Аналог преобразования Громеки в магнитной гидродинамике вращающейся неоднородной жидкости
Осуществлен аналог преобразования Громеки в двухпараметрической стационарной задаче магнитной гидродинамики вращающейся неоднородной жидкости. Получены интегралы симметрии и с их помощью задача сведена к одному нелинейному уравнению в частных производных второго порядка, служащему для определения фу...
Збережено в:
Дата: | 2003 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут гідромеханіки НАН України
2003
|
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/4846 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Аналог преобразования Громеки в магнитной гидродинамике вращающейся неоднородной жидкости / Н.В. Салтанов, В.Н. Салтанов // Прикладна гідромеханіка. — 2003. — Т. 5, № 1. — С. 71-80. — Бібліогр.: 58 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Осуществлен аналог преобразования Громеки в двухпараметрической стационарной задаче магнитной гидродинамики вращающейся неоднородной жидкости. Получены интегралы симметрии и с их помощью задача сведена к одному нелинейному уравнению в частных производных второго порядка, служащему для определения функции тока ψ. Введена модифицированная функция тока F = F(ψ). В результате задача сведена к квазилинейному уравнению в частных производных второго порядка. Это уравнение включает в себя произвольно заданные функции своего аргумента: плотность ρ(F), аналог функции Бернулли Wem(F), третью компоненту обобщенного импульса единицы массы жидкости q(F), магнитный A(F) и электрический Φe(F) потенциал. Произвол в выборе зависимостей ρ(F), Wem(F), q(F), A(F) и Φe(F) может быть использован для аппроксимации реальных параметров среды. При определенном задании этих зависимостей уравнение для модифицированной функции тока становится линейным, что предоставляет существенные преимущества в решении краевых задач. Рассмотрены волны конечной амплитуды в замагниченном вращающемся цилиндрическом слое однородной жидкости. |
---|