Near Surface Modification Affected by Hydrogen Interaction: Global Supplemented by Local Approach

The current study is centered on elastic-plastic solid interaction with hydrogen. Here, the environment isfree hydrogen, from either external or internal origins providing as such aggressive effects. In this context, near surface displacement occurred, beside microcracking onset or growth, significa...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Katz, Y., Tymiak, N., Gerberich, W.W.
Формат: Стаття
Мова:English
Опубліковано: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2008
Назва видання:Проблемы прочности
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/48451
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Near Surface Modification Affected by Hydrogen Interaction: Global Supplemented by Local Approach / Y. Katz, N. Tymiak, W.W. Gerberich // Проблемы прочности. — 2008. — № 1. — С. 93-96. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-48451
record_format dspace
spelling irk-123456789-484512013-08-19T19:53:09Z Near Surface Modification Affected by Hydrogen Interaction: Global Supplemented by Local Approach Katz, Y. Tymiak, N. Gerberich, W.W. Научно-технический раздел The current study is centered on elastic-plastic solid interaction with hydrogen. Here, the environment isfree hydrogen, from either external or internal origins providing as such aggressive effects. In this context, near surface displacement occurred, beside microcracking onset or growth, significant interfacial weakening, as critical forms of mechanical degradation. Metastable austenitic stainless 316L steel was selected, in order to provide a comprehensive study on bulk surfaces. Globalfindings on hydrogen effects were supplemented by nanoscale information. Only for the nanosection, Ti/Cu thinfilms were also included, namely an additional small-volume case. Samples have been charged with hydrogen under lowfugacity conditions and the outcoming effects have been sorted out by mechanical response tracking assisted by contact mechanics methodology. Nanoindentation and continuous scratch tests were utilized supplemented by Scanning Probe Microscopy (SPM) visualization. Local resolution provided remarkable input to the globalfindings, in terms of dislocation nucleation aspects, near surface modification, plastic localization and microfracture onset. In thin layers, the effective work of the adhesion was reduced indicating significant degradation that could be expressed quantitatively. Global/local benefits of the stainless steel system under study made it possible to apply multiscale models describing complex micro­mechanical processes. Рассматривается взаимодействие упруго­-пластического твердого вещества с водоро­дом. Средой служит свободный водород от внешнего или внутреннего источника, что создает агрессивный эффект. В результате происходило приповерхностное смещение, кроме начала образования микротрещин или их роста и значительного межфазного раз­упрочнения, что является основными причи­нами потери механической прочности. Для всестороннего изучения внутренней струк­туры поверхности была выбрана метастабильная аустенитная нержавеющая сталь 316Л. Общие данные о действии водорода были дополнены информацией на наноуровне. Для получения данных на нано­уровне были изучены тонкие пленки Ti/Cu, т.е. проведены испытания на малом объеме материала. Образцы обрабатывали водоро­дом в условиях низкой летучести, а ре­зультаты классифицировали по механи­ческому отклику методом контактной меха­ники. Применяли наноиндентирование и непрерывное царапанье с использованием сканирующей микроскопии. Результаты ло­кальных исследований послужили значи­тельным вкладом в общие выводы, включая зарождение дислокаций, приповерхностную модификацию, начало пластической локали­зации и микроразрушения. Эффективная работа адгезии в тонких слоях уменьшилась, что свидетельствует о существенном сниже­нии механических свойств, выражаемом ко­личественно. Преимущества глобального и локального подходов при изучении нержа­веющей стали позволили использовать многоуровневые модели, описывающие комплексные микромеханические процессы. 2008 Article Near Surface Modification Affected by Hydrogen Interaction: Global Supplemented by Local Approach / Y. Katz, N. Tymiak, W.W. Gerberich // Проблемы прочности. — 2008. — № 1. — С. 93-96. — Бібліогр.: 9 назв. — англ. 0556-171X http://dspace.nbuv.gov.ua/handle/123456789/48451 539.4 en Проблемы прочности Інститут проблем міцності ім. Г.С. Писаренко НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Научно-технический раздел
Научно-технический раздел
spellingShingle Научно-технический раздел
Научно-технический раздел
Katz, Y.
Tymiak, N.
Gerberich, W.W.
Near Surface Modification Affected by Hydrogen Interaction: Global Supplemented by Local Approach
Проблемы прочности
description The current study is centered on elastic-plastic solid interaction with hydrogen. Here, the environment isfree hydrogen, from either external or internal origins providing as such aggressive effects. In this context, near surface displacement occurred, beside microcracking onset or growth, significant interfacial weakening, as critical forms of mechanical degradation. Metastable austenitic stainless 316L steel was selected, in order to provide a comprehensive study on bulk surfaces. Globalfindings on hydrogen effects were supplemented by nanoscale information. Only for the nanosection, Ti/Cu thinfilms were also included, namely an additional small-volume case. Samples have been charged with hydrogen under lowfugacity conditions and the outcoming effects have been sorted out by mechanical response tracking assisted by contact mechanics methodology. Nanoindentation and continuous scratch tests were utilized supplemented by Scanning Probe Microscopy (SPM) visualization. Local resolution provided remarkable input to the globalfindings, in terms of dislocation nucleation aspects, near surface modification, plastic localization and microfracture onset. In thin layers, the effective work of the adhesion was reduced indicating significant degradation that could be expressed quantitatively. Global/local benefits of the stainless steel system under study made it possible to apply multiscale models describing complex micro­mechanical processes.
format Article
author Katz, Y.
Tymiak, N.
Gerberich, W.W.
author_facet Katz, Y.
Tymiak, N.
Gerberich, W.W.
author_sort Katz, Y.
title Near Surface Modification Affected by Hydrogen Interaction: Global Supplemented by Local Approach
title_short Near Surface Modification Affected by Hydrogen Interaction: Global Supplemented by Local Approach
title_full Near Surface Modification Affected by Hydrogen Interaction: Global Supplemented by Local Approach
title_fullStr Near Surface Modification Affected by Hydrogen Interaction: Global Supplemented by Local Approach
title_full_unstemmed Near Surface Modification Affected by Hydrogen Interaction: Global Supplemented by Local Approach
title_sort near surface modification affected by hydrogen interaction: global supplemented by local approach
publisher Інститут проблем міцності ім. Г.С. Писаренко НАН України
publishDate 2008
topic_facet Научно-технический раздел
url http://dspace.nbuv.gov.ua/handle/123456789/48451
citation_txt Near Surface Modification Affected by Hydrogen Interaction: Global Supplemented by Local Approach / Y. Katz, N. Tymiak, W.W. Gerberich // Проблемы прочности. — 2008. — № 1. — С. 93-96. — Бібліогр.: 9 назв. — англ.
series Проблемы прочности
work_keys_str_mv AT katzy nearsurfacemodificationaffectedbyhydrogeninteractionglobalsupplementedbylocalapproach
AT tymiakn nearsurfacemodificationaffectedbyhydrogeninteractionglobalsupplementedbylocalapproach
AT gerberichww nearsurfacemodificationaffectedbyhydrogeninteractionglobalsupplementedbylocalapproach
first_indexed 2025-07-04T08:57:54Z
last_indexed 2025-07-04T08:57:54Z
_version_ 1836706142918541312
fulltext UDC 539.4 N e a r S u r fa c e M o d if ic a t io n A f f e c t e d b y H y d r o g e n I n t e r a c t io n : G lo b a l S u p p le m e n te d b y L o c a l A p p r o a c h Y . K a tz ,1a N . T ym iak ,1 and W . W . G erb er ich 1 1 Department o f Chemical Engineering and Material Science, University o f Minnesota, Minneapolis, USA a roy@roykatz.com The current study is centered on elastic-plastic solid interaction with hydrogen. Here, the environment is free hydrogen, from either external or internal origins providing as such aggressive effects. In this context, near surface displacement occurred, beside microcracking onset or growth, significant interfacial weakening, as critical form s o f mechanical degradation. Metastable austenitic stainless 316L steel was selected, in order to provide a comprehensive study on bulk surfaces. Global findings on hydrogen effects were supplemented by nanoscale information. Only fo r the nanosection, Ti/Cu thin film s were also included, namely an additional small-volume case. Samples have been charged with hydrogen under low fugacity conditions and the outcoming effects have been sorted out by mechanical response tracking assisted by contact mechanics methodology. Nanoindentation and continuous scratch tests were utilized supplemented by Scanning Probe Microscopy (SPM) visualization. Local resolution provided remarkable input to the global findings, in terms o f dislocation nucleation aspects, near surface modification, plastic localization and microfracture onset. In thin layers, the effective work o f the adhesion was reduced indicating significant degradation that could be expressed quantitatively. Global/local benefits o f the stainless steel system under study made it possible to apply multiscale models describing complex micro­ mechanical processes. K e y w o rd s : m etastable austenitic steel, hydrogen interaction, nanotests, continuous scratch tests, crystal plasticity. In trod u ction . H ydrogen/m etal interactive effects have significant im plications on surface behavior including structural integrity aspects due to crack stability transition. Regardless the specific enhancing damage origins, irreversible displacem ent, microcrack initiation and growth beside delam ination require special concern from nano-, m eso- up to macrostructural scale. The striking point in the current study is based on sm all-volum e experim ents and is m ainly focused on how hydrogen affects sm all-volum e m echanical behavior. A n appropriate factor in analyzing the basic interaction o f hydrogen w as attributed to variations in the length scale. In elastic-plastic solids w ith no hydrogen, consistent trends o f the length scale have been already established. On this background, hydrogen interaction could be screened for length scales regarding toughness or hardness. The sm all-volum e activity w as m ainly conducted in a metastable stainless steel system w ith som e findings in hydrogen affecting Ti/Cu thin film . H ow ever, a very extensive background w as previously established as related to A ISI 316L [1 -3 ] regarding possible events that are enhanced by hydrogen. Plastic displacem ent m ight have the end result o f fracture processes, nam ely embrittlement or load-bearing capacity lim itations. M oreover, surface m odification caused by environm ent introduces issues regarding tribological contact insights. N anotests also prom ise n ew experim ental options w ith im plications on quantification o f early wear. These elem ents are h ighly accentuated in a metastable system in w hich phase stability is dom inated by m echanical or chem ical aspects. E xp er im en ta l P rocedu res. G loba l A pproach . M acrostudies in austenitic stainless steel included A ISI 304, 316 and 310 steels. M echanical response w as studied using fracture m echanics m ethodology [1 -3 ]. In metastable system s w ith no hydrogen, austenite decom position occurred b elow the M d temperature. H ow ever, presence o f hydrogen © Y. K A TZ, N. TY M IA K , W . W . G E R B E R IC H , 2008 ISSN 0556-171X. Проблемы прочности, 2008, № 1 93 mailto:roy@roykatz.com Y. Katz, N. Tymiak, and W. W. Gerberich enhances martensitic transformation, resulting also in delayed m icrocracking and ductility reduction [4 -6 ]. A ustenite products w ere identified using X -ray diffraction and the M ossbauer spectroscopy analysis. L oca l A pproach. For 316L m etastable stainless steel nanotests w ere conducted on top o f global tests. Thus, indentation tests to a prescribed load o f 100 ,«N w ere performed w ith Hysitron nanoindentation instrument using conical indenter w ith 400 nm tip radius curvature. Tests w ere perform ed prior to hydrogen charging, instantly, post charging and one day after charging. B eside nanoindentation, lateral continuous scratch tests were performed. H ydrogen w as also charged by 1M NaOH cathodic charging under current densities in the range o f 10 to 500 m A /cm . Fine features’ visualization w as carried out by Scanning Electron M icroscopy (SEM ) and by A tom ic Force M icroscopy (AFM ). In addition, other experim ents regarding thin film s affected by hydrogen w ere conducted. Here, thin film s on SiO2 substrate w ith and w ithout hydrogen w ere probed allow ing som e classification o f Cu and C u/Ti/SiO 2 interfacial bonds to be assessed. E xp er im en ta l R esu lts. M acrom ethodology. It becam e evident that hydrogen provided either by electrolytic cathodic charging or by high-temperature pressure gaseous charging preserves fundamental findings o f transformation and alternative fracture m odes. The transformation reaction w as identified resulting in hexagonal close-packed and body-centered-tetragonal martensitic products. M echanical response degradation w ith hydrogen becam e apparent in all parameters starting w ith significant surface relief. D elayed m icrocracking, hydrogen affected near surface layer and m odification, as w ell as enhanced crack growth and degradation o f the fatigue strength, w ere established. L ocal F indings. Reproducible displacem ent excursions at an average load o f 200 ,«N w ere observed for the noncharged sam ples. This finding based on nanoindentation load-displacem ent curves w as attributed to p lasticity initiation since unloading prior to the excursion load yielded no residual deform ation. In contrast, y ie ld initiation in charged specim ens occurred at 10 0 -6 5 0 ,«N. One day after charging the y ie ld point ranged betw een 3 0 0 -3 5 0 ,«N (Fig. 1). W ith regard to the scratch test, hydrogen interaction increased localized p lasticity along g iven slip bands by as m uch as a factor o f three. These direct results becom e highly relevant in the near surface m odification evolution in the dynam ic sense. In principle, quantitative loca l strain arguments could be based on m easurem ents o f the surface slip height habits (h) and the spacing (s). Surface ultrafine features along the scratch pile-up as w ell as perpendicular to the scratch pile-up indicated dramatic effects o f hydrogen on microplasticity. Even under lo w fugacity charging, significant variations were m easured providing eventually building b locks for m ultiscale m odeling efforts. The Cu/SiO 2 thin film result is show n in Fig. 2 b y em phasizing the increase o f delam ination area affected by the hydrogen environment. Fig. 1. Load at plasticity initiation vs. time after hydrogen charging. 94 ISSN 0556-171X. npo6n.eMH npounocmu, 2008, N 1 Near Surface Modification Affected by Hydrogen Interaction 2 2 ■Æ. 0 0 10 20 30 40 10 20 |im 30 40 a b Fig. 2. Indentation induced delaminations in 500 nm Ti/Cu film on noncharged (a) and hydrogen charged (b) samples. D iscu ssion . Surface m odification due to environm ental infraction in metastable austenitic stainless steel has at least tw o origins: firstly, displacem ents caused b y phase stability associated w ith martensitic phases and, secondly, hydrogen-enhanced localized plasticity that can be measured. T hese results are experim entally substantiated by the com bined program o f g lobal/local approach. Pseudo-phases were identified during the transient tim e by consistent X -ray diffraction and the M ossbauer spectroscopy analysis, and internal friction results were obtained [7]. M oreover, extensive activities by Birnbaum [8 ] em phasized the local approach by sophisticated in situ Transm ission Electron M icroscope (T E M ) observations. In this context, the current findings by nanom echanical m ethodology explore fundamental insights in terms o f localized slip by A FM as enhanced b y hydrogen uptake. B eside m easured local displacem ents, results like m icrocracking and other damage factors introduce additional detrimental surface m odification elem ents. The described investigation w ith local resolution o f d islocation dynam ics bounded to crystal plasticity reflects on wear or tribological contact. For exam ple, Kubota et al. [9] addressed the issue o f fretting fatigue in austenitic stainless steel system by concluding the significant life decrease that w as caused by hydrogen interaction. Such results com bined w ith basic inherent m echanics becom e more understandable and can shade light on structural integrity phenomena. C on clu sions. V iable hydrogen embrittlement m odels [1, 2] can be based on the microapproach input, particularly in terms o f d islocation shielding m echanism s developed for the hydrogen-enhanced loca l decohesion m odel. The nanoscale results also em phasize the inclusion o f m icroplasticity variations that can explain the w ide range data on deform ation/hydrogen interaction in elastic-plastic crystalline solids. The fo llow ing conclusions are made: 1. H ydrogen concentration near the surface in 316L m etastable austenitic stainless steel raised the d islocation nucleation load b y more than a factor o f two. 2. In copper thin film on silica substrate, hydrogen interaction decreases work o f adhesive. 3. N anom echanical tests com bined with probe m icroscopy provide critical experiments resolving the scale relationship to be involved in the embrittlement phenomena. ISSN 0556-171X. npoôëeMbi npounocmu, 2008, N 1 95 Y. Katz, N. Tymiak, and W. W. Gerberich 4. In metastable stainless steel w ith hydrogen, austenite decom position enhances surface relief, localized plasticity, m icrocracking or delim itation, w hich cause significant surface m odification w ith im plication to tribological contact effects. 1. M. J. Lii, X. F. Chen, Y. Katz, and W. W. Gerberich, Acta Metal. Mater., 38, 2435 (1990). 2. X. Chen, T. Foecke, M. Lii, Y. et al., Eng. Fract. Mech., 35, 997 (1989). 3. H. Mathias, Y. Katz, and S. Nadiv, in: T. N. Vezirogla (Ed.), Metal-Hydrogen Systems, Pergamon Press, Oxford (1982), p. 225. 4. H. Houng and W. W. Gerberich, Acta Metal. Mater., 42, 639 (1994). 5. D. G. Ulmer and C. J. Altsetter, Acta Metal. Mater., 39, 1237 (1991). 6 . D. P. Abraham and C. J. Altsetter, Metal. Trans., 26A, 2859 (1995). 7. V. G. Gavrilijuk, H. Hanninen, A. V. Taraschenko, et al., Acta Metal. Mater., 43, 559 (1995). 8 . H. K. Birenbaum, I. M. Robertson, P. Sofronis, and D. Teter, in: CDI 96, Institute of Materials, UK (1997), p. 172. 9. K. Yanagbihara, S. Oayanagi, M. Kubota, et al., J. Soc. Mat. Sci. Japan, 54, 1237 (2005). Received 28. 06. 2007 96 ISSN 0556-171X. npoöneMbi npoHuocmu, 2008, № 1