Compressive creep of Fe3Al-type iron aluminide with Zr additions

High-temperature creep ofa Fe3Al-type iron aluminide alloyed by zirconium was studied in the temperature range 873-1073 K. The alloy contained (wt.%) 31.5% Al, 3.5% Cr, 0.25% Zr, 0.19% C (Fe balance). It was tested in two states: (i) as received after hot rolling and (ii) heat treated (1423 K/ 2 h/a...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Dobes, F., Kratochvil, P., Milicka, K.
Формат: Стаття
Мова:English
Опубліковано: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2008
Назва видання:Проблемы прочности
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/48439
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Compressive creep of Fe3Al-type iron aluminide with Zr additions / F. Dobes, P. Kratochvil, K. Milicka // Проблемы прочности. — 2008. — № 1. — С.117-120. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-48439
record_format dspace
spelling irk-123456789-484392013-08-19T18:31:47Z Compressive creep of Fe3Al-type iron aluminide with Zr additions Dobes, F. Kratochvil, P. Milicka, K. Научно-технический раздел High-temperature creep ofa Fe3Al-type iron aluminide alloyed by zirconium was studied in the temperature range 873-1073 K. The alloy contained (wt.%) 31.5% Al, 3.5% Cr, 0.25% Zr, 0.19% C (Fe balance). It was tested in two states: (i) as received after hot rolling and (ii) heat treated (1423 K/ 2 h/air). Creep tests were performed in compression at constant load with stepwise loading: in each step, the load was changed to a new value after steady state creep rate had been established. Stress exponent and activation energy of the creep rate were determined and possible creep mechanisms were discussed in terms ofthe threshold stress concept. A rapidfall ofthe stress exponent and ofthe threshold stress with the increasing temperature indicates that creep is impeded by the presence of precipitates only at temperature 873 K. The results were compared with the results oflong-term creep tests in tension performed recently on the same alloy. Изучена высокотемпературная ползучесть Изучена высокотемпературная ползучесть алюминида железа типа Fe3Al, легирован­ного цирконием в диапазоне температур 873...1073 К. Сплав содержал (ат.%) 31,5 Al, 3,5 Сг, 0,25 Zг, 0,19 С (остальное Fе). Испытания проводили в двух состояниях: в состоя­нии поставки после горячей прокатки и после термообработки (1423 К/2 ч/воздух). Испытания на ползучесть выполняли при постоянной сжимающей нагрузке при сту­пенчатом нагружении: на каждой ступени использовали нагрузку другой величины после того, как наступала стадия установив­шейся скорости ползучести. Определена экс­понента напряжения и энергия активации для скорости ползучести, обсуждены возмож­ные механизмы ползучести с позиций кон­цепции порогового напряжения. Резкое умень­шение экспоненты напряжения и порогового напряжения при увеличении температуры свидетельствует о том, что наличие вторич­ных фаз снижает скорость ползучести толь­ко при температуре 873 К. Полученные ре­зультаты сравнивали с данными длительных испытаний на ползучесть при растяжении, выполненных на том же сплаве. 2008 Article Compressive creep of Fe3Al-type iron aluminide with Zr additions / F. Dobes, P. Kratochvil, K. Milicka // Проблемы прочности. — 2008. — № 1. — С.117-120. — Бібліогр.: 8 назв. — англ. 0556-171X http://dspace.nbuv.gov.ua/handle/123456789/48439 539.4 en Проблемы прочности Інститут проблем міцності ім. Г.С. Писаренко НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Научно-технический раздел
Научно-технический раздел
spellingShingle Научно-технический раздел
Научно-технический раздел
Dobes, F.
Kratochvil, P.
Milicka, K.
Compressive creep of Fe3Al-type iron aluminide with Zr additions
Проблемы прочности
description High-temperature creep ofa Fe3Al-type iron aluminide alloyed by zirconium was studied in the temperature range 873-1073 K. The alloy contained (wt.%) 31.5% Al, 3.5% Cr, 0.25% Zr, 0.19% C (Fe balance). It was tested in two states: (i) as received after hot rolling and (ii) heat treated (1423 K/ 2 h/air). Creep tests were performed in compression at constant load with stepwise loading: in each step, the load was changed to a new value after steady state creep rate had been established. Stress exponent and activation energy of the creep rate were determined and possible creep mechanisms were discussed in terms ofthe threshold stress concept. A rapidfall ofthe stress exponent and ofthe threshold stress with the increasing temperature indicates that creep is impeded by the presence of precipitates only at temperature 873 K. The results were compared with the results oflong-term creep tests in tension performed recently on the same alloy. Изучена высокотемпературная ползучесть
format Article
author Dobes, F.
Kratochvil, P.
Milicka, K.
author_facet Dobes, F.
Kratochvil, P.
Milicka, K.
author_sort Dobes, F.
title Compressive creep of Fe3Al-type iron aluminide with Zr additions
title_short Compressive creep of Fe3Al-type iron aluminide with Zr additions
title_full Compressive creep of Fe3Al-type iron aluminide with Zr additions
title_fullStr Compressive creep of Fe3Al-type iron aluminide with Zr additions
title_full_unstemmed Compressive creep of Fe3Al-type iron aluminide with Zr additions
title_sort compressive creep of fe3al-type iron aluminide with zr additions
publisher Інститут проблем міцності ім. Г.С. Писаренко НАН України
publishDate 2008
topic_facet Научно-технический раздел
url http://dspace.nbuv.gov.ua/handle/123456789/48439
citation_txt Compressive creep of Fe3Al-type iron aluminide with Zr additions / F. Dobes, P. Kratochvil, K. Milicka // Проблемы прочности. — 2008. — № 1. — С.117-120. — Бібліогр.: 8 назв. — англ.
series Проблемы прочности
work_keys_str_mv AT dobesf compressivecreepoffe3altypeironaluminidewithzradditions
AT kratochvilp compressivecreepoffe3altypeironaluminidewithzradditions
AT milickak compressivecreepoffe3altypeironaluminidewithzradditions
first_indexed 2025-07-04T08:56:48Z
last_indexed 2025-07-04T08:56:48Z
_version_ 1836706076805824512
fulltext UDC 539. 4 C o m p r e s s iv e C r e e p o f F e 3A l- t y p e I r o n A li im in id e w ith Z r A d d it io n s F. D o b es,1a P . K ratoch vfl,2b and K . M ilick a 1c 1 Institute o f Physics o f Materials, Academy o f Sciences o f the Czech Republic, Brno, Czech Republic 2 Department o f Metal Physics, Charles University, Prague, Czech Republic a dobes@ipm.cz, b pekrat@met.mff.cuni.cz, c milicka@ipm.cz High-temperature creep o f a Fe3Al-type iron aluminide alloyed by zirconium was studied in the temperature range 873-1073 K. The alloy contained (wt.%) 31.5% Al, 3.5% Cr, 0.25% Zr, 0.19% C (Fe balance). It was tested in two states: (i) as received after hot rolling and (ii) heat treated (1423 K / 2 h/air). Creep tests were performed in compression at constant load with stepwise loading: in each step, the load was changed to a new value after steady state creep rate had been established. Stress exponent and activation energy o f the creep rate were determined and possible creep mechanisms were discussed in terms o f the threshold stress concept. A rapid fa ll o f the stress exponent and o f the threshold stress with the increasing temperature indicates that creep is impeded by the presence o f precipitates only at temperature 873 K. The results were compared with the results o f long-term creep tests in tension performed recently on the same alloy. K eyw o rd s : iron alum inides, creep, threshold stress. In troduction . Iron-alum inides-based alloys are prom ising candidates for many industrial applications since they have excellent resistance to oxidation and sulfidation. One o f their drawbacks is the insufficient high-temperature strength. This can be im proved either through solid solution hardening or through precipitation hardening. The alloying b y additions o f zirconium is expected to be effective in the precipitation hardening due to low solubility and formation o f phases (Fe, A l)2Zr and (Fe, A l)12Zr [1, 2]. This is in agreem ent w ith the review o f existing studies o f h igh temperature m echanical properties o f iron alum inides [3, 4], w hich docum ented that the addition o f Zr brings the best results. This fact initiated an investigation o f quaternary a lloy on Fe3A l base w ith chrom ium and zirconium . The results o f microstructural observations and o f tensile creep tests at 873 K were published elsew here [5]. The aim o f the present paper is to report additional results o f com pressive creep tests o f the sam e alloy perform ed in more extensive range o f temperatures and to start d iscussion o f the potential rate-controlling m echanism s. E xp erim en ta l. The com position o f the a lloy used for the experim ent w as as fo llow s (wt.%): A l = 31.5; Cr = 3.5; Zr = 0.25; C = 0.19; Fe - balance. The alloy w as prepared in the vacuum furnace and cast under argon in the Research Institute for M etals in PanenskM Brehany, C zech Republic. The casting (dim ensions 400X 120X 38 m m ) w as hot-rolled to the final thickness o f 13 m m at 1473 K in several steps w ith 20% reductions for each pass. The rolled p iece w as heated after each second pass and the temperature did not decrease under 1273 K during the total rolling period. A fter the final pass, the slab w as quenched from the temperature at least 1273 K into oil. One set o f sam ples w as additionally annealed at 1423 K /2 h and air cooled. The specim ens for com pressive creep tests w ere prepared with the axis perpendicular to the rolling plane. The dim ensions o f sam ples were: diameter 4 mm, height 12 mm. Constant load com pressive creep tests o f the alloy w ere perform ed at temperatures from 873 to 1073 K. A stepw ise loading w as used: in each step, the load was changed to a new value after steady-state creep rate had been established. The terminal values o f the true stress and the true strain rate w ere evaluated for the respective step. © F. DO B ES, P. KRATOCHVIL, K. MILICKA, 2008 ISSN 0556-171X. Проблемы прочности, 2008, N 1 117 mailto:dobes@ipm.cz mailto:pekrat@met.mff.cuni.cz mailto:milicka@ipm.cz F. Dobes, P. Kratochvtt, and K. Milicka Protective atmosphere o f dried and purified argon w as used. During the test, temperature w as kept constant w ithin ± 1 K. Creep curves were PC recorded by m eans o f special software. The sensitivity o f elongation m easurem ents w as better than 10_ 5 . R esu lts. The applied stress dependence o f the m inim um creep rate in the rolled material is g iven in Fig. 1. The dependence can be described at a g iven temperature by the pow er function £ = A o n , (1) where A is a temperature dependent factor and n is exponent. The values o f exponent n are decreasing w ith increasing temperature: n = 12.2 at 873 K, 5.4 at 923 K, 4 .9 at 973 K, 4.7 at 1023 K, and 4.6 at 1073 K. The apparent activation energy o f creep can be obtained from the A rrhenius-type p lot (Fig. 2). It is about 433 kJ/m ol at 50 M Pa, 407 kJ/m ol at 80 MPa, and 375 kJ/m ol at 100 M Pa at temperatures from 923 to 1073 K, respectively, but it can be very h igh (greater than 700 kJ/m ol) at low er temperatures. APPLIED STRESS [MPa] Fig. 1 Fig. 2 Fig. 1. Applied stress dependence o f creep rate at different temperatures. Fig. 2. Dependence o f creep rate on reciprocal absolute temperature. A n exam ple o f creep results obtained on sam ples after heat treatment is g iven in Fig. 3. The heat treatment has positive effect on the creep resistance. The observed deceleration o f the creep rate is less than one order o f magnitude. The results o f previous research o f creep o f the sam e alloy are also g iven in Fig. 3. A good coincidence o f tensile and com pressive creep data can be admitted. D iscussion . The values o f stress exponent n in Eq. (1) are usually taken as an indication o f potential creep controlling m echanism s. W hen dislocation m otion controls creep deform ation o f pure m etals and single phase solid solutions, the exponent n o f about 3 to 5 is expected. The values o f n can be substantially greater in alloys reinforced w ith particles o f secondary phases. The creep behavior is then rationalized b y m eans o f the threshold stress concept: the stress dependence o f the creep rate is rewritten as £ = A , ( o ~ o th f , (2 ) w here o th is the threshold stress. The value o f exponent n should be close to the value o f n observed in pure m etals and single phase solid solutions. The value o f the threshold stress can be determ ined in tw o different w ays: 118 ISSN 0556-171X. npoÖÄeubi npounocmu, 2008, № 1 Compressive Creep o f Fe^Al-type Iron Aluminide (i) The m ethod based on the additivity rule [6 ]. It is necessary to know the behaviour o f corresponding single phase material. (ii) The second m ethod m akes use o f linearized p lot o f (£ )1/n vs. applied stress. The m ethod is sensitive to the choice o f stress exponent n. i Tension ♦ rolled £> heat treated ► i > ► o | ! j i A - ♦ - - ~ * y 8 7 3 K 1 1 200 300 APPLIED STRESS [MPa] Fig. 3 Fig. 4 Fig. 3. Comparison of results o f creep tests in tension and in compression. Fig. 4. Dependence o f threshold stress on temperature. Fig. 5 APPLIED STRESS [MPa] Stress dependence o f creep rate in present alloy and in two similar alloys from [8]. To enable a com parison w ith the previous application o f the m ethod to the results o f creep in F e -A l alloys - and also the alloy w ith Zr addition from [8 ], w e have used the second m ethod w ith the sam e value o f n , i.e ., n = 4. The results are g iven in Fig. 4. Very good agreem ent is obtained at temperature 873 K. The values o f the threshold stress in the present a lloy are very rapidly decreasing w ith the increasing temperature and at temperature 923 K and above they are substantially low er than the values reported in [8]. This fact, together w ith the above g iven values o f stress exponent n, indicates that creep is im peded by the presence o f precipitates on ly at temperature 873 K. A t temperatures greater than 923 K it could be expected that either the precipitates have on ly minor influence on the creep resistance o f the investigated alloy or that they are dissolved. This can be further docum ented by comparing present data w ith the data published in [8] for ISSN 0556-171X. npo6n.eubi npounocmu, 2008, N 1 119 F. Dobes, P. Kratochvtt, and K. Milicka temperature 973 K (Fig. 5). The slope o f the stress dependence o f present alloy is lower than that o f the alloy F e-20A l-C r-Z r . Creep rates at lo w applied stresses are substantially slow er in F e-2 0 A l-C r-Z r than in the present alloy. On the other hand, creep properties o f the present a lloy are comparable w ith the properties o f the binary alloy F e -3 0 A l without second-phase precipitation. C O N C L U S I O N S 1. The uniaxial com pressive tests o f F e -3 1 .5 A l-3 .5 C r alloy w ith 0.25 wt.% o f Zr at temperatures from 873 to 1023 K give the results comparable w ell w ith those o f tensile creep tests. 2. The values o f stress exponent n, activation energy Q , and threshold stress indicate a change o f deform ation m echanism w ithin the above range o f temperatures. 3. The applied amount o f zirconium does not im prove creep resistance efficiently at temperatures above 873 K. Acknowledgments. The paper is based on work supported by the Grant Agency o f the Czech Republic within the project 106/05/0409. 1. M. Palm, Intermetallics, 13, 1286 (2005). 2. F. Stein, M. Palm, and G. Sauthoff, Intermetallics, 13, 1275 (2005). 3. D. G. Morris, M. A. Munoz-Morris, and J. Chao, Intermetallics, 12, 821 (2004). 4. D. G. Morris, M. A. Munoz-Morris, and C. Baudin, Acta Mater., 52, 2827 (2004). 5. P. Kratochvil, P. Malek, M. Cieslar, et al., Intermetallics, 15, 333 (2007). 6. R. Lagneborg and B. Bergman, Metal Sci., 10, 20 (1976). 7. R. W. Lund and W. D. Nix, Acta Metall., 24, 469 (1976). 8. D. G. Morris, M. A. Munoz-Morris, and L. M. Requejo, Acta Mater., 54, 2335 (2006). Received 28. 06. 2007 120 ISSN 0556-171X. npo6neMbi npouHocmu, 2008, № 1