. Adeva // Проблемы прочности. — 2008. — № 1. — С. 125-128. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-48436
record_format dspace
spelling irk-123456789-484362013-08-19T18:13:35Z Estimation of anisotropy of mechanical properties in Mg alloys by means of compressive creep tests Dobes, F. Perez, P. Milieka, K. Garces, G. Adeva, P. Научно-технический раздел A detailed knowledge of dependence of mechanical properties on orientation in materials prepared by directional processes may present an important factor influencing the design of construction parts. Toward this end, the compressive creep testing of short specimens may be useful. Three different magnesium-based materials were subjected to this testing: (i) pure magnesium, (ii) magnesium matrix composite reinforced with 10 vol.% of titanium, and (iii) magnesium alloy WE54. All three materials were prepared through a powder metallurgical route with final hot extrusion. The specimensfor creep tests were cut in such a way that their longitudinal axis (i.e., the direction of compressive creep stress) and the axis of extruded bar contained a predestined angle. Two extreme cases can be observed: In pure Mg and in Mg-Ti composite, the dependence of the creep rate is very sensitive to the orientation especially at small inclinations from extrusion axis. The greatest creep resistance is observed in specimens with stress axis parallel to the extrusion axis, the lowest at declinationsfrom 45 to 90°. On the other hand, in WE54 no orientation dependence was observed. Possible explanations of the behaviour based on microstructural observations are discussed. Глубокое понимание зависимости механи­ческих свойств от ориентации волокон в материалах, полученных методами направ­ленного воздействия, может быть важным фактором в создании структурных элемен­тов. Исходя из этого, испытания коротких образцов на ползучесть при сжатии могут дать полезную информацию. Испытания проводили на трех различных материалах на основе магния: чистый магний; композит с магниевой матрицей, упрочненный 10 об.% титана; магниевый сплав WES4. Все три материала были получены методами порош­ковой металлургии и горячей экструзии. Образцы вырезали таким образом, чтобы их продольная ось (т.е. направление напряже­ния ползучести при сжатии) и ось экстру­дированного образца имели заданный угол. Для чистого магния и Mg-Ti композита за­висимость скорости ползучести существен­ но зависит от ориентации, особенно при не­ большом отклонении от оси экструзии. Наи­большее сопротивление ползучести имели образцы с осью напряжений, параллельной оси экструзии, наименьшее - при отклонении на 45°-90°. В сплаве WES4 не наблю­далось зависимости от ориентации. Подоб­ное поведение может быть связано с микро­структурой материала. 2008 Article Estimation of anisotropy of mechanical properties in Mg alloys by means of compressive creep tests / F. Dobes, P. Perez, K. Milicka, G. Garces, P. Adeva // Проблемы прочности. — 2008. — № 1. — С. 125-128. — Бібліогр.: 14 назв. — англ. 0556-171X http://dspace.nbuv.gov.ua/handle/123456789/48436 539.4 en Проблемы прочности Інститут проблем міцності ім. Г.С. Писаренко НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Научно-технический раздел
Научно-технический раздел
spellingShingle Научно-технический раздел
Научно-технический раздел
Dobes, F.
Perez, P.
Milieka, K.
Garces, G.
Adeva, P.
Estimation of anisotropy of mechanical properties in Mg alloys by means of compressive creep tests
Проблемы прочности
description A detailed knowledge of dependence of mechanical properties on orientation in materials prepared by directional processes may present an important factor influencing the design of construction parts. Toward this end, the compressive creep testing of short specimens may be useful. Three different magnesium-based materials were subjected to this testing: (i) pure magnesium, (ii) magnesium matrix composite reinforced with 10 vol.% of titanium, and (iii) magnesium alloy WE54. All three materials were prepared through a powder metallurgical route with final hot extrusion. The specimensfor creep tests were cut in such a way that their longitudinal axis (i.e., the direction of compressive creep stress) and the axis of extruded bar contained a predestined angle. Two extreme cases can be observed: In pure Mg and in Mg-Ti composite, the dependence of the creep rate is very sensitive to the orientation especially at small inclinations from extrusion axis. The greatest creep resistance is observed in specimens with stress axis parallel to the extrusion axis, the lowest at declinationsfrom 45 to 90°. On the other hand, in WE54 no orientation dependence was observed. Possible explanations of the behaviour based on microstructural observations are discussed.
format Article
author Dobes, F.
Perez, P.
Milieka, K.
Garces, G.
Adeva, P.
author_facet Dobes, F.
Perez, P.
Milieka, K.
Garces, G.
Adeva, P.
author_sort Dobes, F.
title Estimation of anisotropy of mechanical properties in Mg alloys by means of compressive creep tests
title_short Estimation of anisotropy of mechanical properties in Mg alloys by means of compressive creep tests
title_full Estimation of anisotropy of mechanical properties in Mg alloys by means of compressive creep tests
title_fullStr Estimation of anisotropy of mechanical properties in Mg alloys by means of compressive creep tests
title_full_unstemmed Estimation of anisotropy of mechanical properties in Mg alloys by means of compressive creep tests
title_sort estimation of anisotropy of mechanical properties in mg alloys by means of compressive creep tests
publisher Інститут проблем міцності ім. Г.С. Писаренко НАН України
publishDate 2008
topic_facet Научно-технический раздел
url http://dspace.nbuv.gov.ua/handle/123456789/48436
citation_txt Estimation of anisotropy of mechanical properties in Mg alloys by means of compressive creep tests / F. Dobes, P. Perez, K. Milicka, G. Garces, P. Adeva // Проблемы прочности. — 2008. — № 1. — С. 125-128. — Бібліогр.: 14 назв. — англ.
series Проблемы прочности
work_keys_str_mv AT dobesf estimationofanisotropyofmechanicalpropertiesinmgalloysbymeansofcompressivecreeptests
AT perezp estimationofanisotropyofmechanicalpropertiesinmgalloysbymeansofcompressivecreeptests
AT miliekak estimationofanisotropyofmechanicalpropertiesinmgalloysbymeansofcompressivecreeptests
AT garcesg estimationofanisotropyofmechanicalpropertiesinmgalloysbymeansofcompressivecreeptests
AT adevap estimationofanisotropyofmechanicalpropertiesinmgalloysbymeansofcompressivecreeptests
first_indexed 2025-07-04T08:56:35Z
last_indexed 2025-07-04T08:56:35Z
_version_ 1836706061143244800
fulltext UDC 539. 4 E s t im a t io n o f A n is o t r o p y o f M e c h a n ic a l P r o p e r t ie s in M g A llo y s b y M e a n s o f C o m p r e s s iv e C r e e p T e s t s F . D o b es,1a P . P erez ,2b K . M ilick a ,1c G . G arces,2 d and P . A d eva2,e 1 Institute o f Physics o f Materials, Academy o f Sciences o f the Czech Republic, Brno, Czech Republic 2 National Center o f Metallurgical Investigations, Madrid, Spain a dobes@ipm.cz, b zubiaur@cenim.csic.es, c milicka@ipm.cz, d ggarces@cenim.csic.es, e adeva@cenim.csic.es A detailed knowledge o f dependence o f mechanical properties on orientation in materials prepared by directional processes may present an important factor influencing the design o f construction parts. Toward this end, the compressive creep testing o f short specimens may be useful. Three different magnesium-based materials were subjected to this testing: (i) pure magnesium, (ii) magnesium matrix composite reinforced with 10 vol.% o f titanium, and (iii) magnesium alloy WE54. All three materials were prepared through a powder metallurgical route with final hot extrusion. The specimens fo r creep tests were cut in such a way that their longitudinal axis (i.e., the direction o f compressive creep stress) and the axis o f extruded bar contained a predestined angle. Two extreme cases can be observed: In pure Mg and in M g-Ti composite, the dependence o f the creep rate is very sensitive to the orientation especially at small inclinations from extrusion axis. The greatest creep resistance is observed in specimens with stress axis parallel to the extrusion axis, the lowest at declinations from 45 to 90°. On the other hand, in WE54 no orientation dependence was observed. Possible explanations o f the behaviour based on microstructural observations are discussed. K eyw o rd s : m agnesium , creep, com posite, texture. In troduction . Microstructure o f m any materials - either intentionally or ow ing to production history - is not isotropic. Consequently, m echanical properties are not isotropic, too. A detailed know ledge o f dependence o f these properties on orientation within material m ay be important for an exact design o f construction parts. A n investigation o f orientation dependence m ay also contribute to identification o f m echanism s that control the respective property. The anisotropy o f m echanical properties is important in hexagonal m etals and alloys, especia lly in light-w eighted m agnesium alloys and a great attention has been recently devoted to its study [1 -6 ]. We present the results o f orientation dependence o f creep properties o f m agnesium -based a lloys prepared by pow der m etallurgical processing. E xp erim en ta l. C om m ercially pure m agnesium pow der w ith a particle size less than 45 ,«m and grain sizes ranging betw een 1 and 8 ,«m, w as cold-pressed at 310 MPa pressure level, leading to a densification o f around 95%. The com pacts were hot-extruded into rods at 673 K using an extrusion ratio o f 18:1. A m agnesium matrix com posite reinforced w ith 10 vol.% o f titanium particles was prepared from the sam e m agnesium pow der as the previous material and from the titanium pow der o f particle size less than 25 [im . The powders were m ixed for 3 h at 100 rpm in a planetary m ill. The next technology steps were identical w ith those for the pure m agnesium material: cold-pressing at 310 M Pa and hot-extrusion into rods at 673 K using an extrusion ratio o f 18:1. The third investigated material w as the m agnesium -based alloy W E54 alloy. The alloy contained 5 wt.% o f Y, 2 wt.% o f N d, and 2 wt.% o f rare earth elem ents. The pow der prepared by rapid solid ification had size less than 100 ,«m. The pow der was © F. DO B ES, P. PEREZ, K. MILICKA, G. GARCES, P. ADEVA, 2008 ISSN 0556-171X. Проблемы прочности, 2008, N 1 125 mailto:dobes@ipm.cz mailto:zubiaur@cenim.csic.es mailto:milicka@ipm.cz mailto:ggarces@cenim.csic.es mailto:adeva@cenim.csic.es F. Dobes, P. Perez, K. Milicka, et al. cold-pressed by slow ly increasing pressure up to 340 M Pa in a special die designed for this purpose. The resulting com pacts o f 40 m m in diameter w ere extruded at 673 K em ploying an extrusion ratio o f 20:1. R esults o f the subsequent characterization o f materials b y optical microscopy, scanning electron m icroscopy, X -ray diffraction and tensile tests are g iven elsewhere [7 -9 ]. Cylindrical specim ens o f diameter 5 m m and height 9 m m were prepared by spark-cutting from the extruded bars. The specim ens were cut in such a w ay that their longitudinal axis (i.e., the direction o f com pressive creep stress) and the axis o f extruded bar contained a predestined angle from 0 to 90°. Constant load com pressive creep tests o f the a lloy w ere perform ed at temperatures from 523 to 623 K. A stepw ise loading was used: in each step, the load w as changed to a n ew value after stationary creep rate had been established. The terminal values o f the true stress and the true strain rate were evaluated for the respective step. Protective atmosphere o f dried and purified argon was used. During the test, temperature w as kept constant w ithin ± 1 K. Creep curves w ere PC recorded by m eans o f special software. The sensitivity o f elongation m easurem ents was better than 10 5. R esu lts. Exam ples o f experim ental dependences o f the creep rate £ on the applied stress o for different orientations o f specim ens are g iven in Figs. 1 -3 . Two basic patterns o f behavior can be observed: In pure M g and in M g -T i com posite, the dependence o f the creep rate is very sensitive to the orientation especially at sm all inclinations from extrusion axis. The h ighest creep resistance is observed in specim ens w ith stress axis parallel to the extrusion axis, w hile the low est resistance is at declinations from 45 to 90°. A m ore exact determination o f orientation w ith the low est creep resistance is com plicated by the scatter o f experim ental data. On the other hand, in W E54 no orientation dependence is observed. Another feature that distinguishes tw o groups is the dependence o f creep rate on the applied stress. The dependences can be form ally described by the pow er function £ = A o n , (1) w here A is a temperature dependent factor and n is exponent. The values o f exponent n are about 19 in pure M g and from 20 up to 32 in M g -T i com posite. R elatively h igh values o f n are typical for creep in m etallic materials strengthened by dispersion o f secondary phase. In the a lloy W E54, the stress exponent n is about 4 for all orientation. Fig. 1 Fig. 2 Fig. 1. Dependence o f creep rate on applied stress in Mg. Fig. 2. Dependence o f creep rate on applied stress in M g-Ti composite. 126 ISSN 0556-171X. npo6n.eubi npounocmu, 2008, N 1 Estimation o f Anisotropy o f Mechanical Properties in Mg Alloys 30 50 100 STRESS ct [MPa] Fig. 3 ANGLE! Fig. 4 Fig. 3. Fig. 4. Dependence of creep rate on applied stress in WE54. Dependence of creep rate on orientation o f samples in Mg and in M g-Ti composite. The equation (1) w as used also for an evaluation o f the influence o f orientation on the creep rate. The creep rates corresponding to the applied stress 40 M Pa w ere calculated by m eans o f optim ized values o f A and n for all orientations. The results are g iven in Fig. 4. D iscussion . M icroscopic observations revealed three distinct anisotropic features o f the structure o f alloys: (i) elongated grains, (ii) crystallographic texture and (iii) elongated oxide and titanium particles. (i) Grains in M g -T i are elongated in the extrusion direction, w ith an aspect ratio o f about 2. It is generally accepted that the grain size and shape influences the rate o f diffusional creep but not the rate o f d islocation creep [10]. The diffusional creep can be excluded as possib le rate-controlling m echanism due to the observed h igh values o f stress exponent. A t any rate, fo llow ing the original form ulation o f volum e diffusion controlled creep rate [11], the creep rate in specim ens perpendicular to extrusion direction should be faster than in parallel direction by a factor about square root o f grain aspect ratio, w hich is considerably less than observed experimentally. (ii) Pure m agnesium and M g-T i com posite exhibited a fiber texture w ith the basal planes parallel to the extrusion direction. For such a type o f texture, the slip m otion o f dislocations in the extrusion direction should be the easiest. In addition to this, deformation behavior is influenced by values o f the resolved shear stress on the respective slip planes and by activities o f other deform ation m echanism and slip system s. A t room temperature, it w as show n that the y ie ld stress is the low est for tension parallel to extrusion axis and it w as ascribed to p ossib ility o f tw inning. How ever, at elevated temperatures, tw ining tends to be inhibited and this fact leads to strong texture strengthening, especially i f the test temperature is not h igh enough for the activation o f non-basal slip system s. (iii) Titanium particles in M g -T i com posite are very often h igh ly deformed; they are elongated in the extrusion direction to such an extent that they can be considered as long fibres. Their existence seem s to be another plausible reason for an explanation o f the observed creep behavior [12]. Sim ilar m echanism has to be taken into account also in pure-m agnesium material due to its pow der-m etallurgical processing, since the grains elongated in the extrusion direction are decorated by oxide particles. These particles com e from the fracture during the extrusion o f the oxide film w hich covers the original m agnesium powders. ISSN 0556-171X. npo6n.eubi npounocmu, 2008, N 1 127 F. Dobes, P. Pérez, K. Milicka, et al. The negative effect o f specim en tilt on creep resistance in W E54 can be related to a randomization o f grain orientation. Since the deform ation texture should not be very distinct from other m agnesium alloys, it is thus probable that the resulting texture is influenced by recrystallization. This effect is associated w ith nucleation o f recrystallization stimulated by second-phase particles [13, 14] and can have a positive importance for ensuing technological processes. Acknowledgments. The financial support o f the Grant Agency of the Czech Republic within the project 106/06/1354 is gratefully acknowledged. The paper was prepared within the joint research program o f the Spanish National Research Council CSIC and the Academy o f Sciences o f the Czech Republic. 1. H. Somekawa and T. Mukai, Scripta Mater., 53, 541 (2005). 2. L. Helis, K. Okayasu, and H. Fukutomi, Mater. Sci. Eng. A, 430, 98 (2006). 3. J. A. del Valle and O. A. Ruano, Acta M ater, 55, 455 (2007). 4. D. K. Xu, L. Liu, Y. B. Xu, and E. H. Han, Mater. Sci. Eng. A, 443, 248 (2007). 5. G. Garcés, M. Rodriguez, P. Pérez, and P. Adeva, Composit. Sci. Technol., 67, 632 (2007). 6. J. Bohlen, M. R. Nurnberg, J. W. Senn, et al., Acta Mater., 55, 2101 (2007). 7. P. Pérez, G. Garcés, and P. Adeva, J. Mater. Sci. (in print). 8. P. Pérez, G. Garcés, and P. Adeva, Composit. Sci. Technol., 64, 145 (2004). 9. G. Garcés, M. Maeso, P. Pérez, and P. Adeva, Mater. Sci. Eng. A (in print). 10. J. P. Poirier, Plasticité à Haute Température des Solides Cristallins, Editions Eyrolles, Paris (1976). 11. C. Herring, J. Appl. P hys, 21, 437 (1950). 12. F. Dobes, P. Pérez, K. Milicka, et al., in: K. Kainer (Ed.), Proc. o f the 7th Int. Conf. on Magnesium Alloys and Their Application, WILEY-VCH, Weinheim, FRG (2007), p. 699. 13. E. A. Ball and P. B. Prangnell, Scripta Metall. Mater., 31, 111 (1994). 14. G. W. Lorimer, L. W. F. Mackenzie, F. J. Humphreys, and T. Wilks, Mater. Sci. Forum, 467-470, 477 (2004), 488-489, 99 (2005). Received 28. 06. 2007 128 ISSN 0556-171X. n poôëeu u npouuocmu, 2008, № 1