On time asymptotic of the solutions of transport evolution equation

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Cheremnikh, E.V., Diaba, F., Ivasyk, G.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2010
Назва видання:Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/48784
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On time asymptotic of the solutions of transport evolution equation / E.V. Cheremnikh, F. Diaba, G.V. Ivasyk // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2010. — Вип. 4. — С. 208-223. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-48784
record_format dspace
spelling irk-123456789-487842013-09-03T03:04:26Z On time asymptotic of the solutions of transport evolution equation Cheremnikh, E.V. Diaba, F. Ivasyk, G.V. 2010 Article On time asymptotic of the solutions of transport evolution equation / E.V. Cheremnikh, F. Diaba, G.V. Ivasyk // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2010. — Вип. 4. — С. 208-223. — Бібліогр.: 7 назв. — англ. XXXX-0059 http://dspace.nbuv.gov.ua/handle/123456789/48784 517.9 en Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки Інститут кібернетики ім. В.М. Глушкова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
format Article
author Cheremnikh, E.V.
Diaba, F.
Ivasyk, G.V.
spellingShingle Cheremnikh, E.V.
Diaba, F.
Ivasyk, G.V.
On time asymptotic of the solutions of transport evolution equation
Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
author_facet Cheremnikh, E.V.
Diaba, F.
Ivasyk, G.V.
author_sort Cheremnikh, E.V.
title On time asymptotic of the solutions of transport evolution equation
title_short On time asymptotic of the solutions of transport evolution equation
title_full On time asymptotic of the solutions of transport evolution equation
title_fullStr On time asymptotic of the solutions of transport evolution equation
title_full_unstemmed On time asymptotic of the solutions of transport evolution equation
title_sort on time asymptotic of the solutions of transport evolution equation
publisher Інститут кібернетики ім. В.М. Глушкова НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/48784
citation_txt On time asymptotic of the solutions of transport evolution equation / E.V. Cheremnikh, F. Diaba, G.V. Ivasyk // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2010. — Вип. 4. — С. 208-223. — Бібліогр.: 7 назв. — англ.
series Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
work_keys_str_mv AT cheremnikhev ontimeasymptoticofthesolutionsoftransportevolutionequation
AT diabaf ontimeasymptoticofthesolutionsoftransportevolutionequation
AT ivasykgv ontimeasymptoticofthesolutionsoftransportevolutionequation
first_indexed 2025-07-04T09:30:02Z
last_indexed 2025-07-04T09:30:02Z
_version_ 1836708187204485120
fulltext Математичне та комп’ютерне моделювання 208 математичного моделювання, прогнозування та оптимізації». — Кам’янець- Подільський : Кам’янець-Подільський нац. ун-т ім. І. Огієнка, 2010. — С. 263—264. 6. Khimka U.T., Chabanyuk Ya.M. Stochastic Optimization Procedure Convergence with Markov Switching in the Average Scheme / U. T. Khimka, Ya. M. Chabanyuk // Математичні студії. — 2010. — Vol. 34, № 1. — P. 101—105. It has been established the sufficient conditions for the convergence of the continuous stochastic optimization procedure of Kiefer-Wolfowitz in the diffusion approximation scheme with Markov switching. The conver- gence of the proposed procedure has been proved by using the method of the small parameter and the solution of the singular perturbation problem for the Markov process generator. Key words: stochastic optimization, the markov process, solution of the singular perturbation problem. Отримано 16.10.2010 УДК 517.9 E. V. Cheremnikh*, Ph. D., F. Diaba**, Ph. D., G. V. Ivasyk*, assistant *Lviv Polytechnic National University, Ukraine, **Badji Mokhtar-Annaba, Algeria ON TIME ASYMPTOTIC OF THE SOLUTIONS OF TRANSPORT EVOLUTION EQUATION Authors consider in the space 2 ( ), = [ 1,1]L D D R  the transport operator   1 1 1 = ( ) ( ) ( ) , . f Lf i a x b b f x d x              To obtain the representation of the solution of the equation =0 = , = (0) t u iLu u u authors introduce some integral (like known expression the semigroup by the resolvent) and prove directly that this integral is corresponding semigroup. To simplify the calculus the authors reduce the operator L to some Friedrichs' model using Fourier transformation. Key words: spectrum, transport operator, Friedrichs' model, semigroup. Spectral theory for various types of transport operators is the subject of many works (see for example [1; 2]). In the work [3] the authors begin to use Friedrichs' model to study the spectrum of some transport operator. Analogic result was obtained in the works [4; 5]. © E. V. Cheremnikh, F. Diaba, G. V. Ivasyk, 2010 Серія: Фізико-математичні науки. Випуск 4 209 In the present article for such operators corresponding evolution is con- sidered. We consider in the space 2 ( )L D , = [ 1,1]D R  the transport operator 1 1 1 = ( ) ( ) ( ) ( , ) f Lf i a x b b f x d x              (1) with maximum domain of definition ( )D L under the following conditions: there exist constants > 0, > 0M  such that ( ) < ,xa x Me x R  (2) and the functions 1( ), ( )b b  admit analytic prolongation from interval (-1,1) into the circle < 1z  . Note thaat in [4; 5] we have 1( ) 1b   and in [3] 0 ( ) ( ) 1.b b   We will study the following transport evolution equation =0 = , > 0 = (0), (0) ( ) t u iLu t u u u D L     (3) and obtain principal term of asymptotic behaviour of the solutions of this equation corresponding to eigen-values of L . We suppose that the operator L has not spectral singularities. 1. Friedrichs' model of transport operator We want to transform the operator L in Friedrichs' model. We begin by the notations. Let H be Hilbert space of the functions ( , ), ( , ) , = [ 1,1]s s D D R      with the norm 1 2 2 1 1 = ( , ) . H R s dsd       We introduce the operator 2 0 : ( )F L D H , where    2 0 , = , , ( ),F u u u L D R             (4) and the operator 2: ( )Z L R H , where 2( )( , ) = , ( ).Zc c c L R          (5) It is not difficult to verify that 20 ( ) = , L DH F u u that 0F is unitary operator and that the operator Z is bounded, namely 2.z  The Fourier transformation is denoted by Математичне та комп’ютерне моделювання 210 1 ( )( ) = ( ) , 2 is R Ff s e f d s R      in the space 2 ( )L R and in the space 2 ( )L D too. Now we apply to the equality (1) the Fourier transformation with respect to variable x , then 1 1 1 ( ) ( )( , ) = ( , ) ( ) ( ) ( , ) , 2 i x R b FLf u a x b f x d e dx                        where =u Ff . Now we apply the operator 0F (see(4)), simply it is the substitution = , s  then 1 1 0 1 ( ) ( )( , ) = , ( ) ( ) ( , ) . 2 s ix R bs F FLf s su a x b f x d e dx                          We denote ( , ) = , s s u          or 0 0= = .F u F Ff Let = , s   then 1 0( , ) = ( , ) = ( )( , )u F        . That's why 1 1 0 1 ( , ) = ( )( , ) = ( , ) . 2 i x R f x F F x e d           The change of variable =s  (cases > 0 and < 0 ) gives    1 , = , . 2 s i x R ds f x s e            Finally, we obtain   1 1 0 0 , = ( , ) ( , ),F FLF F s s s V s        (6) where 1 1 1 ( ) ( , ) = ( ) ( ) ( , ) . 2 s s i ix R R b d V s a x b s e ds e dx                           (7) We choose some factorization for the function ( )a x such that 1 2 1 2( ) = ( ) ( ), ( ) = ( ) .a x a x a x a x a x (8) Let 2= ( )G L R then *=V A B (see (7)), where the operators , :A B H G are given by the expressions Серія: Фізико-математичні науки. Випуск 4 211 * 1 1 1 2 1 1 ( , ) ( ) ( ) ( ) , 2 1 ( ) ( ) ( ) ( , ) . 2 s ix R s i R A c s b a x c x e dx d B x a x b s e ds                              (9) Obviously, the operator 2 0= : ( )U F F L D H (see(4)) is unitary. So, the following theorem is proved. 1.1. Theorem. Let 2 2: ( ) ( )L L D L D be the operator with maximal domain of definition, given by the expression (1). Then 1 = : ,ULU T H H  where *= , = ,T S V V A B ( )( , ) ( , ), , ( 1,1)S R           and the operators ,A B act from H into 2= ( )G L R (see (9)). The integral operator in the right side of (1) is bounded in the space 2 ( ).L D So, the operator V is bounded in space H . However we need following Lemma. 1.2. Lemma. The operators , : ,A B H G namely 1 1 1 1 1 2 1 1 1 ( ) = ( ) ( ) ( , ) 2 1 1 ( ) = ( ) ( ) ( , ) 2 s ix R s ix R A x a x b s e d ds B x a x b s e d ds                            (10) are bounded. 1.3. Proposition. If ( ) 0,a x x R  and 1( ) = ( ), ( 1,1)b b     , then Friedrichs' model =T S V is selfadjoint operator, * = .T T Proof. Really, as factorization 1 2( ) = ( ) ( )a x a x a x is arbitrary one can choose 1 2( ) = ( ) = ( )a x a x a x , then according to (10) =A B , so * =T T in view of * = .S S Proposition is proved. 2. Spectrum of Friedrichs' model We will consider the resolvent of the operator *= .T S A B The equation ( ) = , ,T H R       takes form *( ) = .S A B     Математичне та комп’ютерне моделювання 212 Denote 1 1= ( ) , = ( )S S T T     . As R  then the operator S exists, is bounded and the equation takes form * = .S A B S    (11) Applying the operator B , we obtain  *1 =BS A B BS   . Let *( ) = 1 , ,K BS A R   (12) then for the expression B in (11) we obtain 1= ( )B K BS   . Taking into account the boundness of the operators A and B , we have the following proposition. 2.1. Proposition. If the operator ( ),K R   has bounded inverse operator 1( )K   , then the value  belongs to resolvent set of the operator T and * 1= ( ) .T S S A K BS     (13) Substituing the expressions (9) for the operators A and B into (12) we obtain immediately (after the change of variables = s    ) the following Lemma. 2.2. Lemma. The operator ( )K  (see (12)) admits the representation (( ( ) 1) )( ) = ( , , ) ( ) , , R K c x k x y c y dy R    (14) where 2 1 1 ( , , ) = ( ) ( ) ( , ) 2 k x y a x a y I x y    and 1 1 1 ( ) ( ) ( , ) = ( , ) , ( , ) = .iu R b b I u l e d l d                  (15) This Lemma coincides with corresponding Lemma of the work [4], where 1( ) 1b   and the function ( , )l   was (compare with (15)) 1 1 ( ) ( , ) = . b l d          2.3. Theorem. Operator 2 2( ) 1: ( ) ( ),K L R L R R    is compact and ( ) 1 0,K     uniformly in the domain Im > 0 for every > 0 . In the work [4] it was shown that the proof of this Theorem practically coincides with the corresponding proof in the work [3]. Серія: Фізико-математичні науки. Випуск 4 213 2.4. Theorem. Operator ( ) 1K   admits analytic prolongation ( ) 1K   over semiaxes ( ,0) and (0, ) and ( ) 1 0,K       uniformly in the domain Im <  for every 1 < 2  . We have the same proof as the proof in the work [4], instead of the function ( )b  one uses the function 0 1( ) ( ) ( )b b b   . This proof is based on the representation     0 0 1 1 ( , ) = , = sign ,I u f t u dt f t u dt u t t            where 0 0 1 ( ) = , = 1.i y i yf b e b e dy y y y                            Using well known Theorem on holomorphic operator function (see [6], Ch. 1) and Theorem 2.4, we obtain that the point spectrum outside of R can have point of accumulation = 0 only. The condition of finiteness of such spectrum we can give by analogy to the work [5]. Later we will suppose that point spectrum of the operator T is finite. At the end we indicate only that continuous spectrum and spectral singularities of the operator T belong to the axis R . 3. Construction of the semi-group exp( )itT It is known that Cauchy problem =0 = , = (0), t u Mu u u where the operator M is such that half plane Re > > 0  belongs to its resolvent set admits under some condition following representation of the solution 11 ( ) = ( , ) (0) , ( , ) = ( ) . 2 i t i u t e R M u d R M M i                Let us consider the problem =0 = , > 0, = (0), (0) ( ). t u iTu t u u u D T     (16) Denote = , < < ,i      then 1( ) = .iiT iT     Instead of difficult verification of some sufficient condition on the operator T , we propose directly to choose the solution under the form ( )1 ( ) = (0) . 2 i t iu t e T u d i             (17) Математичне та комп’ютерне моделювання 214 We denote ( )( , ) = i th t e    and we denote the element (0) = ( , )u H    simply by (0) = .u  So, we must prove that the operator 1 ( ) = ( , ) , > 0 2 iU t h t T d t i           (18) defines semi-group corresponding to the problem (16). 3.1. Theorem. If ( )D T  then the integral (18) admits the representation 1 ( , ) ( ) = , > 0, 2 i h t U t T T d t i i               (19) where the integral converges with respect to the norm of H . Proof. To prove this theorem it is sufficient to substitute in (17) such an expression:  1 ( ) = 1.i T T i         3.2. Lemma. If ( )D T  then ( , ) ( , ) = .i i h t h t T T d T T d i i                     (20) Proof. As the operator T is closed it’s sufficient to replace the integral by the corresponding integral sum. Denote ( ) = h t   ( ( , )h t t     ( , )) /h t t  .As ( , ) = exp(( ) )h t i t   , then ( , ) = ( ) ( , ).h t i i h t t       3.3. Lemma. If H  , then 0 1 ( ) = ( , ) .lim i i t h s T d i h t T d i t                         (21) Note, that the equality (21) in view of definition (18) signifies that 0 1 ( ) 2 ( ) , ( ).lim i t h s T d U t D T i t                      (22) 3.4. Theorem. Let ( ),D T  then ( ) = ( ) , > 0,U t iTU t t  (23) Серія: Фізико-математичні науки. Випуск 4 215 where ( )U t signifies strong derivative. Proof. Using the representation (19) and the equality (20) we obtain two relations: ( ) 1 1 = ( ) 2 i U t h T T d t i i t                   (24) and ( ) 1 1 = ( ) . 2 i U t h T T d t i i t                   (25) In view of Lemma 3.3, there exists strong limit of the integral in (24) if 0,t  so there exists strong limit 0 ( ) ( ) = , ( ).lim t U t U t s D T t          By analogy, there exist strong limit of the integral in (25), which is equal to 2 ( )U t  (see (22)). As the operator T is closed, we obtain the equality (23) from the equalities (24)—(25). Theorem is proved. 3.5. Theorem. Let ( ),D T  then 0 ( ) = 0.lim t U t     (26) Proof. Recall the representation (19) ( )1 ( , ) ( ) = , ( , ) = . 2 i t i h t U t T T d h t e i i                   (27) First we prove that 1 , = .iT d T i              (28) Note, that the value > 0 is such that the operator function 0z iz T  , =z i  is holomorphic in half plane Im <z  . Let  = : = , < < 2i RL z z Re     be semicircle such that R  . We obtain (28) if we prove that 1 = 0.lim z i R LR T dz z i     (29) As 1( ) , = constK z i M M   and 1 Imz iS z    , where Im < 0z , then we have Математичне та комп’ютерне моделювання 216 * 1 0 0 0 = ( ) , = const. Im z i z i z i z i z i T S S A K z i BS M M S M z                        (30) As Im = sinz R  , the estimate of the integral (29) reduces to the following estimate sin > sin < 1 Im sinL R R R RR dz d z i z R                       1 1 sin > sin < 1 = , . R R d d O R R R                  So, the relations (28) and (29) are proved. Now, taking into ac- count (27)—(28) to prove the relation (26) we must prove that 0 ( , ) 1 = 0.lim i t h t T d i              (31) As 0i iT M S      (see(30)), it is sufficient to estimate the following integral ( ) 1 ( ) i t i e I t S d i                1 1 2 2( ) 221 . i t i e d S d i                            The function ( ) 1 /i te i      is majorable by some function from 2 ( )L R uniformly in every finite interval 10 < <t t . In addition, the integral 21 2 2 1 ( , ) 1 = ( ) iS d d d d i                                  1 2 2 1 1 ( , ) = <d d                 converges. So, ( ) 0, 0I t t  , what proves the relation (31). Theorem is proved. Серія: Фізико-математичні науки. Випуск 4 217 3.6. Proposition. If =0 = , > 0, = 0, t u iTu t u     then ( ) 0, > 0u t t . As corrolary, we have that the operator ( ), > 0U t t (see (18)) defines a semigroup. Now we can formulate the main theorem of this section. 3.7. Theorem. The problem =0 = , > 0, = , ( ), t u iTu t u D T      has unique solution ( ) = ( )u t U t  , given by the semigroup ( )1 ( ) = . 2 i t iU t e T d i              Proof. Results from (23), (26) and Proposition 3.6. 4. Asymptotic behavior of the semigroup We study time asymptotic of the solution of evolution equation =f iLf , =0 = (0) t f f . If the operator 2 2: ( ) ( )L L D L D is self-adjoint then corresponding semi-group is unitary and this solution is bounded with respect to the norm of the space. We consider nonself-adjoint operator L . Our aim is to give simple description of increasing part of the solution when t  . It is convinient to use Friedrichs` model T (T is unitary equivalent to L) and study the solution of the problem =0 = , = (0) t u iTu u u . Suppose that the following conditions hold: a) 1(0) = (0) = 0b b ; b) the operator T has not spectral singularities, set of eigen-values is finite. We have need of the following known statement (see, for ex. [7]). 4.1. Lemma. If 2 ( )g L R and 1 ( ) ( ) = 2 R g s g ds i s    , then 2 2 2 ( ) ( ) , 0. L R R g i d g       (32) 4.2. Lemma. Vector-functions , ,AS BS H     belong to Hardy space in half planes Im > 0 and Im < 0 . Proof. Recall that (see(9)) Математичне та комп’ютерне моделювання 218 1 2 1 1 ( ) = ( ) ( ) ( , ) . 2 s ix R d B x a x b e s ds         So, 2 1 ( ) = ( ) ( , ) , R BS x a x s x ds s     (33) where 1 1 1 ( ) ( , ) = ( , ) . 2 s ixb s x s e d       As (0) = 0b , then 11 2 21 1 122 1 1 1 ( ) ( ) 2 ( , ) ( , ) ( , ) b bd s x s d s d                                and 2 2 2 2 ( ) ( , ) = ( , ) , . L R H R x s x ds M x R     Using (32), we have 2 2 22 2 2( ) 1 ( , ) 4 ( , ) 4 , . ( ) L R H R R s x ds d x M x R s i                (34) The representation (33) gives 2 2 2 2 1 = ( ) ( , ) . ( )i R R BS a x s x ds dx s i        Integrating this equality with respect to  and using the estimate (34), which does not depend on x , we obtain 2 2 2 22 2 14 ( ) , 0.i H H R R BS d M a x dx M           (35) The vector-function AS is considered by analogy. Lemma is proved. Let ( ), =h i    be function holomorphic in half planes > 0 and < 0 . 4.3. Lemma. Suppose that ( ) , = const, 0, R h i d M M      (36) then the integral ( ) = ( ) R H h i d    does not depend on  in the intervals > 0 and < 0 . Серія: Фізико-математичні науки. Випуск 4 219 Now we come back to the solution ( , , )u t   of evolution equation (see Theorem 3.7). We will write ( )u t instead of ( , , )u t   . As * 1= ( )T S S A K BS     , then ( )1 ( ) = = ( , ) , > 0, 2 i t iSt iu t e T d e I t t i                (37) where ( ) * 11 ( , ) = ( ) . 2 i t i iI t e S A K i BS d i                    (38) The eigen-values k of the operator T are the poles of the operator function 1( )K   . Recall that the operator ( ) 1K   is compact. Therefore, according to the theorem about holomorphic operator function (see [6]), the coefficients ,k jQ  of principal part of Loran decomposition of 1( )K   , namely 1( ) = ( ) ( ), Im 0,k k K Q G      (39) , , 1( ) = ... , ( ) k m k k km kk Q Q Q            are finite dimensional operators. Operator function ( )G  is bounded and gives in (38) the term (1), ,O t  (see (35)). It remains to calculate directly (by residues) the terms of the expression (38), containing the operators ,k jQ  then the poles =k i   give the functions exp(( ) ) = exp( )ki t i t   and its derivates with respect to  give the factors pt . Using unitary equivalence of semi groups 1exp( ) = exp( )itL U itT U , we obtain following main result concerrning initial Cauchy problem (3). 4.4. Theorem. Suppose that the operator L has finite set of eigen- values and has not spectral singularities. Then asymptotic behaviour of the solution of evolution equation (3) is , , Im <0 ( ) = ( (0), ) (1), , i t pk k p H k p pk u t e t u f g O t       where (1)O signifies the value in the space 2 ( )L D and , ,,k p k pf g denote some elements from 2 ( )L D . Математичне та комп’ютерне моделювання 220 5. Case of finite-dimensional kernel Let us consider in the space 2 ( )L D more general operator 1 1 ( , ) = ( , , ) ( , ) , ( , ) , f Lf x i k x f x d x D x                 (40) where 1, =1 ( , , ) = ( ) ( ) ( ). n j j j j k x a x b b     (41) We keep the same conditions (as for the operator (1)) on the coefficients, namely, for some constants > 0, > 0M  , we suppose that  ( ) exp , , = 1,...,ja x M x x R j n   and the functions 1, ( ), ( ),j jb b  [ 1,1]   admit holomorphic prolongation in the circle < 1z  . We want to show that the operator L may be including in previous scheme. But we consider the spectrum of L only. We choose the factorization 1, 2,( ) = ( ) ( )j j ja x a x a x , 1, 2,( ) = ( ) ,j ja x a x which after Fourier transformation of the equality (40) gives Friedrichs' model * =1 = n j j j T S A B (42) in the same space H . Integral operators 2, : ( )j jA B H L R are 1 1, 1, 1 1 2, 1 1 1 ( ) = ( ) ( ) ( , ) , , 2 1 1 ( ) = ( ) ( ) ( , ) . 2 s ix j j j R s ix j j j R A x a x b s e d ds x R B x a x b s e d ds                             *( ) = , Im 0jm jm j mK B S A    (43) and (compare with (15)) 1 1, 1 ( ) ( ) ( , ) = .j m jm b b l d         Obviously, theo- rem 2.3 holds for the operator (43) too. One can easily repeat the proof of Theorem 3.2 to obtain in the neighbourhood of = 0 the decomposition   21, 1, 2,( ) 1 ( ) = (0) (0) ( ) , ( ), 2jm jm j m m j jmL R K b b a a Q         (44) where the operator function ( )Q  is holomorphic in some circle <  and ( ) = signIm lni       . The function ln  is continuous in the domain [0, )   and ln( 1) = i . Серія: Фізико-математичні науки. Випуск 4 221 Let us rewrite the operator (42) under the form *= .T S A B We introduce direct sum 1= ... ,nG G G  where 2= ( )jG L R . Then we interpret the factors in (42) as operators , :j j jA B H G and introduce the following operators , :A B H G : 1 1 . . . , . . . . n n A B A B G A B                                         (45) If c G then *( , ) = ( , ) = , , .G m m G m mm m m H A c A c A c           So, * *= .m m m A c A c (46) Therefore * *= j j j A B A B  and *=T S A B (see (42)). We have (see (45)—(46)) * * *( ) = =j j j m m m BS A c B S A c B S A c   i.e. we have matrix form * , =1( ) = 1 = ( ( ))n jm j mK BS A K  (see (43)). Denote     1,1 1,1 1 2,1 2,1, 1, (0) ( ) (0) ( ) . . . , . . . . (0) ( )(0) ( ) n nn n b a x b a x x x G b a xb a x                                    Then (see (44)) 1 ( ( ) 1) = ( )( , ) ( ) , 2 GK c c Q c         where ( ( ) ) = ( ) .j jm m m Q c Q c  According to [5] 11 22 11, 1, 1,1( ) ( ) ,jm j m m jCC Q N b b a a     (47) Математичне та комп’ютерне моделювання 222 where ( )N  is some given function on  and 2 2 2( ) .x R a a x e dx    Using the notation (see (41)) 1 22 2 22 2,1 1( , ) = ( ) x j j j jC C j j R M a b b a b a x e dx             1 22 2 22 1 11, 1, 1,( , ) = ( ) x m m m mC C m m R M a b b a b a x e            and the estimates (see(47)), we obtain 1( ) ( ) ( , ) ( , ).Q N M a b M a b  We also need the value (recall that 2, 1,( ) ( ) = ( )j j ja x a x a x ) 1,( , ) = (0) (0) ( ) .G j j j j R b b a x dx    By analogy to the work [5], we obtain the following Theorem. 5.1. Theorem. Under one of the following conditions 1) 1( , ) = 0, ( ) ( , ) ( , ) < 1G N M a b M a b   or 2) 1( , ) 0, ( ) ( , ) ( , ) < ( , )G GG G N M a b M a b       the operator L (see(40)) has not point spectrum in the circle <  . Note, that exponential decreasing of the functions ( ),ja x x  permit (again by analogy to work [5]) to prove the analogy of Theorem 2.3. Taking into account Theorem 5.1, we obtain that point spectrum of the operator L is finite. References: 1. Lehner I. The spectrum of neutron transport operator for the infinit slab, I.Math. Mech / I. Lehner. — 1962. — №. 2. — P. 173—181. 2. Kuperin Yu. A. Spectral analysis of a one speed transmission operator and functional model. Funct. anal. and its appl / Yu. A. Kuperin, S. N. Naboko, R. V. Romanov. — 1999. — Vol. 33, №. 2. — P. 47—58. 3. Diaba F. On the point spectrum of transport operator. Math. Func. Anal. and Topology / F. Diaba, E. V. Cheremnikh. — 2005. — Vol. 11, №. 1. — P. 21—36. 4. Ivasyk G. V. Friedrich's model for transport operator / G. V. Ivasyk, E. V. Cheremnikh // Journal of National University «Lvivska Politechnika», Phys. and math. sciencesю. — 2009. — Vol. 643, №. 643. — P. 30—36. 5. Cheremnikh E. V. Sufficient condition of finiteness of point spectrum (in print) / E. V. Cheremnikh, G. V. Ivasyk. 6. Gohberg I. Z. Introduction to the theory of linear non self-adjoint operators / I. Z. Gohberg, M. G. Krein. — 1965. — 448 p. 7. Bremermann H. Distributions, Complex Variables and Fourier Transforms / H. Bremermann, 1965. Серія: Фізико-математичні науки. Випуск 4 223 Автори розглядають у просторі 1,1][=),(2 RDDL транспортний оператор .),()()()(= 1 1 1        dxfbbxa x f iLf Щоб отримати вигляд розвязку рівняння (0)=,= 0= uuiLuu t  автори вводять деякий інтеграл (у вигляді відомого виразу резольвен- ти через півгрупу) і доводять прямо, що цей інтеграл є відповідною півгрупою. Щоб спростити обчислення, автори зводять оператор L до деякої моделі Фрідріхса, використовуючи перетворення Фур’є. Ключові слова: спектр ,транспортний оператор, модель Фрідріхса, півгрупа. Отримано 16.10.2010 УДК 519.21 В. К. Ясинский*, д-р фіз-мат. наук, В. Ю. Береза*, канд. фіз.-мат. наук, Е. В. Ясинский**, аналітик-програміст *Чернівецький національний університет ім. Ю. Федьковича, м. Чернівці, **Університет Атабаска, м. Едмонтон, Канада СУЩЕСТВОВАНИЕ ВТОРОГО МОМЕНТА РЕШЕНИЯ ЛИНЕЙНОГО СТОХАСТИЧЕСКОГО УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ С МАРКОВСКИМИ ВОЗМУЩЕНИЯМИ И ЕГО ПОВЕДЕНИЕ НА БЕСКОНЕЧНОСТИ Для стохастической задачи Коши линейного уравнения в частных производных с непрерывным марковским процессом доказано существование решения в среднем квадратическом, получены достаточные условия асимптотической устойчиво- сти в среднем квадратическом решения этой задачи. Ключевые слова: задача Коши, стохастические диффе- ренциальное уравнение, уравнение в частных производных, асимптотическая устойчивость, устойчивость в среднем квадратическом, марковский процесс. Введение. Доказательству существования и асимптотического поведения решений детерминированных уравнений в частных произ- водных посвящено достаточное число монографий и статей, которые можно найти в монографиях [13], [15], [22]. Когда было введено понятие стохастического дифференциала и интеграла, как функции верхнего предела, замены переменных Ито для стохастического дифференциала, введения понятия стохастиче- © В. К. Ясинский, В. Ю. Береза, Е. В. Ясинский, 2010 << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /All /Binding /Left /CalGrayProfile (Gray Gamma 2.2) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Warning /CompatibilityLevel 1.3 /CompressObjects /Tags /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /DetectCurves 0.1000 /ColorConversionStrategy /sRGB /DoThumbnails false /EmbedAllFonts true /EmbedOpenType false /ParseICCProfilesInComments true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams false /MaxSubsetPct 100 /Optimize true /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage true /PreserveDICMYKValues true /PreserveEPSInfo false /PreserveFlatness false /PreserveHalftoneInfo false /PreserveOPIComments false /PreserveOverprintSettings true /StartPage 1 /SubsetFonts true /TransferFunctionInfo /Apply /UCRandBGInfo /Remove /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true /Arial-Black /Arial-BlackItalic /Arial-BoldItalicMT /Arial-BoldMT /Arial-ItalicMT /ArialMT /ArialNarrow /ArialNarrow-Bold /ArialNarrow-BoldItalic /ArialNarrow-Italic /ArialUnicodeMS /CenturyGothic /CenturyGothic-Bold /CenturyGothic-BoldItalic /CenturyGothic-Italic /CourierNewPS-BoldItalicMT /CourierNewPS-BoldMT /CourierNewPS-ItalicMT /CourierNewPSMT /Georgia /Georgia-Bold /Georgia-BoldItalic /Georgia-Italic /Impact /LucidaConsole /Tahoma /Tahoma-Bold /TimesNewRomanMT-ExtraBold /TimesNewRomanPS-BoldItalicMT /TimesNewRomanPS-BoldMT /TimesNewRomanPS-ItalicMT /TimesNewRomanPSMT /Trebuchet-BoldItalic /TrebuchetMS /TrebuchetMS-Bold /TrebuchetMS-Italic /Verdana /Verdana-Bold /Verdana-BoldItalic /Verdana-Italic ] /AntiAliasColorImages false /CropColorImages false /ColorImageMinResolution 150 /ColorImageMinResolutionPolicy /OK /DownsampleColorImages true /ColorImageDownsampleType /Bicubic /ColorImageResolution 150 /ColorImageDepth -1 /ColorImageMinDownsampleDepth 1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages true /ColorImageFilter /DCTEncode /AutoFilterColorImages true /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.76 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ColorImageDict << /QFactor 0.76 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 15 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 15 >> /AntiAliasGrayImages false /CropGrayImages false /GrayImageMinResolution 150 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 150 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.76 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /GrayImageDict << /QFactor 0.76 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 15 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 15 >> /AntiAliasMonoImages false /CropMonoImages false /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects true /CheckCompliance [ /PDFX1a:2001 ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile (None) /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False /CreateJDFFile false /Description << /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E> /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043f043e04340445043e0434044f044904380020043704300020043d043004340435043604340435043d0020043f044004350433043b04350434002004380020043f04350447043004420020043d04300020043104380437043d0435044100200434043e043a0443043c0435043d04420438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e> /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002> /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002> /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e> /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e> /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e> /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.) /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e> /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e> /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e> /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e> /HEB <FEFF05d405e905ea05de05e905d5002005d105d405d205d305e805d505ea002005d005dc05d4002005db05d305d9002005dc05d905e605d505e8002005de05e105de05db05d9002000410064006f006200650020005000440046002005e205d105d505e8002005d405e605d205d4002005d505d405d305e405e105d4002005d005de05d905e005d4002005e905dc002005de05e105de05db05d905dd002005e205e105e705d905d905dd002e002005de05e105de05db05d90020005000440046002005e905e005d505e605e805d5002005e005d905ea05e005d905dd002005dc05e405ea05d905d705d4002005d105d005de05e605e205d505ea0020004100630072006f006200610074002005d5002d00410064006f00620065002000520065006100640065007200200035002e0030002005d505d205e805e105d005d505ea002005de05ea05e705d305de05d505ea002005d905d505ea05e8002e> /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.) /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e> /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.) /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002> /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e> /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b0075007200690065002000740069006e006b006100200070006100740069006b0069006d006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e0074006900200076006500720073006c006f00200064006f006b0075006d0065006e007400750073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e> /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020007000690065006d01130072006f00740069002000640072006f016100610069002000620069007a006e00650073006100200064006f006b0075006d0065006e007400750020006100700073006b006100740065006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e> /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.) /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e> /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e> /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e> /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e> /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e> /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e> /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e> /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e> /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e> /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043d0430043404560439043d043e0433043e0020043f0435044004350433043b044f043404430020044204300020043404400443043a0443002004340456043b043e04320438044500200434043e043a0443043c0435043d044204560432002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e> /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e> >> /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ << /AsReaderSpreads false /CropImagesToFrames true /ErrorControl /WarnAndContinue /FlattenerIgnoreSpreadOverrides false /IncludeGuidesGrids false /IncludeNonPrinting false /IncludeSlug false /Namespace [ (Adobe) (InDesign) (4.0) ] /OmitPlacedBitmaps false /OmitPlacedEPS false /OmitPlacedPDF false /SimulateOverprint /Legacy >> << /AllowImageBreaks true /AllowTableBreaks true /ExpandPage false /HonorBaseURL true /HonorRolloverEffect false /IgnoreHTMLPageBreaks false /IncludeHeaderFooter false /MarginOffset [ 0 0 0 0 ] /MetadataAuthor () /MetadataKeywords () /MetadataSubject () /MetadataTitle () /MetricPageSize [ 0 0 ] /MetricUnit /inch /MobileCompatible 0 /Namespace [ (Adobe) (GoLive) (8.0) ] /OpenZoomToHTMLFontSize false /PageOrientation /Portrait /RemoveBackground false /ShrinkContent true /TreatColorsAs /MainMonitorColors /UseEmbeddedProfiles false /UseHTMLTitleAsMetadata true >> << /AddBleedMarks false /AddColorBars false /AddCropMarks false /AddPageInfo false /AddRegMarks false /BleedOffset [ 0 0 0 0 ] /ConvertColors /ConvertToRGB /DestinationProfileName (sRGB IEC61966-2.1) /DestinationProfileSelector /UseName /Downsample16BitImages true /FlattenerPreset << /PresetSelector /MediumResolution >> /FormElements true /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles true /MarksOffset 6 /MarksWeight 0.250000 /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PageMarksFile /RomanDefault /PreserveEditing true /UntaggedCMYKHandling /UseDocumentProfile /UntaggedRGBHandling /LeaveUntagged /UseDocumentBleed false >> ] >> setdistillerparams << /HWResolution [600 600] /PageSize [419.528 595.276] >> setpagedevice